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Introduction: The data assimilation

Data assimilation problem

Dynamic model Oex(t,x) + M(x(t,x), u) = q(t,x), (1)
Prior knowledge model xo(x) = x5(x) + n(x), (2)
Observation model Y(t,x) = H(x(t,x)) + €(t,x). (3)

Variational and sequential methods

to Ty 1
(b)

Figure: Scheme comparison between variational and sequential methods




Introduction: The image data

Figure: Sea surface temperature image data taken at 10/01/2008

Summary of attributes of image data:
@ High resolution, especially higher than the dynamic grids
@ The image is only indirectly related to the state variables

@ Large areas of missing information and incomplete
observations

@ Potential balance issues

@ Hard to evaluate the quality of analysis



Variational methods

The cost functional:

= (V) - Y(0) RV - V(). (@)

to

Ys(t) = H(x¢) (orHxy).

The necessary condition for J to be an extremum is:
5J(Ya(t)) :2/ {W,(SY( )}t = 0.

Adjoint techniques: Expressing the constraint by transforming the
cost function to one which only depends on the initial condition.

{RTH(Ys(t) — V(t)), OxH(xe)Oxpe(x)d%0} = {dxipi H'R™H(Ya(t) — V(t)), Oxo}-.
Vid =2 /tf Api HR™Y(Yi(t) — V(1)) dt.



Incremental 4DVar methods

A standard four dimensional variational data assimilation problem:

Jxo) = 3o x) =)+ 5 [ EL(e(e) = V(e x)oee. (5)

Why increment?

Using two interleaved loops to

@ incorporate the evolution of the background solution through
the nonlinear dynamics,

@ keeping the simplicity of the internal loop to recover an
optimal increment driven by the tangent linear dynamics.

The cost functional in terms of the increment dxq:
1

1 tr
Jow) = 50m0lls + 5 [ 10 bx(tx) - D(ex) ok, (6)
to

where

Ox¢ = Oxpt(Xp)0x0, and D(x, t) = Y(x, t) — H(pt(xp)).



Preconditioning and Conditioning

The Hessian conditional number:

K(H) < 5(B)(1+ 0 Amin(B) max (max(C)) (= t0)).

@ Directly related to the conditional number of B.
@ Perfect observation & High resolution observation lead to bad
conditioning.

y

Preconditioned incremental form

Control variable transform (CVT): dx; = Udz; = B%zt,

1 1 [t
J(0z0) = §|\520H2 + 5/ ||OH Oxp t(Xo)B%5Zo — D(t, x)||adt.
to

~ t
H=I +/ B%TaxgotaxH*R_laxHangtB%dt. (7)

to
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Ensemble Kalman filter

@ Kalman filter is incapable of dealing with nonlinear operators.

o Extended Kalman filter only works well for slightly nonlinear
models.

EnKF (Evensen 94) works as a Monte Carlo implementation of
Kalman Filter.

@ Forecast phase: A cloud of possible states is propagated by
the nonlinear dynamics.

@ Analysis phase: Update the ensemble state based on the
observation.
— Perturbed observation approach: Monte Carlo implementation.
— Direct ensemble transformation approach.




4DVar VS EnKF

4DVar

EnKF

Covariance Statistical
Model

Not needed,
Non-Gaussian errors allowed

Prior pdf of background error
and observation error needed
usually Gaussian

Background Errors

Fix at the beginning,
Implicit evolution

Derived from ensemble,
Flow dependent,
can be quite noisy

Ability to Update the No Yes, the posterior
Background background error covariance
Error Covariance can be estimated directly
Localization Not needed Needed

Tangent Linear Needed Not needed

Adjoint Models

Analysis Methods

Simultaneously assimilate
all observations

Sequentially assimilate
batches of observations

Estimation Methods

Iteratively minimizing a
quadratic cost function:
quasi-Newton methods

Explicitly calculate
the analysis by
Kalman gain matrix

Balance Constraints

Yes

Slightly lost in localization




State of the art

Variational method using flow-dependent background error

covariance

EnKF-3DVar (Hamill and Snyder, 2000, Lorenc, 2003 , Buehner,
2005), ETKF-3DVar (Wang et al,2008), En4DVar (Buehner et al,
2010, Clayton et al, 2012, Zhang et al, 2009, Zhang and Zhang,
2012), 4DEnVar (Liu et al, 2008, Fairbairn et al, 2013, Decsroziers
et al, 2014), Explicit 4DVar (Qiu and Zhou, 2005, Tian et al,
2008).

