Enhanced Representation and Learning of Magnetic Resonance Image Signatures in Multiple Sclerosis

Supervisors: Christian Barillot and Olivier Commowick

Yogesh Karpate
yogesh.karpate@irisa.fr

September 14, 2015
Outline

Introduction

Organization of Thesis

Longitudinal Intensity Normalization

MS Lesion Detection: Patient to Group Comparison

MS Lesion Detection: Probabilistic One Class Learning Approach

Summary and Perspectives
Outline

Introduction

Organization of Thesis

Longitudinal Intensity Normalization

MS Lesion Detection: Patient to Group Comparison

MS Lesion Detection: Probabilistic One Class Learning Approach

Summary and Perspectives
Multiple Sclerosis (MS): MS is an acquired inflammatory and demyelinating disease which causes disabilities in young adults and is common in the northern hemisphere.

Figure: The demyelinated axons. Courtesy: http://www.nationalmssociety.org/
Introduction

Problems with MS:

- Cognition impairment, dizziness, vertigo and fatigue
- Walking (gait) difficulties
- Only state of the disease can be modified, not reversed

Figure: High regional prevalence of MS across the world. Courtesy: Pietrangelo 2015.
Introduction

Problems with MS:

- Cognition impairment, dizziness, vertigo and fatigue
- Walking (gait) difficulties
- Only state of the disease can be modified, not reversed
Introduction

Problems with MS:

- Cognition impairment, dizziness, vertigo and fatigue
- Walking (gait) difficulties
- Only state of the disease can be modified, not reversed

Figure: High regional prevalence of MS across the world. Courtesy: Pietrangelo 2015.
Introduction
Quest for Biomarkers

- Clinical symptoms not specific to MS
- Magnetic Resonance Images (MRI) for diagnosing MS
- McDonald Diagnostic Criteria [Polman et al. 2010] for MS based on MRI
- Non-invasive in nature
- High resolution images
- Does not use ionizing radiation like CT examination
- To monitor disease progression by number and size of MS lesions and atrophy
Figure: Top row: T1SE, T2-w, PD-w; Bottom row: FLAIR and T1-Gd
Introduction
MRI in MS

- To monitor disease progression in both: (1) longitudinal (patient-specific) and (2) Pool of patients (MS Patient Population)
- Need for MS lesion segmentation/detection frameworks
Introduction
MRI in MS

- To monitor disease progression in both: (1) longitudinal (patient-specific) and (2) Pool of patients (MS Patient Population)
- Need for MS lesion segmentation/detection frameworks

Issues with Brain MRI

- Large intra-class variance in brain tissue intensities and inter-class ambiguity between MS lesions and some tissue intensities
- MS Lesions don’t exhibit specific shape, size and characteristics
- Very few labeled data available
- Causes problem to segmentation/detection

State-of-the-art Methods

- Most of them based on parametric model
- Based on Heuristics
Motivation

- We propose MS Lesion Detection not Segmentation
- Segmentation \Rightarrow crisp contours, Detection \Rightarrow rough contours
Motivation

- We propose MS Lesion Detection not Segmentation
- Segmentation \Rightarrow crisp contours, Detection \Rightarrow rough contours

Figure: Segmentation vs detection comparison

- No clear consensus on segmentation
- Intra-/inter rater observations variability
- For MS, information about number of lesions (part of McDonald Diagnostic Criteria) and size of lesions (Total Lesion Load) is enough
Outline

Introduction

Organization of Thesis

Longitudinal Intensity Normalization

MS Lesion Detection: Patient to Group Comparison

MS Lesion Detection: Probabilistic One Class Learning Approach

Summary and Perspectives
Organization of PhD Work

Components

Figure: Components of thesis work

I. MRI Serial Change Detection: Intensity Normalization
II. MS Lesions Detection, Voxel Based Statistical Patient to Group Comparison
III. MS Lesions Detection, Patch Based Learning One class Learning Approach
Outline

Introduction

Organization of Thesis

Longitudinal Intensity Normalization

MS Lesion Detection: Patient to Group Comparison

MS Lesion Detection: Probabilistic One Class Learning Approach

Summary and Perspectives
PART I: Longitudinal Intensity Normalization

Motivation

- Monitoring the progression of MS

Figure: Courtesy: Alex Rovira et al. 2013.

