
Testing and Maintenance of
Graphical User Interfaces

Valéria Lelli
PhD Thesis Defense, 19th November 2015

INSA/INRIA, Rennes – France

Lydie du BOUSQUET (Rapporteur)

Philippe PALANQUE (Rapporteur)

Pascale SÉBILLOT (Examinateur)

Francois-Xavier DORMOY (Examinateur)

Benoit BAUDRY (Directeur)

Arnaud BLOUIN (Co-encadrant)

Jury

Context

2

 Graphical user interfaces (GUIs)

 Composed of graphical interactive widgets

 Designed for being controlled by the users

Validation of GUIs

3

 GUI designers concern the design and qualitative
assessment of GUIs

Arrangement
of widgets

Using
suitable

colors

Validation of GUIs

4

 Software engineers ensure that
 GUIs react correctly to user interactions

Pressing on
a button

Validation of GUIs

5

 Software engineers ensure that
 GUIs react correctly to user interactions

Pressing on
a button

produces
the expected

action

GUI
testing tools

GUI
failures

GUI testing

Numerous and
different kinds

of widgets

GUI faults are
multiple and

diverse

6

GUI testing techniques

7

 Event-flow graphs
 Based on the sequence of events to automatically

generate test cases

 Capture and Replay tools
 Recording user interactions to be replayed

 Monkey tools
 Sending random events such as mouse events

 Functional GUI testing tools
 Pre-defined libraries to write test cases

✗ GUI failures from the recent GUI developments

Graphical User Interfaces

8

Users

Graphical
elements

Human
input device

GUI source
code

9

Validation of GUIs

GUI source code

60% of the total
software

Few works
focus on GUI
code analysis

GUI code analysis

10

 Bug finder tools
✗ FindBugs and PMD do not focus on detect

problems that affect the GUI source code

✗ Absence of GUI metrics/rules to detect GUI
design smells

 GUI design smells
 Bad coding practices that degrade GUI source

code

11

Contributions

GUI fault
model

GUI source
code analysis

12

13

 How the characteristics of recent developments of GUIs
impact on GUI testing?

GUI Design

 Current GUI testing tools focus on finding bugs in
classical GUIs

 Recent developments of GUIs involve more advanced
user interactions

14

Post-WIMP GUIs

 Ad hoc widgets such as drawing areas
 Complex interactions: multi-touch, etc.

Ad hoc
widgets

Complex
interactions

Complex
 data

15

 Standard widgets
 Mono-event interactions

 Ad hoc widgets
 Multi-event interactions

 Event-based GUIs Interaction-based GUIs

✔ New problems of GUI faults

✗ Current GUI testing tools

 Ad hoc widgets
 Multi-event interactions

WIMP vs. post-WIMP GUIs

16

 Objectives

GUI V&V
techniques

Model-based testing

Dynamic Analysis

Static Analysis

GUI
Fault Model

Fault-based testing

 Developing GUI testing techniques

 Baseline to evaluate the effectiveness of GUI testing
techniques

Describe how GUI faults
come to be and how and
why they occur as a GUI
failure

GUI Fault Model

Incorrect layout of
widgets

Incorrect state of
widgets

Incorrect
appearance of

widgets

17

User interface
faults

GUI structure
and aesthetics

Data
presentation

Incorrect data
rendering

Incorrect data
properties

Incorrect data type

Interaction
behavior

Interaction
behavior

 Incorrect
action results

No action
executed

Incorrect
action

executed

Reversibility

Incorrect
undo/redo
operations

Incorrect
reverting of

the interaction

Incorrect
reverting of
the action

Feedback

Incorrect
action

feedback

Incorrect
interaction
feedback

User interaction
faults

Action

 Structure and behavior of the graphical components

GUI Fault Model

Incorrect layout of
widgets

Incorrect state of
widgets

Incorrect
appearance of

widgets

18

User interface
faults

GUI structure
and aesthetics

Data
presentation

Incorrect data
rendering

Incorrect data
properties

Incorrect data type

Interaction
behavior

Interaction
behavior

 Incorrect
action results

No action
executed

Incorrect
action

executed

Reversibility

Incorrect
undo/redo
operations

Incorrect
reverting of

the interaction

Incorrect
reverting of
the action

Feedback

Incorrect
action

feedback

Incorrect
interaction
feedback

User interaction
faults

Action

 The interaction process when a user interacts with a GUI

GUI Fault Model

…
//Set widget properties

7. widget.setVisible(true);