EnKF method adjusting to assimilate asynchronous data

4DEnKF (Hunt et al, 2004), 4DLETKF (Hunt et al, 2007, Fertig
et al,2007), AEnKF (Sakov et al, 2010).

EnKF system incorporating an iterative procedures

MLEF(Zupanski, 2005), I[EnKF (Sakov et al, 2012), VEnKF
(Solonen et al, 2012).
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4DEnVar: important aspects

Low rank approximation of the background error covariance matrix

1
B: ~ A = PP — (), - X (xby), (8)

The cost functional preconditioned by the empirical perturbation
matrix

1 1 ,
J(520) = 620" + 5/ || O By (x0)Abdzo — D(t, x)|[Zdt.  (9)

to

The propagation of ensemble perturbation matrix projected into

observation space

1
vN -1

(H( e (x"))~H(e((x5))), - - -, H(ipe (x$)) —H( 0 {(x5)))
(10)

O O +(x0)A} ~
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General Algorithm

o Define the background state x5 and Initialize the background
ensemble X5.

o Calculate the ensemble forecast X2 over the assimilation
window.

@ Empirically calculate the ensemble based background
perturbation matrix A} and OJH Oky +(x0)A}.

e Do CVT dxp = A} 0zg and transform the cost function in
terms of the control vector dzg.

@ Solve for the initial increment 520 which minimize the
problem:

1

1 i
J(620) = E|\5z0||2 + 5/ || O4H Dyepe (x0)AL0Zo — De|[3dlt.
to

o Update the analysis state x§ = x2 + A, 6z



Ensemble generation

The ensemble can be generated by

@ perturbing initial conditions:
x0 = x4 50 =1, N (11)

in which dg is usually sampled from a peusdo-Gaussian field.

@ perturbing parameters:
u' = p(u). (12)

Each member of the ensemble is independently integrated through
the nonlinear model:

X{’(i) _ sot(xg’(i)a ui)’ i=1,...,N. (13)
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Nested loops schemes

Different variants of the incremental technique:
@ Courtier et al. 94

xg = xéfl + 6xé,
1 _
(o) = 166 55— <,

@ Weaver el al. 03

k _ b k
Xg = Xg + 0Xq,

Df = Vr — H(pe(xg 1)) + O ox5 1,
@ Ensemble updating scheme

k _ k-1 k
Xg = Xg ~ +0xq,

Bk — (Xg_l _ xref)(xg—l _ Xref)T7

1
Jo(0x§) = 3 6% 3.
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Ensemble Update schemes: Perturbed observation
approach

Perturbed observation approach: Monte Carlo implementation
@ Observation ensemble:

Y=y 4+ j=0,...,T, j=1,...,N.
@ For each member j=1,... N:

, 1 . 1 tf q q
J628) = 121+ 5 [ 02 Buprlxo)Aa — DOt ) .

to

e Background Ensemble members update:

i i (U)K .
)PP — OBk NGz j=1,...,N.
@ Ensemble perturbation matrix update:
k+1 1 1)b,k+1 b,k+1 N)b,k+1 b,k+1
AR = e (T g — g )
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Ensemble Update schemes: Direct ensemble
transformation approach

Direct ensemble transformation approach

@ By approximating the link between the analysis error
covariance matrix and the inverse Hessian matrix.

tf
(P) '~Hg=B"'+ / Oxpr OH* R0, HOy p: dt,
to

_1
AL~ ALH, 2.
@ Ensemble perturbation matrix update:
_1
AfH = Ay Y
e Updated background state (Ensemble mean):
S(\g,k _ Xg,k + Ai,k(ﬁ)k,
@ Background Ensemble members update:

xR 3ok N IA =1 N
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Localization technique

Localization aims at filtering the pseudo correlation arisen from the
ensemble fields.

e Define Schur product: P? = C @ Pe.