- Longitudinal Studies which also involve Active Gd-Enhanced lesions
Problems with MRI

▶ Lack of standard intensity range unlike CT
▶ Conventional MRI are weighted images and not quantitative ones.
PART I: Longitudinal Intensity Normalization

Problems with MRI

▶ Lack of standard intensity range unlike CT
▶ Conventional MRI are weighted images and not quantitative ones.
▶ Remedy: *Intensity Correction*
PART I: Longitudinal Intensity Normalization

Problems with MRI

- Lack of standard intensity range unlike CT
- Conventional MRI are weighted images and not quantitative ones.
- Remedy: *Intensity Correction*

State-of-the-art Methods

- Nyul’s Method: Landmark based intensity standardization
- Hellier’s Method: Parametric mixture mapping
- Problem: MS Lesions get affected in intensity normalization
Pipeline

- Modeling of brain tissues in White Matter (WM), Gray Matter (GM) and Cerebrospinal fluid (CSF)
- Lesions are part of the outliers
- Gaussian Mixture Modeling (GMM) using γ- divergence
- Estimation of parameters of fixed and moving images
- Mapping of intensities

![Diagram of Pipeline]

Parameters θ_{source}
Parameters θ_{moving}

Source Image
Moving Image

Intensity Normalization

Mapping (Linear Regression)
GMM Modeling of Normally Appearing Brain Tissue Intensities

The image intensities of a healthy brain with a 3-class GMM, where each Gaussian represents one of the brain tissues White Matter (WM), Gray Matter (GM) and Cerebrospinal fluid (CSF).

\[f(x_i|\theta) = \sum_{k=1}^{3} \pi_k N(\mu_k, \Sigma_k) \]

(1)
Brain Tissues Modeling

GMM Modeling of Normally Appearing Brain Tissue Intensities

The image intensities of a healthy brain with a 3-class GMM, where each Gaussian represents one of the brain tissues White Matter (WM), Gray Matter (GM) and Cerebrospinal fluid (CSF).

\[f(x_i | \theta) = \sum_{k=1}^{3} \pi_k \mathcal{N}(\mu_k, \Sigma_k) \] (1)

- Sensitive to outliers
GMM using γ-divergence

γ-loss Function for the Normal Distribution

Consider the γ-loss function for the normal distribution with mean vector μ and covariance matrix Σ

\[
L_{\gamma}(\mu, \Sigma) = \left| \Sigma^{-\frac{\gamma}{2(1+\gamma)}} \right| \sum_{i=1}^{n} \exp \left(-\frac{\gamma}{2} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \right)
\]

(2)

Notsu et.al. 2014

Significance of γ

- The bounded influence function of an estimator is an indicator of robustness to outliers
- The influence function for γ-divergence GMM is bounded whereas for regular GMM is unbounded
EM Algorithm

E-Step
Consider the γ-loss function for the normal distribution with mean vector μ and covariance matrix Σ

$$q_{ik} = \frac{\pi_k \exp \left(-\frac{\gamma}{2} (x_i - \mu_k)^T \Sigma_k^{-1} (x_i - \mu_k) \right)}{\sum_{k=1}^{K} \pi_l \exp \left(-\frac{\gamma}{2} (x_i - \mu_l)^T \Sigma_l^{-1} (x_i - \mu_l) \right)}$$ \hspace{1cm} (3)

M-Step

$$\mu_k = \frac{\sum_{i=1}^{n} q_{ik} x_i}{\sum_{i=1}^{n} q_{ik}}$$ \hspace{1cm} (4)

$$\Sigma_k = (1 + \gamma) \frac{\sum_{i=1}^{n} q_{ik} (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_{i=1}^{n} q_{ik}}$$ \hspace{1cm} (5)

$$\pi_k = \frac{\sum_{i=1}^{n} q_{ik}}{\sum_{i=1}^{n} \sum_{l=1}^{K} q_{il}}$$ \hspace{1cm} (6)
Selection of Parameter γ

Let K_γ be the number of clusters, the value of γ which minimizes Akaike Information Criterion (AIC)

$$AIC_\gamma = -2 \sum_{i=1}^{n} \log f_\gamma(y_i|\theta) + 2 \left \{ K_\gamma \frac{p(p + 3)}{2} + K_\gamma - 1 \right \} \quad (7)$$
Let K_γ be the number of clusters, the value of γ which minimizes Akaike Information Criterion (AIC)

$$AIC_\gamma = -2 \sum_{i=1}^{n} \log f_\gamma(y_i|\theta) + 2 \left\{ K_\gamma \frac{p(p+3)}{2} + K_\gamma - 1 \right\}$$

(7)

Figure: AIC vs γ Plot
Obtain the means and covariances of tissues for the source and target images.

