Implementation

RE of Parametric Timed Properti 000

Runtime Enforcement of Timed Properties

Srinivas Pinisetty

INRIA Rennes, Team: Sumo, Project: ANR Vacsim

23 January 2015, INRIA, Rennes

Jury

Martin Leucker, Université de Lübeck (Reviewer) Didier Lime, École Centrale de Nantes (Reviewer) Frédéric Herbreteau, ENSEIRB Bordeaux (Examiner) Sophie Pinchinat, Université de Rennes 1 (Examiner) Thierry Jéron, INRIA Rennes (Advisor) Hervé Marchand, INRIA Rennes (Co-advisor) Yliès Falcone, Université de Grenoble 1 (Co-advisor)

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Traditional design and verification

- Cannot guarantee absence of errors.
- Late detection of errors (some times after deployment).
- Inadequate for safety-critical systems.

• Ariane 5, Therac-25, Toyota's ETCS.

Srinivas Pinisetty

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Formal verification techniques

- Spec: Set of requirements/properties (LTL, CTL, ...).
- \bullet Abstraction of system/program (automata, \ldots).
- Static: Model checking, static analysis.
- Dynamic: Testing, runtime verification/enforcement.

Runtime verification and enforcement (monitors)

Runtime verification and enforcement:

- Monitor execution of a system (e.g., trace, log, messages).
- No system model.
- A formal requirement: Property φ .

Runtime verification and enforcement (monitors)

Runtime verification and enforcement:

- Monitor execution of a system (e.g., trace, log, messages).
- No system model.
- A formal requirement: Property φ .

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Runtime verification and enforcement (monitors)

Runtime verification and enforcement:

- Monitor execution of a system (e.g., trace, log, messages).
- No system model.
- A formal requirement: Property φ .

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Motivations for *timed* enforcement

Specifying the timing behavior

Allowing to specify desired behaviors of a system with constraints on both the **order of events** and **timing**.

• After action "a", action "b" should occur

RE of Parametric Timed Properties

Motivations for timed enforcement

Specifying the timing behavior

Allowing to specify desired behaviors of a system with constraints on both the **order of events** and **timing**.

- After action "a", action "b" should occur with a delay of at least 5 time units between them.
- The system should allow consecutive requests with a delay of at least 10 time units between any two requests.

RE of Parametric Timed Properties

Motivations for timed enforcement

Specifying the timing behavior

Allowing to specify desired behaviors of a system with constraints on both the **order of events** and **timing**.

- After action "a", action "b" should occur with a delay of at least 5 time units between them.
- The system should allow consecutive requests with a delay of at least 10 time units between any two requests.

Application domains

- Real-time embedded systems, monitoring hardware failures, communication protocols, web services, etc.
- Examples of monitor usage:
 - firewall to prevent DOS attacks ensuring minimal delay between input events;
 - checking pre-conditions of a service in web applications.

Related work on monitoring

Runtime enforcement of **untimed** properties

- Enforceable security policies F. B. Schneider et al-2000.
- Runtime enforcement of non-safety policies J. Ligatti et al-2009.
- Enforcement Monitoring wrt. the Safety-Progress Classification of Properties
 - Y. Falcone et al-2010.

Related work on monitoring

Runtime enforcement of untimed properties

- Enforceable security policies F. B. Schneider et al-2000.
- Runtime enforcement of non-safety policies J. Ligatti et al-2009.
- Enforcement Monitoring wrt. the Safety-Progress Classification of Properties – Y. Falcone et al-2010.

Runtime verification of timed properties

Efforts mainly to *verify* timed properties at runtime:

- Runtime verification of TLTL A. Bauer et al-2011.
- Algorithms for monitoring real-time properties D. Basin et al-2011.
- The Analog Monitoring Tool.(monitoring specifications over continuous signals) D. Nickovic et al-2010.
- Safe runtime verification of real-time properties C. Colombo et al.

< ∂ ► 7 / 41

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW	
Contribution	ns				
A formal framework for runtime enforcement of timed properties					

< @ >

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties	Conclusions and FW
Contribution	IS			

A formal framework for runtime enforcement of timed properties

• General definitions for all regular timed properties.

Specifying Timed Properties	RE of Regular Timed Properties 0000000000	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW	
Contribution	Contributions				

A formal framework for runtime enforcement of timed properties

- General definitions for all regular timed properties.
- Work as delayers: either increase input dates or suppress events in order to satisfy the property.

Specifying Timed Properties	RE of Regular Timed Properties 00000000000	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Contribution	าร			

A formal framework for runtime enforcement of timed properties

- General definitions for all regular timed properties.
- Work as delayers: either increase input dates or suppress events in order to satisfy the property.
- Enforcement mechanisms defined at several abstraction levels to ease their design and implementation.

