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Evolution of Human Behavior and Fire

Archaeologists try to answer these
questions:

* What was the form of the fire?
* What was their mode of functioning?
 What was their utility?

e What was the minimal duration of
fire?
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Clay-silt soil (Pincevent): change in soil
color due to temperature.

Yellow ------ = Red (oxides at 290°C)

Paleothermometer

Courtesy: Ramiro
March (CREAAH,
Rennes)

RN ARTEEX

A AREXKEX
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Minimal duration of fire (Dry soil)

600
550/
500
$ 450
-
400
350
~ Alteration at 290 °C 300
250
200
150

100

50

0 0.5 1 1.5 2 2.5
Depth (cm)

Assumptions: .
* Homogeneous and isotropic medium What happens. in
* Thermal diffusivity is known case of wet soil?
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To help Archaeologists :

Kind of
soil

Saturated or partially
saturated

Value of conductivity
(A¢) and volumetric heat
capacity (pC), + saturation

Physical model for
water evaporation

J
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PHYMAT multidisciplinary project.
Study of prehistorical fires
http://arphymat.univ-rennesl.fr/

° Try to estimate:

* Duration of fire.
* Thermophysical properties
of the porous medium.

Characteristics:

* Strong heating of the soil
(porous medium).

* Presence or absence of
water.

Experiments:
* Replication (Field).

-

* Inlab (controlled experiments) : -
determination of (pC),, A , .\ Mathematical models
(effective thermal conductivity). (My: dry case only “1D”):

*  Laloy & Massard. | pitfysivity o
* Laplace Transform.

Numerical methods & simulations:
* Forward problem:

» My: Phase change—> LHA or AHC methods
» Mj: Adaptive mesh (LHA, AHC || 1D, 2D).

» M,: Interface tracking (1D only).

* Inverse problem:

» M, (without vapor flow): DGN and LMA

Physical models:
i Current models:
» M,: Conductionin a dry porous medium
» M: Evaporation (in saturated or partially
saturated porous medium) + vapor flow (1D, 2D,
3D axisymmetric)
» M,: Separated phases ( with gas diffusion)
zone 1: gas only (vapor + air)
zone 2: liquid only (water)
* Future model:
» Mj3: Unsaturated model in pendular regime (gas
diffusion)
zone 1: gas only (vapor + air)
zone 2: liquid (water) + gas (vapor +air)

Theoretical calculation of 1 ,:

*  Exact calculation of the shape of liquid

+ experimental data, box constraints,
statistical constraints (sensors position).
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meniscus between two spherical grains.
*  Homogenization
*  Hysteresis behavior of the heat flux.

An overview diagram representing the framework of my thesis with my main contributions in green.




Outline:

Solving the Heat equation with phase change in 1D and
2D coordinate systems.

a Identification of the thermophysical properties of the
soil by inverse problem.

e A simplified physical model for phase change in presence
of air.

° Conclusions and Perspectives.




Solving the Heat equation with phase change in 1D and
2D coordinate systems.

a Identification of the thermophysical properties of the
soil by inverse problem.

e A simplified physical model for phase change in presence
of air.

e Conclusions and Perspectives.
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Resolution of the heat diffusion
equation with phase change

,
,
Ed
”

-

(x,t)

) oT
AP ENL A R ks div(2.(T)VT (x,t)) in 2 X (0, topg]

Stefan Problem (Melting of a semi-infinite slab of ice “1D”):
e Simplest Mathematical model of phenomenon of phase change
* An Analytical solution exists assuming that ice and water have same density (o5 = p;).

Method of Resolution:
* Apparent Heat capacity (AHC).

* Enthalpy method where no front tracking.
* Can be easily applied to 2D or 3D coordinate systems.
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Apparent Heat Capacity Method (AHC)

 The heat capacity is calculated knowing that its integration over the
temperature is equal to the Latent heat.

* Computational domain is considered as one region,

e Suffers from singularity in the physical properties.