Choose a linear correction function such that \(g(x) = \sum_i \beta_i x_i \).

The coefficients \(\beta_i \) are estimated to minimize the following cost function:
\[
\sum_{l=1}^{n} (g(\mu_{\text{source},k}) - \mu_{\text{target},k})^2
\]

\(g(x) \) is the transformation function which maps intensity of the moving image with respect to the source image.
Lesion Change Detection

Image at T0 -> Intensity Normalization -> Voxel-to-Voxel Comparison (Subtraction) -> Otsu Thresholding -> Lesion Change Detection & Interpretation
Dataset

- Dataset 1: 18 patients with 4 time points (center 1)
- Dataset 2: 40 patients with 3 time points (3 different centers)
- MRI Modalities: T1-w MPRAGE, T2-w and FLAIR
- The volume size for T1-w MPRAGE and FLAIR: $256 \times 256 \times 160$; voxel size: $1 \times 1 \times 1 \ mm^3$
- For T2-w, the volume size is $256 \times 256 \times 44$ and voxel size is $1 \times 1 \times 3 \ mm^3$
- For Gd, a T1-w volume without contrast agent (pre-contrast) and T1-w Gd-enhanced (post-contrast)
- Volume size: $256 \times 256 \times 44$; voxel size: $1 \times 1 \times 3 \ mm^3$
Preprocessing Pipeline

Denoising (Coupe et al. 2008), Bias Field Correction (Tustison et al. 2009), Registration (Commowick et al. 2012) and Skull Stripping (Smith et al. 2002)

Figure: Pre-processing Pipeline.
Experimental Setup

- Experiment 1: Longitudinal intensity normalization between image at first time point and subsequent time points
- Experiment 2: Longitudinal lesion detection
- Experiment 3: Intensity normalization for T1-gd image between pre-post contrast image
- Experiment 4: Active Gd Enhanced lesion detection
Qualitative Evaluation

Difference Image

<table>
<thead>
<tr>
<th></th>
<th>t_0</th>
<th>t_3</th>
<th>t_0-t_3</th>
<th>t_0-t_3 (Aligned)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1w MPRAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLAIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Qualitative Evaluation
Lesion Detection
Performance Evaluation

1. χ^2 distance ($\chi^2_{x,y} = \frac{1}{2} \sum \frac{(x_i-y_i)^2}{x_i+y_i}$) for histogram alignment

2. Lesion Detection: The lesion is said to be detected if $\frac{R_c \cap R_{GT}}{R_{GT}} \geq \varphi$ where R_c, R_{GT} and φ are respectively the candidate region in the image, the ground truth and a threshold

3. Regions are labeled using connected component labeling

4. The precision and recall of lesion detection averaged across the patients for various overlap thresholds φ

5. ROC-AUC from Precision Vs (1-Recall) plots using various φ
Chi-squared distance analysis

Table: Chi-squared distance analysis for histogram matching for dataset 1.

<table>
<thead>
<tr>
<th>Modality</th>
<th>Before Normalization</th>
<th>After Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Proposed</td>
</tr>
<tr>
<td>T1-w</td>
<td>0.56 (±0.03)</td>
<td>0.18 (±0.045)</td>
</tr>
<tr>
<td>T2-w</td>
<td>0.62 (±0.029)</td>
<td>0.28 (±0.037)</td>
</tr>
<tr>
<td>FLAIR</td>
<td>0.56 (±0.027)</td>
<td>0.32 (±0.038)</td>
</tr>
</tbody>
</table>

Table: Chi-squared distance analysis for histogram matching for dataset 2.

<table>
<thead>
<tr>
<th>Modality</th>
<th>Before Normalization</th>
<th>After Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Proposed</td>
</tr>
<tr>
<td>T1-w</td>
<td>0.3 (±0.08)</td>
<td>0.16 (±0.062)</td>
</tr>
<tr>
<td>T2-w</td>
<td>0.45 (±0.039)</td>
<td>0.26 (±0.027)</td>
</tr>
<tr>
<td>FLAIR</td>
<td>0.58 (±0.031)</td>
<td>0.30 (±0.048)</td>
</tr>
</tbody>
</table>
Lesion Detection Evaluation

Figure: ROC-AUC for dataset 1.