8. widget.setAlignment(5);

…

19

 E.g. of GUI Fault: incorrect vs. correct lines of GUI code
 E.g. of GUI failure: a widget is not visible

Concrete examples of user interface faults

…
//Set widget properties

7. widget.setVisible(true);

8. widget.setAlignment(5);

…

20

 E.g. of GUI Fault: incorrect vs. correct lines of GUI code
 E.g. of GUI failure: a widget is not visible

Missing the widget
COPY

7. copyMenu.setVisible(false);

Incorrect state of
widgets fault

Concrete examples of user interface faults

…
//Set widget properties

7. widget.setVisible(true);

8. widget.setAlignment(5);

…

21

 E.g. of GUI Fault: incorrect vs. correct lines of GUI code
 E.g. of GUI failure: a widget is not visible

Missing the widget
COPY

Widgets are not
aligned

 8. btnRedo.setAlignmentY(10);

Incorrect layout of
widgets fault

Concrete examples of user interface faults

7. copyMenu.setVisible(false);

Interaction behavior
1. figures.firstElement().onDragged(formerPt, newPt);

Concrete examples of user interaction faults

22

Interaction behavior
1. figures.firstElement().onDragged(formerPt, newPt); figures.firstElement().onDragged(newPt, formerPt);

Concrete examples of user interaction faults

23

Not possible to move a shape since the drag
 is incorrectly processed

Fault model assessment

RQ1: Is the GUI fault model relevant against real GUI

failures?

RQ2: Are GUI testing tools able to detect the failures
classified in our fault model?

24

Experiment (RQ1): relevance

25

 GUI bug reports of 5 open-source software systems
 Sweet Home 3D
 File-roller
 JabRef
 Inkscape
 Firefox Android

Several kinds of widgets,
interactions and platforms

 Manual analysis of the real GUI bug reports
 Source forge, bugzilla, etc.
 Root cause: description, patches, comments, or

stack traces

Experiment Results

26

 All GUI failures (279) were classified into the fault model

 Post-WIMP
 25% (user interface)
 18% (user interaction)

 User interface (41%) and user interaction (59%)

0

30

60

90

120

150

180

User interface failures User interaction failures

85

135

29

30

N
u

m
b

er
 o

f
fa

il
u

re
s

WIMP GUIs post-WIMP GUIs

Experiment Results

27

 43% into Action and
 27% into GUI structure and aesthetics

0

20

40

60

80

100

120

GUI

structure and

aesthetics

Data

presentation

Interaction

behavior

Action Reversibility Feedback

75

39

12

119

31
3

N
u

m
b

er
 o

f
fa

il
u

re
s

Experiment Results

28

0

20

40

60

80

100

120

GUI

structure and

aesthetics

Data

presentation

Interaction

behavior

Action Reversibility Feedback

75

39

12

119

31
3

N
u

m
b

er
 o

f
fa

il
u

re
s

 1% of GUI failures classified into Feedback
 Several “failures” were considered by developers as

improvements

29

RQ1: Is the GUI fault model relevant against
real GUI failures?