Specifying Timed Properties	RE of Regular Timed Properties 00000000000	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Outline				

2 RE of Regular Timed Properties

- Requirements on an Enforcement Mechanism
- Functional Definition of an Enforcement Mechanism
- Operational Description of an Enforcement Mechanism

3 Implementation

- 4 RE of Parametric Timed Properties
 - PTAVs
 - Runtime Enforcement of PTAVs
 - Application Domains

Conclusions and Future Work

RE of Regular Timed Properties

- Requirements on an Enforcement Mechanism
- Functional Definition of an Enforcement Mechanism
- Operational Description of an Enforcement Mechanism

3 Implementation

④ RE of Parametric Timed Properties

- PTAVs
- Runtime Enforcement of PTAVs
- Application Domains

5 Conclusions and Future Work

- Given an alphabet of actions Σ,
 - Timed word: $\sigma = (t_1, a_1) \cdot (t_2, a_2) \cdots (t_n, a_n)$ dates are increasing.
 - tw(Σ): set of timed words over Σ .

 Enforced timed property: any regular timed language φ ⊆ tw(Σ), accepted by a timed automaton A_φ.

< 17 →

 Enforced timed property: any regular timed language φ ⊆ tw(Σ), accepted by a timed automaton A_φ.

Examples: Properties specified by TAs

Regular: any property.

"Requests and grants should alternate in this order with a delay between 15 and 20 t.u between request and grant."

 Enforced timed property: any regular timed language φ ⊆ tw(Σ), accepted by a timed automaton A_φ.

Examples: Properties specified by TAs

Safety: nothing bad should ever happen (prefix closed).

"A delay of 5 t.u. between any two requests."

• Enforced timed property: any regular timed language $\varphi \subseteq tw(\Sigma)$, accepted by a timed automaton \mathcal{A}_{ω} .

Examples: Properties specified by TAs

Co-safety: something good will eventually happen within a finite amount of time (extension closed).

"A request, and then a grant should arrive between 10 and 15 t.u."

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Timed automata semantics

Semantics of a timed automaton

- Timed transition system.
- States of the form q = (l, ν) (location, valuation of clocks).

< @ →

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Timed automata semantics

Semantics of a timed automaton

- Timed transition system.
- States of the form q = (l, ν) (location, valuation of clocks).

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Timed automata semantics

Semantics of a timed automaton

- Timed transition system.
- States of the form q = (l, ν) (location, valuation of clocks).

$$\stackrel{(18, gr)}{\rightarrow}$$
 $(l_0, x = 15)$

< /⊒ > 13 / 41

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Timed automata semantics

Semantics of a timed automaton

< 🗗 >

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Timed automata semantics

Semantics of a timed automaton

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties	Conclusions and FW

2 RE of Regular Timed Properties

- Requirements on an Enforcement Mechanism
- Functional Definition of an Enforcement Mechanism
- Operational Description of an Enforcement Mechanism

3 Implementation

4 RE of Parametric Timed Properties

- PTAVs
- Runtime Enforcement of PTAVs
- Application Domains

Conclusions and Future Work

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement mechanism behavior: example

< /⊒ ► 15 / 41

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement mechanism behavior: example

< //>
▲ // ▲

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement mechanism behavior

What can an enforcement mechanism do?

- CAN increase the dates of events to satisfy φ .
- CAN suppress events if no future can satisfy φ .

• Requirements: Physical, soundness and transparency constraints.

• Functional definition:

- description of the global input/output behavior,
- satisfying requirements;

• Requirements: Physical, soundness and transparency constraints.

• Functional definition:

- description of the global input/output behavior,
- satisfying requirements;

• Enforcement monitor:

- refining the functional definition,
- timed operational behavior as a rule-based transition system,
- runtime (online) behavior of the enforcement mechanism;

• Requirements: Physical, soundness and transparency constraints.

• Functional definition:

- description of the global input/output behavior,
- satisfying requirements;

• Enforcement monitor:

- refining the functional definition,
- timed operational behavior as a rule-based transition system,
- runtime (online) behavior of the enforcement mechanism;
- Implementation: translation of the EM semantic rules into algorithms.

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Preliminarie	S			

Specifying Timed Properties	RE of Regular Timed Properties ●0000000000	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Preliminarie	S			

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Preliminarie	S			

Delaying order \succeq_d : $\sigma' \succeq_d \sigma$ if they have same untimed projections but dates in σ' exceed corresponding dates in σ . $(2.5, a) \cdot (3, b) \cdot (4.5, c) \succeq_d (2, a) \cdot (3, b) \cdot (3.5, a).$

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Preliminarie	S			

Delaying order \succeq_d : $\sigma' \succeq_d \sigma$ if they have same untimed projections but dates in σ' exceed corresponding dates in σ . (2.5, a) \cdot (3, b) \cdot (4.5, c) \succeq_d (2, a) \cdot (3, b) \cdot (3.5, a).