Proposed Method (AUC = 0.72)
Nyul (AUC = 0.60)
Hellier (AUC = 0.58)
Lesion Detection Evaluation

Figure: ROC-AUC for dataset 2.
Qualitative Evaluation
Active Gd-Enhanced Lesions Detection in T1-w-Gd Image
Chi-squared distance analysis

<table>
<thead>
<tr>
<th>Dataset 1</th>
<th>Before Normalization</th>
<th>Method</th>
<th>After Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.34(±0.06)</td>
<td>Nyul</td>
<td>0.29(±0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proposed</td>
<td>0.12(±0.06)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hellier</td>
<td>0.22(±0.03)</td>
</tr>
</tbody>
</table>

Table: Chi-squared distance analysis for histogram matching for T1-w Gd dataset 1.
Lesion Detection Evaluation

Figure: ROC-AUC for dataset T1-w-Gd.

- **Proposed Method (AUC = 0.71)**
- **Nyul (AUC = 0.51)**
- **Hellier (AUC = 0.54)**
A good tool for detecting lesions in longitudinal studies

- Allows for better patient-adapted therapeutic strategies
- Better method compared to Nyul and Hellier method
- Fast (15 minutes for 3 volumes) on 3.8 GB RAM, Intel Core i7 2.40GHz, with 8 cores machine
Outline

Introduction

Organization of Thesis

Longitudinal Intensity Normalization

MS Lesion Detection: Patient to Group Comparison

MS Lesion Detection: Probabilistic One Class Learning Approach

Summary and Perspectives
In clinical trials, MS lesion detection is carried out manually.

It is time consuming, costly, and prone to inter- and intra-observer variability.
In clinical trials, MS lesion detection is carried out manually.

It is time consuming, costly, and prone to inter- and intra-observer variability.

Remedy: *MS Lesion Detection Framework*
PART II: MS Lesion Detection
Patient to Group Comparison

- In clinical trials, MS lesion detection is carried out manually
- It is time consuming, costly, and prone to inter- and intra-observer variability
- Remedy: *MS Lesion Detection Framework*
- Intensity correction followed by computation of statistical differences between a patient and atlas
Atlas construction for the characterization of pathologies

Controls T1-w, T2-w and FLAIR

Atlas construction

Statistical Multi-Channel Atlases

Intensity Normalization

Registration and Comparison

Patient Image
Statistical Comparison

Mahalanobis distance between patient vector x_q and mean of control population \bar{X}; difference statistic between x_q and $\mathcal{N}(\bar{X}, \Sigma_x)$

$$d^2(x_q) = (x_q - \bar{X})^T \Sigma_x^{-1} (x_q - \bar{X})$$ \hspace{1cm} (8)

d^2 will vary between 0 and $+\infty$
Mahalanobis distance between patient vector \(x_q \) and mean of control population \(\bar{X} \); difference statistic between \(x_q \) and \(\mathcal{N}(\bar{X}, \Sigma_X) \)

\[
d^2(x_q) = (x_q - \bar{X})^T \Sigma_X^{-1} (x_q - \bar{X})
\] (8)

\(d^2 \) will vary between 0 and \(+\infty\)

Test statistics on \(d^2 \):

- p-value: statistic \(T = \frac{M(M-h)}{h(M^2-1)} d^2 \) follows a Fisher distribution with parameters \(h \) and \(M - h \): \(T \sim F(h, M - h) \)

\[
p(x_q) = 1 - F_{h,M-h} \left(\frac{M(M-h)}{h(M^2-1)} d^2(x_q) \right)
\] (9)

where \(F_{h,M-h} \) is the cumulative distribution function of a Fisher distribution with parameters \(h \) and \(M - h \)

- False Discovery Rate (FDR) Correction [Benjamini et al.1995]
Dataset

- Dataset 1: 16 (center 1)
- Dataset 2: 40 (3 different centers)
- 20 controls for atlas construction
- MRI Modalities: T1-w MPRAGE, T2-w and FLAIR
- The volume size for T1-w MPRAGE and FLAIR: $256 \times 256 \times 160$; voxel size: $1 \times 1 \times 1 \ mm^3$
- For T2-w, the volume size is $256 \times 256 \times 44$ and voxel size is $1 \times 1 \times 3 \ mm^3$
Preprocessing Pipeline

- Atlas construction for each sequence from controls
- Patient to atlas registration
Experimental Setup

- Experiment 1: MS Lesion detection on each of T1-MPRAGE, T2-w and FLAIR with and without intensity normalization
- Experiment 2: MS Lesion detection on composite vector image formed by T1-MPRAGE, T2-w and FLAIR with and without intensity normalization
Figure: Top row: from left to right, a slice of MRI from T2-w Sequence from dataset 1, corresponding ground truth (red). Bottom row: from left to right, MSL detection (green) obtained by without and with intensity normalization.
Figure: Top row: from left to right, a slice of MRI from composite vector image from dataset 1, corresponding ground truth (red). Bottom row: from left to right, MSL detection (green) obtained by without and with intensity normalization.
Criterion for Lesion Detection: The lesion is said to be detected if \(\frac{|R_c \cap R_{GT}|}{R_{GT}} \geq \varphi \) where \(R_c \), \(R_{GT} \) and \(\varphi \) are respectively the candidate region in the image, the ground truth and a threshold.