 All GUI related faults of 5 large scale case studies can
be classified
 279 GUI bug reports

 All the 6 fault categories are covered

 Faults concern WIMP and post-WIMP GUIs
 Ad hoc widgets (59 faults)

Experiment (RQ2): GUI testing tools

30

Incorrect layout
 of widgets

Incorrect state
of widgets

Incorrect
appearance
of widgets

User interface
faults

GUI structure
and aesthetics

Data
presentation

Incorrect data
rendering

Incorrect data
properties

Incorrect data
 type

Interaction
behavior

Interaction
behavior

 Incorrect
action results

No action
executed

Incorrect
action

executed

Reversibility

Incorrect
undo/redo
operations

Incorrect
reverting of

the interaction

Incorrect
reverting of
the action

Feedback

Incorrect
action

feedback

Incorrect
interaction
feedback

User interaction
faults

Action

 JabRef: selected 11 out of 15 GUI faults JabRef: selected 11 out of 15 GUI faults

31

3http://www.eclipse.org/jubula

 GUITAR2

 Most popular academic tool in GUI testing
 Automated test cases generation
 Event-flow graph is built by reverse

engineering

Experiment (RQ2): GUI testing tools

 Jubula3

 Partially manual generation of test cases
 Reuse pre-defined libraries to create manually

test cases

2B. N. Nguyen, B. Robbins, I. Banerjee, A. Memon: GUITAR: an innovative tool for
automated testing of GUI-driven software. Autom. Softw. Eng. 21(1): 65-105 (2014)

Experiment Results

32

 GUITAR detected
 3 out of 11 GUI faults

 Jubula detected
 9 out of 11 GUI faults

 GUI failures detected
 ✔ Properties of standard widgets
 ✔ Crashes
 Oracle for standard widgets

Experiment Results

33

 GUITAR
 Missed 8 out of 11 GUI faults reported in JabRef

 GUITAR builds the event-flow graph by
 Extracting the sequence of events behind standard widgets
 Collecting the information in the properties of standard

widgets as event logs

✗ User interface failures into properties of standard
 widgets
✗ Complex data in ad hoc widgets

✗ Events are both widgets and their underlying interactions

✗ Ad hoc widgets and their multi-event interactions

34

Real example of a GUI failure

35

Real example of a GUI failure

Incorrect
Feedback

36

RQ2: Are GUI testing tools able to detect the
classified failures?

 Most of GUI faults concern standard widgets

✗ Faults that concern the interactive features such as
feedback and reversibility

Conclusion

 An empirical study of real GUI failures
 279 GUI-related bug reports

37

 Evaluation of two GUI testing tools against
 Real GUI failures into standard and ad hoc widgets
 65 GUI mutants derived from our fault model

 43 GUI mutants were not killed

 A precise analysis of standard GUI testing frameworks
 Why GUI failures that stem from GUI faults described

in our fault model were not detected?

38

Contributions

GUI source
code analysis

GUI fault
model

39

 Objectives

 Develop a novel static analysis to detect GUI design smells

 Identify and characterize design smells that degrade
the GUI code quality

GUI code assurance quality GUI source code

40

GUI implementations GUI source code

View Model

events

Data model of an
interactive system

Receive the
events

Controller

Represent of the
GUI elements

Listener
methods

41

42

GUI implementations GUI source code

 Specific architectural design patterns

 Organize the GUI components

 Describe how the components interact with each other

 Mode-View*
 Model-View Controller (MVC)
 Mode-View Presenter (MVP)
 Model-View-ViewModel (MVVM), etc.

43

Java GUI controller

 AController manages events produced by three
widgets (b1, b2, and m3)

GUI source code

44

Blob listener

GUI command is a set of statements executed in
reaction of a user interaction

 A GUI listener produces several GUI commands

45

 13 open-source software systems
 Github repository that use an issue-tracking system
 Large Java systems
 GUI size: 858 GUI listeners

 Metrics

Empirical Study on GUI listeners

 Average commits

 Average fault fixes

 Number of commands

Results

46

 The number of commands per GUI listeners has a
negative impact on fault-proneness of listeners code

Commands per GUI listeners (#)