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Preliminarie	S			

Delaying subsequence order \triangleleft_d : $\sigma' \triangleleft_d \sigma \stackrel{\text{def}}{=} \exists \sigma'' \in \mathsf{tw}(\Sigma) : \sigma'' \triangleleft \sigma \land \sigma' \succcurlyeq_d \sigma''$ (2.5, a) \cdot (3.5, a) \triangleleft_d (2, a) \cdot (3, b) \cdot (3.5, a) i.e., σ' obtained from σ by first suppressing some actions, and then increasing the dates of the actions to be kept.

< A >

(日)

RE of Regular Timed Properties 00000000000

RE of Parametric Timed Properties

Requirements on an enforcement mechanism

E_{ω} : tw(Σ) \rightarrow tw(Σ)

Physical constraint: $\forall \sigma, \sigma' \in \mathsf{tw}(\Sigma) : \sigma \preccurlyeq \sigma' \implies E_{\omega}(\sigma) \preccurlyeq E_{\omega}(\sigma').$ (where \preccurlyeq is the prefix ordering) i.e., the output cannot be undone.

Soundness: $\forall \sigma \in \mathsf{tw}(\Sigma) : E_{\varphi}(\sigma) \models \varphi \lor E_{\varphi}(\sigma) = \epsilon$.

i.e., the output either satisfies property φ , or is empty.

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties 000 Conclusions and FW

Requirements on an enforcement mechanism

$\overline{E_{arphi}}$: tw $(\overline{\Sigma}) ightarrow$ tw (Σ)

Physical constraint: $\forall \sigma, \sigma' \in \mathsf{tw}(\Sigma) : \sigma \preccurlyeq \sigma' \implies E_{\varphi}(\sigma) \preccurlyeq E_{\varphi}(\sigma').$ (where \preccurlyeq is the prefix ordering) i.e., the output cannot be undone. Soundness: $\forall \sigma \in \mathsf{tw}(\Sigma) : E_{\varphi}(\sigma) \models \varphi \lor E_{\varphi}(\sigma) = \epsilon.$ i.e., the output either satisfies property φ , or is empty. Transparency: $\forall \sigma \in \mathsf{tw}(\Sigma) : E_{\varphi}(\sigma) \triangleleft_d \sigma.$ i.e., the output is a delaying subsequence of the input.

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Requirements on an enforcement mechanism

$E_{arphi}:\mathsf{tw}(\Sigma) o\mathsf{tw}(\Sigma)$

Physical constraint: $\forall \sigma, \sigma' \in \mathsf{tw}(\Sigma) : \sigma \preccurlyeq \sigma' \implies E_{\varphi}(\sigma) \preccurlyeq E_{\varphi}(\sigma').$ (where \preccurlyeq is the prefix ordering) i.e., the output cannot be undone.

Soundness:
$$\forall \sigma \in \mathsf{tw}(\Sigma) : E_{\varphi}(\sigma) \models \varphi \lor E_{\varphi}(\sigma) = \epsilon.$$

i.e., the output either satisfies property φ , or is empty.

Transparency:
$$\forall \sigma \in \mathsf{tw}(\Sigma) : E_{\varphi}(\sigma) \triangleleft_d \sigma.$$

i.e., the output is a delaying subsequence of the input.

Additional requirements

Streaming behavior, deciding to output as soon as possible.

Optimal dates.

Optimal suppression.

RE of Regular Timed Properties

Functional definition: principle

$$E_arphi$$
 : tw(Σ) $ightarrow$ tw(Σ)

$E_{\alpha}(\sigma) = \prod_{1} (\text{store}_{\alpha}(\sigma))$

$\operatorname{store}_{\varphi} : \operatorname{\mathsf{tw}}(\overline{\Sigma}) \to \operatorname{\mathsf{tw}}(\overline{\Sigma}) \times \operatorname{\mathsf{tw}}(\overline{\Sigma})$

• store $\sigma(\sigma) = (\sigma_s, \sigma_c)$ describes how the input stream is transformed:

- σ_s : computed output (to be released);
- σ_c : a sub-seq. of the suffix of σ for which output dates cannot be computed (e.g., co-safety, response).

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Functional definition: principle

$$E_arphi$$
 : tw(Σ) $ightarrow$ tw(Σ)

$E_{\varphi}(\sigma) = \prod_{1} (\operatorname{store}_{\varphi} (\sigma))$

$\operatorname{store}_{\varphi} : \operatorname{\mathsf{tw}}(\Sigma) \to \operatorname{\mathsf{tw}}(\Sigma) \times \operatorname{\mathsf{tw}}(\Sigma)$

- store_{φ}(σ) = (σ_s , σ_c) describes how the input stream is transformed:
 - σ_s : computed output (to be released);
 - σ_c : a sub-seq. of the suffix of σ for which output dates cannot be computed (e.g., co-safety, response).
- store_{φ}(σ) is inductively defined, has 3 cases upon reading a new event (*t*, *a*).
 - $\sigma_c \cdot (t, a)$ can be corrected.
 - $\sigma_c \cdot (t, a)$ can never be corrected.
 - $\sigma_c \cdot (t, a)$ can be corrected in future.