- The precision and recall of lesion detection averaged across the patients for various overlap thresholds.
- ROC-AUC from Precision vs (1-Recall) plot using various \(\varphi \).
Quantitative Results I

Figure: ROC-AUC for dataset 1 without intensity normalization.
Quantitative Results II

Figure: ROC-AUC for dataset 1 with intensity normalization.
Figure: **ROC-AUC for dataset 2 without intensity normalization.**
Quantitative Results IV

Figure: ROC-AUC for dataset 2 with intensity normalization.
Outline

Introduction

Organization of Thesis

Longitudinal Intensity Normalization

MS Lesion Detection: Patient to Group Comparison

MS Lesion Detection: Probabilistic One Class Learning Approach

Summary and Perspectives
Objective: Propose an automatic framework for MSL Detection based on multichannel MRI patch based information

Motivation

▶ State-of-the-art machine learning algorithms: SVM [Vapnik et al.1995], Logistic Regression[Zhang et al.2002], NN...

▶ Works well in practice when training examples in classes are balanced

▶ If not?
Objective: Propose an automatic framework for MSL Detection based on multichannel MRI patch based information

Motivation

- State-of-the-art machine learning algorithms: SVM [Vapnik et al. 1995], Logistic Regression [Zhang et al. 2002], NN...

- Works well in practice when training examples in classes are balanced

- If not?

- Class Imbalance \Rightarrow under-/over-fitting of the Classifier [Chawala 2005]

- Class imbalance between NABT and MS lesion patches
Motivation

- A common fix: A higher misclassification penalty on the minority class

Figure: Toy example of SVM for balanced and unbalanced classes, Courtesy: www.scikit-learn.org.
When does a common fix work well?

▶ When there is enough variation in the minority class (we are aware of extreme training examples)
▶ Is it the case in context of MS Lesion detection?
▶ No
▶ Owing to no specific shape, size and nature of MS Lesions
▶ Remedy: MS Lesion detection based on one class learning
Motivation

- When does a common fix work well?
- When there is enough variation in the minority class (we are aware of extreme training examples)

Remedy:
- MS Lesion detection based on one class learning
Motivation

- When does a common fix work well?
- When there is enough variation in the minority class (we are aware of extreme training examples)
- Is it the case in context of MS Lesion detection?

Remedy: MS Lesion detection based on one class learning
Motivation

- When does a common fix work well?
- When there is enough variation in the minority class (we are aware of extreme training examples)
- Is it the case in context of MS Lesion detection?
- No
- Owing to no specific shape, size and nature of MS Lesions
When does a common fix work well?
When there is enough variation in the minority class (we are aware of extreme training examples)
Is it the case in context of MS Lesion detection?
No
Owing to no specific shape, size and nature of MS Lesions
Remedy: *MS Lesion detection based on one class learning*
Methodology

- Classify Normal Appearing Brain Tissues (NABT) and MSL based upon bag of words features.
- A probabilistic classifier can recognize MSL as a novel class, trained only on NABT.

Figure: Framework for MSL Detection: Training Phase
Figure: Framework for MSL Detection: Testing Phase
Selection of NABT patches from border of super-voxels using SLIC (Achanta et al. 2012.)

Figure: Super-voxels using SLIC on control subject on FLAIR sequence.

- Extraction of a feature vector from intensities of patches on multi-channel MRI
- Dimensionality reduction using PCA
Let $\mathcal{Y} = \{-1(\text{NABT}), +1(\text{MSL})\}$

Compute class-posterior probability $p(y|x)$ [Quinn et al. 2014, Sugiyama et al. 2010]

Estimate $p(y = i|x)$ for each $i \in \mathcal{Y}$ by $q(y = i|x, \theta_i) = \theta_i^T \phi(x)$

The analytical solution for θ_i: $\hat{\theta}_i = (\Phi^T \Phi + \rho I_B)^{-1} \Phi \pi_i$

$\rho \uparrow$ sensitivity towards outliers \downarrow
The conditional probability of MS Lesions $p(y = +1|x, \theta)$ with $q(y = +1|x, \theta_{+1}) = 1 - \theta_{-1}^T \phi(x)$ can be expressed as

$$q(y = +1|x, \theta_{+1}) = 1 - q(y = -1|x, \theta_{-1})$$ (10)

Testing is performed as a full search (placing a patch at every voxel) which in turn generates probability map.