— Polynomial approximation of a Gaussian function with compact
support is often employed.

@ Spectral decomposition: C = EAET.

@ Localized ensemble perturbation matrix:
P, = (diag(A)C', ..., diag(ASM)C").

Local ensemble (analysis)

@ The ensemble (re)propagation are dealt with full dynamic
model in global space.

@ The minimization w.r.t each grid point is conducted parallelly
in a local region.
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© Applications
@ 2D shallow water model
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2D shallow water model

Conservative form:

0en + Ox(hu) + 0,(hv) =0, (14a)
de(hu) 4 8 (hu®) + 9, (huv) = —ghd.n — ghSpx + hfv + v(0«(huy) + Oy (huy)),
(14b)

de(hv) + 8 (huv) + 8, (hv?) = —ghdyn — ghSpy — hfu + v(0x(hvi) + 8y (hvy)).
(14c)

. Refereﬁce

h(m,y,t) -

k -

e N

Figure: Schematic diagram of unsteady flow over an irregular bottom (Cushman-Rosin
and Becker, 11).
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2D Shallow water model: Experiment design

Twin synthetic and experimental cases’ setups:

Synthetic case A ‘ Synthetic case B ‘ Experimental case
Domain size 100cm*25cm
Dynamic Resolution 26%11 101*41 124*49
Assimilation time 0.2s 0.15s
Background error type Gaussian Non-Gaussian Unknown
Cut-off distance Optimally tuned

Hy + AHy + AH,

I;// H%? H{% H+ H

L

Figure: A priori initial experimental configuration (left) and the true synthetic initial
conditions with a Gaussian noise—Case A—(middle) and with a 10% slope along the

y-axis—Case B—(right).

Comparison tools

Z(xf — x°bs)2, (15)

RMSE = 1
n -

i=1
20




hetic case A results, Perfect bac

Height RMSE Lengthwise velocity RMSE

Height RMSE

und ensemble

Err/6H

Err /U

t-U/L,

Err /U

£U/L
Transverse velocity RMSE Transverse velocity RMSE
T —— Background o
w? ~_ _— —— 4pvar o ~
T —— 4DEnVar-N8-OP

—— 4DEnVar-N16-OP
- - - 4DEnVar-N16-OP-OL
4DEnVar-N32-OP
4DEnVar-N32-OP-OL|
4DEnVar-N16-DT-OL |
4DEnVar-N32-DT-OL|
o Observations

—— Background
——4DVar
—— 4DENVar-N16-LC
- - - 4DENVar-N16-LC-OL
4DEnVar-N16-LC-OL-Coutie
o Observations

(b)

Figure: RMSE comparison between (a) group of methods with perfect background ensemble and no
localization (OP, observation perturbation; DT: direct transformation; OL, extra outer loop), (b) outer
loop schemes: No outer loop (black line), Algorithm of ensemble updating (black dashed line),

Algorithm of Courtier et al, 94 (black dotted line).
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Synthetic case A results, Imperfect background ensemble

Type N COD/L. OLlter IL lter RMSE(tr)e™* RMSE(t)

Observation - - - - - (9.758,9.804)
Background - - - - (275.5,92.32)  (362.5,115.2)
4DVar 5 5 3 100 (1.450,0.8495) (6.645,5.693)
4DEnVar-OP-LC 32 60% 2 100,100 (2.768,0.634)  (5.779,3.992)
ADEnVarDT-LE 32 30% 2 100,100  (4.268,1.664)  (12.84,4.268)

Table: RMSE comparison table. Type: Group of methods with imperfect background
ensemble and no localization (OP, observation perturbation; DT: direct transformation; LC,
Localized covariance; LE, Local ensemble); N: ensemble members; COD/Ly: ratio of cut-off
distance divided by characteristic length; OL Iter: Outer loop iteration; IL Iter: Inner loop
iterations; RMSE(t¢): final RMSE; RMSE(t): mean RMSE.