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Functional definition: example

 σ

RE of Regular Timed Properties

Functional definition: example

 σ

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Functional definition: example

RE of Regular Timed Properties

Functional definition: example

req, x := 0			
Σ	$ \begin{array}{c} & & & \\ & & & \\ \hline \\ & & & \\ $		
σ	$ \begin{aligned} \sigma &= \epsilon \\ \text{store}_{\varphi}(\sigma) &= (\sigma_s, \sigma_c) = (\epsilon, \epsilon) \\ E_{\varphi}(\sigma) &= \Pi_1 \left(\text{store}_{\varphi} \left(\sigma \right) \right) = \sigma_s \end{aligned} $		
(2, <i>req</i>)	$\sigma = (2, req)$ $\sigma'_{c} = \epsilon \cdot (2, req)$ store _{\varphi} (\sigma) = (\sigma_{s}, \sigma_{c}) = (\epsilon, (2, req)) Do not output, but store!!		
(3, <i>req</i>)	$\sigma = (2, req) \cdot (3, req)$ $\sigma'_{c} = (2, req) \cdot (3, req)$ store _{\varphi} (\sigma) = (\sigma_{s}, \sigma_{c}) = (\epsilon, (2, req)) Suppress!!		
(6, <i>gr</i>)	$\begin{split} \sigma &= (2, req) \cdot (3, req) \cdot (6, gr) \\ \sigma'_c &= (2, req) \cdot (6, gr) \\ \text{store}_{\varphi}(\sigma) &= (\sigma_s, \sigma_c) = (\epsilon \cdot (6, req) \cdot (8, gr), \epsilon) \\ \text{Delay, add to output!!} \end{split}$		

Functional definition: formal definition $E_{\varphi} : \operatorname{tw}(\Sigma) \to \operatorname{tw}(\Sigma)$ $E_{\varphi}(\sigma) = \Pi_1(\operatorname{store}_{\varphi}(\sigma))$

 $\operatorname{store}_{\varphi}:\operatorname{\mathsf{tw}}(\Sigma)\to\operatorname{\mathsf{tw}}(\Sigma)\times\operatorname{\mathsf{tw}}(\Sigma)$

RE of Regular Timed Properties

Specifying Timed Properties

$$\begin{aligned} & \operatorname{store}_{\varphi}(\epsilon) = (\epsilon, \epsilon) \text{ and} \\ & \operatorname{if store}_{\varphi}(\sigma) = (\sigma_{s}, \sigma_{c}), \quad (t, a) \in \mathbb{R}_{\geq 0} \times \Sigma \text{ (new input)}, \quad \sigma_{c}' = \sigma_{c} \cdot (t, a) \\ & \operatorname{store}_{\varphi}(\sigma \cdot (t, a)) = \begin{cases} (\sigma_{s} \cdot \min \kappa_{\varphi}(\sigma_{s}, \sigma_{c}'), \epsilon) & \operatorname{if } \kappa_{\varphi}(\sigma_{s}, \sigma_{c}') \neq \emptyset, \\ (\sigma_{s}, \sigma_{c}) & \operatorname{if } \kappa_{\operatorname{pref}(\varphi)}(\sigma_{s}, \sigma_{c}') = \emptyset, \\ (\sigma_{s}, \sigma_{c}') & \operatorname{otherwise}, \end{cases} \end{aligned}$$

 $\kappa_{\varphi}(\sigma_s, \sigma_c') = \mathsf{CanD}(\sigma_c') \cap \sigma_s^{-1} \cdot \varphi, \quad \kappa_{\mathrm{pref}(\varphi)}(\sigma_s, \sigma_c') = \mathsf{CanD}(\sigma_c') \cap \sigma_s^{-1} \cdot \mathrm{pref}(\varphi)$

• $\operatorname{CanD}(\sigma'_c) = \{ w \in \operatorname{tw}(\Sigma) \mid w \succcurlyeq_d \sigma'_c \wedge \operatorname{start}(w) \ge \operatorname{end}(\sigma'_c) \}$ *i.e.*, sequences delaying σ'_c and starting after *t*. • $\sigma_s^{-1} \cdot \varphi = \{ w \in \operatorname{tw}(\Sigma) \mid \sigma_s \cdot w \models \varphi \}.$ • $\sigma_s^{-1} \cdot \operatorname{pref}(\varphi) = \{ w \in \operatorname{tw}(\Sigma) \mid \exists w' \in \operatorname{tw}(\Sigma) : \sigma_s \cdot w \cdot w' \models \varphi \}.$

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties 000 Conclusions and FW

The enforcement function satisfies the requirements

Proposition: Enforcement function vs requirements

The proposed definition of enforcement function satisfies the **physical**, **soundness**, **transparency** constraints.

< A >

- instant,
- q: current state of $\llbracket \mathcal{A} \rrbracket$.