Aggregation of probability score is done by weighted Gaussian smoothing [Reddy et al.2012].

Multi-level Ostu thresholding to obtain detection mask [Ng et al.2004]
Methodology

Testing
Dataset

- Dataset 1: 16 (center 1)
- Dataset 2: 40 (3 different centers)
- 20 controls for NABT patches
- MRI Modalities: T1-w MPRAGE, T2-w and FLAIR
- The volume size for T1-w MPRAGE and FLAIR: $256 \times 256 \times 160$; voxel size: $1 \times 1 \times 1 \ mm^3$
- For T2-w, the volume size is $256 \times 256 \times 44$ and voxel size is $1 \times 1 \times 3 \ mm^3$
Preprocessing Pipeline

- **T1-w MPRAGE**
 - Denoise
 - Bias Field Correction
 - Source Image
- **T2-w**
 - Denoise
 - Bias Field Correction
 - Registration
- **FLAIR**
 - Denoise
 - Bias Field Correction
 - Registration
- **Skull Stripping**
Experimental Setup

- Patch size: $3 \times 3 \times 3$
- Calibration of parameters on 2 MS patients which were excluded in test dataset
- The regularization parameter ρ from $10^{-3:1:2}$
- Comparison with 1-Class SVM (Scholkopf et al. 2001) & Minimum Covariance Determinant (MCD) estimator (Rousseeuw et al. 1999)
- In 1-Class SVM, ν from $2 \times 10^{-4:1:1}$
- For MCD, the concentration of outliers selected from 5% to 40%
- Evaluation on both datasets with and without intensity normalization
Figure: A slice of FLAIR with lesion detection in axial mode, top row: a slice of FLAIR, same slice overlayed with ground truth (red), detections (green) obtained by OCSVM; Bottom row: from left to right, detection obtained by MCD and proposed method.
Figure: A slice of FLAIR with lesion detection in axial mode, top row: a slice of FLAIR, same slice overlayed with ground truth (red), detections (green) obtained by OCSVM; Bottom row: from left to right, detection obtained by MCD and proposed method.
Criterion for Lesion Detection: The lesion is said to be detected if \(\frac{R_c \cap R_{GT}}{R_{GT}} \geq \varphi \) where \(R_c \) and \(R_{GT} \) are respectively the candidate region in the image and the ground truth, and \(\varphi \) is a threshold.

- The precision and recall of lesion detection averaged across the patients for various overlap thresholds.
- ROC-AUC from Precision vs (1-Recall) plot using various \(\varphi \).
Figure: ROC-AUC for dataset 1 without intensity normalization.
Figure: ROC-AUC for dataset 1 with intensity normalization.
Figure: ROC-AUC for dataset 2 without intensity normalization.
Quantitative Results IV

Figure: ROC-AUC for dataset 2 with intensity normalization.
Conclusion: PART III

- Our method achieves better performance compared to benchmark methods: OCSVM and MCD.
- Generic in nature and can be extended to ischemic strokes, tumor.
- Works well on multi-center databases
- Time complexity for (1) proposed method: $O(n^3)$ (2) OCSVM: $O(dn^3)$
Outline

Introduction

Organization of Thesis

Longitudinal Intensity Normalization

MS Lesion Detection: Patient to Group Comparison

MS Lesion Detection: Probabilistic One Class Learning Approach

Summary and Perspectives
Summary

- Introduced the robust longitudinal intensity normalization method based on γ-divergence GMM

- A group to patient statistical comparisons based at voxel level is simple MSL detection method but achieve very high performance

- MSL detection based on one class learning approach is effective and fast

- Intensity normalization helps in increased MSL detection
Future Work

- Intensity Normalization Method can be improved:
 1. Using other parameters like covariance
 2. Exploiting multi-sequence information
- MSL detection based on Patient to Group comparison can be extended to statistical comparison of patches using kernel methods.
- For MSL detection using one class learning
 - Inclusion of other sequences i.e. MTR and DTI
 - Effect of different patch size on performance
 - Incorporation of selective search technique instead of sliding-window
Thanks!

Thank You All !!