N
N



Synthetic case B results: RMSE comparison

Height RMSE

Lengthwise velocity RMSE

Height RMSE

Lengthwise velocity RMSE

R

Transverse velocity RMSE

—— Background
—ar
—— 4DEnVar-N8-Para
ODEn\/ar-NB Liu-et-al
oL-LC

4DEnVar-! NB OL-LE
o Observations

t-U/L,

—— Background
——4DVar
—— 4DEnVar-N16-Para

- - 4DEnVar-N32-OL-LC
4DEnVar-Na2-OL-LE
©_Observations

Figure: RMSE comparison between an incremental 4DVar and 4DEnVar assimilation approaches: (a)
partial observed through noisy free surface height, (b) fully observed system
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Synthetic case B results: Comparison of computational

power

Type CPU Time Memory demands
4DVar 3200s Small
4DEnVar-PP(No Localization, N=38) 120s Small
4DEnVar-LC(N=32) 2400s Huge
4DEnVar-LE(N=32) 600s Small

Table: Comparison of the CPU time (seconds) (2 x 2.66 GHz Quad-Core Intel Xeon)
and memory demands (16 GB in total) with 10° level of state size between different
methods.
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Our ensemble-based methods
@ can yield comparable results as standard 4DVar.

@ are especially pertinent and efficient compared to standard
4DVar when dealing with incomplete observations.

@ work best if the statistics of ensemble fields correspond to the
statistics of the background error (Parameter perturbation if
possible).

@ embrace two ensemble update schemes: The OP approach
and the DT approach.

@ embrace two localization schemes: The LC approach is more
robust when dealing with incomplete observations whilst the
LE approach needs less computational resources.

@ employ the background ensemble repropagation scheme
between two consecutive outer loops which is proved to be
more effective.



Real image case: configuration

(a) (b)

Figure: (a) The height field observed from the kinect camera, (b) The corresponding
height background state at t = 0.
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eal image case: results

T
Background

L ———4DVar L
215 En4DVar-Liu-et-al|
d En4DVar-OL-PO
Q Observations

)

1851 7

L L L L L L L
0.0652 0.1302 0.1953 0.2604 0.3255 0.3906 0.4557 0.5208 0.5859

t-UJL,

Figure: Mean surface height of the wave crest region as a function of time -
comparison of different variational data assimilation approaches results
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Remarks

In the case of the real image assimilation, we have shown that the
ensemble-based methods are:

@ easy to deal with complex, nonlinear observation model.

@ to a large extent model independent.

Summary of image data assimilation

Compared to 4DVar:

@ Ensemble repropagation redefines the subspaces to which the
analysis increments belongs

@ More reliable and accurate background error covariance
magnitude and structure (tunable)

@ Better reconstruction of unobserved component.
@ More computationally efficient.

Compared to filtering method:

@ provides directly a smoothing concerning all observations.




@ Stochastic approach
@ Shallow water equations under location uncertainty
@ Ensemble-based parameter estimation
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Shallow water equations under location uncertainty

Explore high-resolution image data.

Common approaches

The Direct Numerical Simulation (DNS), the Large-Eddies
Simulations (LES) and the Reynolds Average Numerical
Simulations (RANS).

@ DNS: Simulating the smallest scales of the flow, but requires
extensive computational power.

@ LES: Filtered governing equations are able to catch unsteady
effects and requires moderate computational power.

@ RANS: Time averaged and Least computational demanding,

v

SGS (Subgrid-scale) modeling

Additive random forcing terms.
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Shallow water equations under location uncertainty

Flow displacement field decomposition

The Lagrangian fluid particle displacement can be separated in two
parts: a smooth differentiable part and a non-differentiable
stochastic part:

dX(x,t) =w(X(x,t), t)dt + o(X(x,t), t)dBt, (16)

where dBy is a vector of d-dimensional Wiener increment (d=2,3).