< A >

< A >

- enforcement operations (cf. next slide)

25 / 41

25 / 41

Specifying Timed Properties RE of Regular Timed Properties Implementation RE of Paramet

Parametric Timed Properties Concl

Conclusions and FW

Enforcement monitor: Operations

1. store- φ

when update returns ok,
$$(\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{(t,a)/\mathrm{store}-\varphi(t,a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\mathrm{ms}} \cdot w, \epsilon, t, q')$$

2. store-sup- $\overline{\varphi}$

when update returns bad,
$$(\sigma_{\rm ms}, \sigma_{\rm mc}, t, q) \stackrel{(t,a)/\text{store}_{\rm sup} - \overline{\varphi}(t,a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\rm ms}, \sigma_{\rm mc}, t, q)$$

3. store- $\overline{\varphi}$

when update returns c-bad,
$$(\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{(t,a)/\mathrm{store}-\overline{\varphi}(t,a)/\epsilon}{\hookrightarrow} (\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}} \cdot (t, a), t, q)$$

< 🗇 >

Specifying Timed Properties RE of Regular Timed Properties Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: Operations

1. store- φ

when update returns ok,
$$(\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{(t,a)/\mathrm{store}-\varphi(t,a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\mathrm{ms}} \cdot w, \epsilon, t, q')$$

2. *store*-sup- $\overline{\varphi}$

when update returns bad,
$$(\sigma_{\rm ms}, \sigma_{\rm mc}, t, q) \stackrel{(t,a)/\text{store}_{\rm sup} - \overline{\varphi}(t,a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\rm ms}, \sigma_{\rm mc}, t, q)$$

3. store- $\overline{\varphi}$

when update returns c-bad,
$$(\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{(t, a)/\mathrm{store} - \overline{\varphi}(t, a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}} \cdot (t, a), t, q)$$

4. dump

at t,
$$((t,a) \cdot \sigma'_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{\epsilon/\mathrm{dump}(t,a)/(t,a)}{\hookrightarrow_{\mathcal{E}}} (\sigma'_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q)$$

< 🗇 >

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: Operations

1. store- φ

when update returns ok,
$$(\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{(t,a)/\mathrm{store}-\varphi(t,a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\mathrm{ms}} \cdot w, \epsilon, t, q')$$

2. *store*-sup- $\overline{\varphi}$

when update returns bad,
$$(\sigma_{\rm ms}, \sigma_{\rm mc}, t, q) \stackrel{(t,a)/\text{store}_{\rm sup} - \overline{\varphi}(t,a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\rm ms}, \sigma_{\rm mc}, t, q)$$

3. store- $\overline{\varphi}$

when update returns c-bad,
$$(\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{(t, a)/\mathrm{store} -\overline{\varphi}(t, a)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\mathrm{ms}}, \sigma_{\mathrm{mc}} \cdot (t, a), t, q)$$

4. dump

at t,
$$((t,a) \cdot \sigma'_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q) \stackrel{\epsilon/\mathrm{dump}(t,a)/(t,a)}{\hookrightarrow_{\mathcal{E}}} (\sigma'_{\mathrm{ms}}, \sigma_{\mathrm{mc}}, t, q)$$

5. *idle*

when no other rule applies, $(\sigma_{\rm ms}, \sigma_{\rm mc}, t, q) \stackrel{\epsilon/{\rm idle}(\delta)/\epsilon}{\hookrightarrow_{\mathcal{E}}} (\sigma_{\rm ms}, \sigma_{\rm mc}, t + \delta, q)$

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

$$\epsilon \qquad \longleftarrow \qquad \underbrace{ \begin{array}{c} t & q & \sigma_{ms} & \sigma_{mc} \\ \hline 0 & (l_0, 0) & \epsilon & \epsilon \end{array}} \qquad \underbrace{ \begin{array}{c} (2, req) \cdot (3, req) \cdot (6, gr) \\ \end{array}$$

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

$$\epsilon \qquad \longleftarrow \qquad \underbrace{ \begin{array}{c} t & q & \sigma_{ms} & \sigma_{mc} \\ \hline 2 & (l_0, 0) & \epsilon & \epsilon \end{array}} \qquad \underbrace{ \begin{array}{c} (2, req) \cdot (3, req) \cdot (6, gr) \\ \end{array}}_{\epsilon}$$

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

$$\epsilon \qquad \longleftarrow \qquad \underbrace{\begin{array}{c} t & q & \sigma_{ms} & \sigma_{mc} \\ \hline 3 & (l_0, 0) & \epsilon & (2, req) \end{array}} \qquad \longleftarrow \qquad (6, gr)$$
RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

< 67 ►

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

$$\epsilon \qquad \longleftarrow \qquad \underbrace{\begin{array}{c|c} t & q & \sigma_{ms} & \sigma_{mc} \\ \hline 6 & (l_0, 2) & (6, req) \cdot (8, gr) & \epsilon \end{array}}_{\epsilon} \qquad \epsilon$$