Fa
u

lt
 f

ix
es

 p
e

r
Lo

C

Results

47

 Establish a threshold value to at least three commands
per listener
 21% of the analyzed GUI listeners are Blob listeners

Blob Listener is a GUI listener that produces
more than two GUI commands

Blob Listener detection

48

Blob Listener detection

49

 GUI listeners are analyzed to identify GUI listeners that
have at least one conditional statement

Blob Listener detection

50

 GUI listeners are analyzed to identify GUI listeners that
have at least one conditional statement

Blob Listener detection

51

 The conditionals are analyzed to detect any reference to a
GUI event or widget

Blob Listener detection

52

 The conditionals are analyzed to detect any reference to a
GUI event or widget

Blob Listener detection

53

 The nested commands are removed

Blob Listener detection

54

 GUI listeners that contain more than two GUI commands
are marked as Blob Listener

Blob Listener detection

55

 GUI listeners that contain more than two GUI commands
are marked as Blob Listener

1 Blob listener
with 39 GUI
commands

Command #1

Command #2

InspectorGuidget7

56

 Open-source tool as an Eclipse plug-in dedicated to
Java GUI systems

7https://github.com/diverse-project/InspectorGuidget

Software
System

Successfully
Detected Blob listeners (#)

FN
(#)

FP
(#)

Recall
(%)

Precision
(%)

FastPhotoTagger 3 0 0 100.00 100.00

GanttProject 2 0 0 100.00 100.00

JaxoDraw 7 0 1 100.00 87.50

Jmol 11 1 0 91.67 81.82

TerPaint 3 0 0 100.00 100.00

TripleA 11 0 0 100.00 100.00

Overall 37 1 1 97.59 97.37

 37 out of 38 Blob listeners were detected

Conclusion

 A new type of GUI design smell
 Blob listener has an negative impact on fault-proneness

of GUI listeners

57

 A novel static analysis approach
 InspectorGuidget dedicated to Java systems
 37 out of 38 instances of Blob listeners on six real-world

GUI systems

 Good coding practices to avoid the presence of Blob
listeners

58

Conclusions

59

 An automatic detection of a new type of GUI design
smell
 Blob listener that degrades the GUI code quality
 InspectorGuidget detected 37 out 38 instances of Blob

listeners

 GUI fault model
 279 GUI-related bug reports of five interactive

open-source systems
 Evaluation of GUI testing frameworks against real

GUI failures and GUI mutants

Conclusions

60

 Experiment and tools

 GUI systems that have several interactive features

 A complete data set

 Empirial studies of GUI implementations

61

 Mapping between GUI faults and specific GUI
toolkits

Perspectives

 Domain-specific mutants

Java Swing mutants

GUI Fault Model

Mapping

62

 A set of checking rules to check automatically for
potential defects in GUI code

Perspectives

Empty listener bodies

Unsafety listener registration

 GUI design smells

63

 GUI design smells

Perspectives

Bug finders
 Findbugs
 PMD, etc.

64

Publications

 Valéria Lelli, Arnaud Blouin, and Baudry Benoit. Classifying and qualifying
GUI defects. In Software Testing, Verification and Validation (ICST), 2015 IEEE
Eighth International Conference, pages 1–10, April 2015.

 Valéria Lelli, Arnaud Blouin, Baudry Benoit, and Fabien Coulon. On model-
based testing advanced GUIs. In 11th Workshop on Advances in Model
Based Testing (A-MOST), pages 1–10, April 2015. Best paper award.

 Valéria Lelli. Challenges of testing for critical interactive systems. In Software
Testing, Verification and Validation (ICST), 2013 IEEE Sixth International
Conference. Doctoral Symposium, pages 509–510, March 2013.

 Valéria Lelli, Arnaud Blouin, Baudry Benoit, Fabien Coulon, and Olivier

Beaudoux. Automatic Detection of GUI Design Smells: The Case of Blob
Listener. Submitted to Software Testing, Verification and Validation
Conference (ICST) 2016.