Derivation process in deterministic approach

. A do _ 0¢
e Material derivative 5 = 5; + w - V.
o Differentiation of the integral over a material volume V
(Reynolds transport theorem)

%/quxz/v[%-i-v'(qw)]dx (17)




Shallow water equations under location uncertainty

Ito-Wentzell formula

In our case, ¢(x,t) is necessarily a random function, consequently
it must satisfy the stochastic differential of Ito-Wentzell formula:

~

Xi

D) t )
do(X,t) = dep + V- dX + 2 3 d<x,-,Xj>aang dt+Y d(?—j,/o (0B.)')d
=0. (18)

This formula functions as the material derivative in the sense of
deterministic derivation.

Stochastic Reynolds transport theorem (Mémin 2014)

1 0?
d/quXI/v[dtCI-FV'(qW)dt—E’ZjW(QUQ)dtJFVq'O’dBt)]dX

(19)




Shallow water equations under location uncertainty

2D stochastic shallow water equation: Non-viscous and

incompressible flow

Continuity equation:

a(ha) _ a(hv) 1 )
dth+( ox oy 228X,.8Xj(a,,h))dt+

d(hodB:)x O(hodBt),
+ =0,
ox dy

Momentum conservation equation:

1 o
TR
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Shallow water equations under location uncertainty
1D stochastic shallow water equation in terms of horizontal mean
field

% . a(hf;(%ghz) _% 82(;:;7“) _ axx%% _o, (20b)
7= CAXAY\/(g)L:)z + (g—;)2 + %(g—; + %)25&-- (21)
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Estimation of the variance tensor from data

Estimator from realized temporal variance

Suppose we have a sequence of small-scale velocity data ranging
form 0 to T: wp, wy, ..., wy, the second moment of random
variable X can be approximated by its observed values:

T T

Estimator from realized spatial variance

a(tr %) = €2 3™ [(witr x) — (25, x0) (w(t, ) — (85 )]

n2 —
lecC

Estimator from realized ensemble variance

a= (88 > — > (w0 = M@ () ~ e
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Estimation of the variance tensor from DA

Cost function

tf
> [ lostox(c. x.a) - D(z.x.a) ha,
to
(22)

1 1
J(9x0, 0a) :§||5X0(X)|I§x + EII&'II%a +

where the innovation vector D(t, x, a) is defined as:

D(t, x,a) = Y(t, x) — H(t(xo(x), a)), (23) |

Possible approaches

@ Parameter estimation scheme in variational system: adjoint
based gradient calculation

@ Parameter estimation scheme in ensemble-based system:
empirical based gradient calculation
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Ensemble-based parameter estimation

State of the art

Simultaneous approach: EnKF (Zupanski and Zupanski, 2006;
Yang and Delsole, 2009), EnSRF (Tong and Xue, 2008), LETKF
(Kang et al, 2011), IEnKS (Bocquet and Sakov, 2013).
Separately approach: (Koyama and Watanabe, 2010).

Simultaneous approach

| \

Estimating the initial condition and the parameters at the same
time

Parameter structures

| A\

In our case, the variance tensor a is a function of both time and
space. It is necessary to introduce cycling procedure.

Parameter evolution model

| \

The parameter is propagated to the next cycle aj+1 = aj + Boa;

up to a relaxing coefficient 5 € (0.2,0.5).
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Ensemble-based parameter estimation algorithm

@ Define the augmented state vector so = [xg,ag] € R"™P

@ Initialize and integrate the augmented ensemble Sy which can
be a function of both initial conditions and parameters

o Calculate the augmented ensemble perturbation matrix:
A= 1 (S3 — (So),...,SY — (So)).

T VN-1
@ Minimize the cost function in terms of the augmented state
vector:
1 2 O / 2
J(650) = 3 s0l3, + 5 | 10 Oui(s0)350 — D(t. x,2) [Rel.
to
with

B -, — (B 5.



Ensemble-based parameter estimation
Parameter estimation effect

@ a explicitly manifests itself on the model integration in the
form of the estimated parameter a.

e a implicitly affects the analysis state through the ensemble
spread from which the propagation of the ensemble
perturbation matrix is calculated.