< 67 ►

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

< @ >

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

< 🗇 →

RE of Regular Timed Properties

Implementation

req, x := 0

RE of Parametric Timed Properties

Conclusions and FW

Enforcement monitor: example

$$(6, req) \cdot (8, gr) \leftarrow \frac{t}{8} \frac{q}{(l_0, 2)} \frac{\sigma_{ms}}{\epsilon} \frac{\sigma_{mc}}{\epsilon}$$

< 67 ►

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Propert

Conclusions and FW

Enforcement monitor: correctness

Implementation relation between Enforcement Monitor and Enforcement Function

Given some property φ , at any time t, the input/output behavior of the synthesized enforcement monitor is the same as the one of the corresponding enforcement function at time t, i.e., $obs(E_{\varphi}(\sigma), t)$.

Corollary

Enforcement Monitors respect physical, soundness, and transparency constraints.

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW

2 RE of Regular Timed Properties

- Requirements on an Enforcement Mechanism
- Functional Definition of an Enforcement Mechanism
- Operational Description of an Enforcement Mechanism

3 Implementation

- 4 RE of Parametric Timed Properties
 - PTAVs
 - Runtime Enforcement of PTAVs
 - Application Domains

Conclusions and Future Work

Specifying Timed Properties RE of Regular Timed Properties Implementation 0000000000 RE of Parametric Timed Properties Conclusions and FW 000

Enforcement algorithms

 $\begin{array}{l} \hline \text{Algorithm: StoreProcess}\\ \hline (t,q) \leftarrow (0,q_0)\\ (\sigma_{ms},\sigma_{mc}) \leftarrow (\epsilon,\epsilon)\\ \hline \textbf{while tt do}\\ (t,a) \leftarrow \text{await } (event)\\ (q',\sigma'_{mc},isPath) \leftarrow \text{update}(q,\sigma_{mc},(t,a))\\ \hline \textbf{if } isPath = \textbf{ok then}\\ \sigma_{ms} \leftarrow \sigma_{ms} \cdot \sigma'_{mc}\\ \sigma_{mc} \leftarrow \epsilon\\ q \leftarrow q'\\ \hline \textbf{else}\\ \sigma_{mc} \leftarrow \sigma'_{mc}\\ \hline \textbf{end if}\\ \hline \textbf{end while} \end{array}$

Algorithm: DumpProcess $d \leftarrow 0$ while tt do await $(\sigma_{ms} \neq \epsilon)$ $(t, a) \leftarrow$ dequeue (σ_{ms}) wait (t - d)dump (a) end while

< @ →

Specifying		RE	

E of Regular Timed Propert

Implementation

RE of Parametric Timed Properties

Conclusions and FW

TIPEX tool

< / 31 / 41

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Evaluation				

"There should be a delay of at least 5 time units between any two request actions".

$arphi_{ m s}$			
tr	t_update		
10,000	9.895		
20,000	20.323		
30,000	29.722		
40,000	40.007		
50,000	49.869		
60,000	59.713		
70,000	72.494		

< (F) >

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties	Conclusions and FW
	0000000000			

RE of Regular Timed Properties

- Requirements on an Enforcement Mechanism
- Functional Definition of an Enforcement Mechanism
- Operational Description of an Enforcement Mechanism

3 Implementation

4 RE of Parametric Timed Properties

- PTAVs
- Runtime Enforcement of PTAVs
- Application Domains

5 Conclusions and Future Work

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Motivations for enforcement with time and data

< 🗇 >

RE of Parametric Timed Properties

Conclusions and FW

Motivations for enforcement with time and data

Specifying constraints over time and data

Support richer requirements in our enforcement framework (time constraints between events, and allowing events to carry data).

Specifying constraints over time and data

Support richer requirements in our enforcement framework (time constraints between events, and allowing events to carry data).

• After a request, there should be a response after a delay of 5 t.u.

Specifying constraints over time and data

Support richer requirements in our enforcement framework (time constraints between events, and allowing events to carry data).

• After a request, there should be a response after a delay of 5 t.u. if there are more than 10 request messages.

Specifying constraints over time and data

Support richer requirements in our enforcement framework (time constraints between events, and allowing events to carry data).

- After a request, there should be a response after a delay of 5 t.u. if there are more than 10 request messages.
- For each client, after a request, there should be a response after a delay of 5 t.u. if the number of request messages is more than 10.

< 🗗 >

Specifying constraints over time and data

Support richer requirements in our enforcement framework (time constraints between events, and allowing events to carry data).

- After a request, there should be a response after a delay of 5 t.u. if there are more than 10 request messages.
- For each client, after a request, there should be a response after a delay of 5 t.u. if the number of request messages is more than 10.