Localization technique

| \

The localized covariance approach has to be extended to the
spatial parameter covariance and the cross-covariance between the
state variable and the parameter. That is to say, we use

T T
Pl =C,0Bf = (CXX CQX) ® (EXX gaX) : (24)

Cax Caa




Parameter identifiability

Definition
A criteria to decide whether or not the parameter of interest can
be inferred from data

Possible approaches

@ An output response function:

Gomelation coeficient

Jy(a)Z/0 [2(2, ) —H(eox(x0(x), a)) || *dt

@ The correlation coefficient:

cov(x,a) Figure: The spatial distribution of
cor(x,a) = ————=t—. the correlation coefficients
Vv var(x)var(a) between the state variable h, u

and a: cor(h, a) (blue line) and
cor(u, a) (red line).
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Experimental settings

Initial state

h(x,0) = Ho — "X + A¢, with L = 6000km, Hp = 5000m,

f =1.03x 107%s™!, Uy = 40m/s and g is the gravity acceleration.
And ¢ is a random Gaussian covariance field (with de-correlation
length equals to 20%L).

@ Simulated state resolution @ Simulated state resolution
101 grid points. 21 x 51 grid points.

@ True state resolution 401 @ True state resolution
grid points. 81 x 401 grid points.

@ 3 cycling windows. ) @ 5 cycling windows. )
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RMSE(m/s)

Figure: RMSE comparison in terms of free surface height (a) and velocity (b) between

Surface height (a)
T T T T

L L L
7500 5000 500 000 900 1000 10500 11000

Velocity (b)
T T

—— Large scale simulation
© Fine scale observation
—— NoLocal-Subgrid-model, N=32
= = = LC-Subgrid-model, N=32 1
NoLocal-Subgrid-model, N=512
—— NoLocal-Standard-model, N=32| |
- - - LC-Standard-model, N=32

L L
7500 8000 500 %000 00 1000 10500 11000

various configurations of 4DEnVar.



Results and Discussions: 1D synthetic, Subgrid model term

effects:

Surface height (a)
T T

—— Large scale simulation
wlL| © Fine scale observation
——acombo 1
8| ——acombo 2

E [H——acombo3
' 6| —— Smagorinsky Eddy Viscocity
=
T

4

o 4

° °
I | I I 1 1 | I
6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
t(s)

Velocity (b)
T T

RMSE(m/s)

° k

T L L L L L L L
6000 6200 6400 6600 6800 7000 7200 7400 7600 7800
(s

Figure: RMSE comparison in terms of free surface height (a) and velocity (b) between

various subgrid model configurations of stochastic shallow water model. 43



Results Discussions: 2D synthetic, RMSE results

Surface height (a)
T

Lenthgwise Velocity (b)

. . : :
~— Large scale simulation /

© Fine sclae observation
06 ——LE,N128, beta=1 1
— LE,N256,beta=0.5
=== LE,N128, beta=5
—— LE,N512,beta=0.5

LC,N32,beta=0.25

RMSE(ms)

Figure: RMSE comparison in terms of free surface height (a) and lengthwise velocity
(b) between various configurations of 4DEnVar.
44



Surface height (a) Velocity (o)
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Figure: Ensemble Spread in terms of free surface height (a) and lengthwise velocity
(b): standard model (circle) with ensemble in function of initial states; subgrid model

(square) with ensemble in function of initial parameters.



@ Compared to standard model, our model under location
uncertainty can better reflect the interaction between resolved
parts and unresolved parts of the flow.

@ Compared to standard model, ensemble initialized by variance
tensor perturbation can better maintain the ensemble spread.

@ High-resolution image data can be used to its full extent
without the need to run dynamical model on fine grids.

@ Compared to Smagorinsky eddy viscosity model, the term

emerged in the mass conservation equation is proved to be
useful in some cases.



© Conclusion & Future work
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Conclusion & Future work

Conclusion

In general, the variational ensemble methods proposed can better
cope with image data in terms of bad background (error) quality,
unobserved components, high resolution

4

@ SST image application

@ Complex model application

@ Uncertainty subgrid estimation: non Gaussian parameter
distribution and constraints.
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