RE of Parametric Timed Properties

Parameterized Timed Automata with Variables (PTAV)

Syntax of PTAV

$$\mathcal{A}(p) = (p, V, C, \Theta, L, I_0, F, X, \Sigma_p, \Delta).$$

- *p* A parameter (for example to handle multiple clients/instances).
- *C* External variables (to model transfer of data from the monitored system along with events).
- V Internal variables (used for internal computation).

A PTAV is denoted as A(p), and an instance of a PTAV for a value π of p is denoted as $A(\pi)$.

PTAV Example: in the context of resource allocation

$$\begin{array}{c} R1.alloc(sId, d), \\ \Sigma_{sId}^{P_1} \setminus \{R1.alloc(sId, d)\} & R1.alloc(sId, d), \\ (1 + 1) \sum_{sId} \sum_{i=1}^{n} \sum_{si=1}^{n} \sum_{i=1}^{n} \sum_{si=1}^{n} \sum_{i=1}^{n} \sum_{sId} \sum_{sId}$$

• Input/output timed words: $\sigma = (t_1, a_1(\pi_1, \eta_1)) \cdots (t_n, a_n(\pi_n, \eta_n)).$

- Input/output timed words: $\sigma = (t_1, a_1(\pi_1, \eta_1)) \cdots (t_n, a_n(\pi_n, \eta_n)).$
- Property φ specified by PTAV.

- Input/output timed words: $\sigma = (t_1, a_1(\pi_1, \eta_1)) \cdots (t_n, a_n(\pi_n, \eta_n)).$
- Property φ specified by PTAV.
- An instance of EM per parameter value (takes as input only the events with same parameter value).

- Input/output timed words: $\sigma = (t_1, a_1(\pi_1, \eta_1)) \cdots (t_n, a_n(\pi_n, \eta_n)).$
- Property φ specified by PTAV.
- An instance of EM per parameter value (takes as input only the events with same parameter value).
- Slicing input.
 - $\sigma = (0.5, a(1, \eta_1)) \cdot (0.8, a(2, \eta_2)) \cdot (1.0, a(1, \eta_3)) \cdot (1.4, a(2, \eta_4))$
 - $\sigma \downarrow_1 = (0.5, a(1, \eta_1)) \cdot (1.0, a(1, \eta_3))$

- Input/output timed words: $\sigma = (t_1, a_1(\pi_1, \eta_1)) \cdots (t_n, a_n(\pi_n, \eta_n)).$
- Property φ specified by PTAV.
- An instance of EM per parameter value (takes as input only the events with same parameter value).
- Slicing input.
 - $\sigma = (0.5, a(1, \eta_1)) \cdot (0.8, a(2, \eta_2)) \cdot (1.0, a(1, \eta_3)) \cdot (1.4, a(2, \eta_4))$
 - $\sigma \downarrow_1 = (0.5, a(1, \eta_1)) \cdot (1.0, a(1, \eta_3))$
- Update function is computable (straightforward adaptation).

- Input/output timed words: $\sigma = (t_1, a_1(\pi_1, \eta_1)) \cdots (t_n, a_n(\pi_n, \eta_n)).$
- Property φ specified by PTAV.
- An instance of EM per parameter value (takes as input only the events with same parameter value).
- Slicing input.
 - $\sigma = (0.5, a(1, \eta_1)) \cdot (0.8, a(2, \eta_2)) \cdot (1.0, a(1, \eta_3)) \cdot (1.4, a(2, \eta_4))$
 - $\sigma \downarrow_1 = (0.5, a(1, \eta_1)) \cdot (1.0, a(1, \eta_3))$
- Update function is computable (straightforward adaptation).
- Output of each EM instance satisfies constraints.

RE of Regular Timed Properties

Implementation

RE of Parametric Timed Properties

Conclusions and FW

Other application domains

Protecting mail servers

If the number of RCPT_TO messages from a client is greater than maxreq, then there should be a delay of at least del t.u. before responding an OK_250.¹

< A >

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW

RE of Regular Timed Properties

- Requirements on an Enforcement Mechanism
- Functional Definition of an Enforcement Mechanism
- Operational Description of an Enforcement Mechanism

3 Implementation

④ RE of Parametric Timed Properties

- PTAVs
- Runtime Enforcement of PTAVs
- Application Domains

5 Conclusions and Future Work

Enforcement monitoring for systems with timing requirements.

- Formally based runtime enforcement mechanisms for requirements with real-time constraints.
- For all regular timed properties modeled as a timed automaton.
- Enforcer can delay and suppress events.
- Enforcement mechanisms described at several levels of abstraction (enforcement function, enforcement monitor and algorithms).
- Prototype tool implementation (TIPEX).
- Requirements with constraints both on time and data (PTAV).

- Runtime Enforcement of Timed Properties [RV 2012].
- Runtime Enforcement of Regular Timed Properties [SAC-SVT 2014].
- Runtime Enforcement of Timed Properties Revisited [FMSD Journal].
- Runtime Enforcement of Regular Timed Properties by Suppressing and Delaying Events [SCP Journal].
- Runtime Enforcement of Parametric Timed Properties with Practical Applications [WODES 2014].

- Runtime Enforcement of Timed Properties [RV 2012].
- Runtime Enforcement of Regular Timed Properties [SAC-SVT 2014].
- Runtime Enforcement of Timed Properties Revisited [FMSD Journal].
- Runtime Enforcement of Regular Timed Properties by Suppressing and Delaying Events **[SCP Journal]**.
- Runtime Enforcement of Parametric Timed Properties with Practical Applications [WODES 2014].

- Runtime Enforcement of Timed Properties [RV 2012].
- Runtime Enforcement of Regular Timed Properties [SAC-SVT 2014].
- Runtime Enforcement of Timed Properties Revisited [FMSD Journal].
- Runtime Enforcement of Regular Timed Properties by Suppressing and Delaying Events [SCP Journal].
- Runtime Enforcement of Parametric Timed Properties with Practical Applications [WODES 2014].

- Runtime Enforcement of Timed Properties [RV 2012].
- Runtime Enforcement of Regular Timed Properties [SAC-SVT 2014].
- Runtime Enforcement of Timed Properties Revisited [FMSD Journal].
- Runtime Enforcement of Regular Timed Properties by Suppressing and Delaying Events **[SCP Journal]**.
- Runtime Enforcement of Parametric Timed Properties with Practical Applications [WODES 2014].

< A >

- Runtime Enforcement of Timed Properties [RV 2012].
- Runtime Enforcement of Regular Timed Properties [SAC-SVT 2014].
- Runtime Enforcement of Timed Properties Revisited [FMSD Journal].
- Runtime Enforcement of Regular Timed Properties by Suppressing and Delaying Events [SCP Journal].
- Runtime Enforcement of Parametric Timed Properties with Practical Applications [WODES 2014].

Specifying Timed Properties	RE of Regular Timed Properties 00000000000	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Perspectives	5			

- Predictive enforcement.
 - $E_{\varphi/\psi}$: $\psi \subseteq \mathsf{tw}(\Sigma) \to {\epsilon} \cup \varphi \subseteq \mathsf{tw}(\Sigma).$
 - Can we do better, knowing possible future?

< A >

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties	Conclusions and FW
Perspectives	5			

- Predictive enforcement.
 - $E_{\varphi/\psi}$: $\psi \subseteq \mathsf{tw}(\Sigma) \to {\epsilon} \cup \varphi \subseteq \mathsf{tw}(\Sigma).$
 - Can we do better, knowing possible future?
- Combining enforcement monitors (in series) enforcing multiple properties.

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Perspectives	5			

- Predictive enforcement.
 - $E_{\varphi/\psi}$: $\psi \subseteq \mathsf{tw}(\Sigma) \to {\epsilon} \cup \varphi \subseteq \mathsf{tw}(\Sigma).$
 - Can we do better, knowing possible future?
- Combining enforcement monitors (in series) enforcing multiple properties.
- Enforcement with partial control.

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Perspectives	5			

- Predictive enforcement.
 - $E_{\varphi/\psi}$: $\psi \subseteq \mathsf{tw}(\Sigma) \to {\epsilon} \cup \varphi \subseteq \mathsf{tw}(\Sigma).$
 - Can we do better, knowing possible future?
- Combining enforcement monitors (in series) enforcing multiple properties.
- Enforcement with partial control.
- What are *enforceable* properties?
| Specifying Timed Properties | RE of Regular Timed Properties | Implementation | RE of Parametric Timed Properties
000 | Conclusions and FW |
|-----------------------------|--------------------------------|----------------|--|--------------------|
| Perspectives | 5 | | | |

Theoretical extensions

- Predictive enforcement.
 - $E_{\varphi/\psi}$: $\psi \subseteq \mathsf{tw}(\Sigma) \to {\epsilon} \cup \varphi \subseteq \mathsf{tw}(\Sigma).$
 - Can we do better, knowing possible future?
- Combining enforcement monitors (in series) enforcing multiple properties.
- Enforcement with partial control.
- What are *enforceable* properties?

Applications

• Implementing efficient enforcement monitors (in application scenarios).

Specifying Timed Properties	RE of Regular Timed Properties	Implementation	RE of Parametric Timed Properties 000	Conclusions and FW
Perspectives	5			

Theoretical extensions

- Predictive enforcement.
 - $E_{\varphi/\psi}$: $\psi \subseteq \mathsf{tw}(\Sigma) \to {\epsilon} \cup \varphi \subseteq \mathsf{tw}(\Sigma).$
 - Can we do better, knowing possible future?
- Combining enforcement monitors (in series) enforcing multiple properties.
- Enforcement with partial control.
- What are *enforceable* properties?

Applications

- Implementing efficient enforcement monitors (in application scenarios).
- Enforcement monitoring techniques to guarantee behavior of off-the-shelf components.
- Enforcement monitor synthesis mechanism to realize some requirements automatically.