¢ The phase transition takes place at a fixed
temperature so:

fauid « [CdT = U(T — T;) —>step function
- €= 46(T- Tf) — Dirac delta function

Apparent Heat Capacity method
(Bonacina et al., 1973):

No front tracking
AT : Temperature phase change
interval

temperature




Effect of value of AT in AHC method

10 - : -
Analytical solution
gh Numerical sol with small A T
Numerical sol with large A T

Temperature (C)

0 5 10 15 20 25 30 35 40 45 50
Time (h)




AT optimum insures accuracy of solution with few fluctuations

Quality Factor

2.5 -
—— N=81 Accurac
— N-161f y Smooth
— N=321|
2 — N =601}
N=1241|

| Quality factor 0.025

AT corresponding to minimum quality
factor > AT optimum
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umerical Strategy (AHC using AT ,,¢imum)

Discretization using the method of lines.
e Spatial discretization (Finite Volume Method).
e After discretization, we get a system of first order implicit ODEs:

F(t, T, T") =0
T(ty) = Ty
e Use an automatic ODE solver “Backward Differentiation Formula”

* Two kinds of errors (between numerical and analytical solutions):

L? average norm error in temperature profile at final time:

1
(2 exact(xl) zAxl)Z
e, = ]
L? average norm error in temperature history at precise position:
1
2 2
(Zk[Tk | Texact(tk)] Atk)
et —

tmax
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termperature (°C)
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Adaptive Mesh

* Reducing the spatial step size uniformly over the whole
domain Method will be computationally expensive.

* Refinement is needed around the position of interface.
* Our refinement technique is based on adding and removing
nodes recursively for the basic initial mesh.

® -

:

Blue dots represents the nodes of the basic mesh. Circles are the new nodes (between step
1 and 2).
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Adaptive Mesh

————
- -
- -
- -

i e o o6 [ 025 03 15 o4 B o

Uniform (h = 6.25 X 1073 m) 1.63 X 107%2% 3.04 x 1071% 3.39 x 1071
Adaptive (hpgsic = 5% 1072 m)  2.06 x1072% 3.47 x 10~ 1% 6.90 X 1072

Nsubdivisions= 3
CPU gain
80%
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10 T ————rrry —
N; = 80 (N subdiv = 0:7) []
N0-160(N9..bdiv-0:?:
N°-320{Ns|.bdlv-0:?—
N, = 640 (N subdiv = 0:6]]
10° | .
&
w
10.1_ _
10-2 Ll Ll MRS | L | L1
107 10° 10" 10" 10 10° 10°
cost {cpu)

Seeking efficiency with accuracy ——— Small number of basic mesh cells with

few subdivisions.

The ideal number of subdivisions is 3 or 4
12/9/2015
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) A

hour: A node-based adaptive 2D mesh algorithm

Description:

o' ipos ©

Node based conformal mesh.

- — 4 A - - - I~ - * Initial mesh : Regular squared set.

o :ipOS A,

At each level of subdivision: new
o : IPOS 2 nodes are added or removed
according to some criteria

» few interpolations

Advantages of Zohour:

~ O 5 )
| ~
— L ¥ ¥ & s
| N
\\ e} N 0 \/,i 8 2 " o
v TSV TSN /S I level 0
| / 1
- sl = b ,
e level 1
= v ; \ o 1 o
: AL} . | ¥ . level 2
] g . /
il o F o e ;‘ 6 3 o )
[ ]
o [ ]
Non-conformal
mesh :

Being a Voronoi mesh: VT
can be easily approximated
and is more precise.
Efficiency of Hessian
estimation.

Refinement factor v2
more progressive than
classical divided squares




ase change problem in 2D coordinate system

a_T Lo node-based adaptive 2D mesh
By = 20°C 7y | | | |
© 7 B =
e =
2 ~10°C : B e -
8 H R \
S 7 T
S -
y |
Refinement Criteria: >
* Phase change region: o
h = k1|T(x: y) — Tfusion <
* Local Hessian matrix “H” Nyasic = 70 X 70 with 3 levels of subdivision
he e
I—{H]
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Temperature in C

15

10—

Reference solution sensor 1
Reference solution sensor 2
Reference solution sensor 3

=10

+ Numerical solution sensor 1
MNumerical solution sensor 2
+  Numerical solution sensor 3 E 7
i
E-o
5_ —
19 M
HH HHHHH
| | | | | | | | |
(1] 2 4 [ 8 10 12 14 16 18
timeinh

Reference Solution:
e 500 % 500 mesh cells

Numerical solution with Zohour:
e 70 X 70 mesh cells with No,pdivisions = 3
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[ —+— Level =0 []

—+— Leval = 2 |-

—+— Leval = 3 |7

107k .
=
w

1ﬂ_2_— =

1ﬂ-3 . Lo el . b . e il .
10" 10° 10 10 10°
M

For same number of basic mesh cells ————+The error decreases as number of
subdivisions increase.
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Solving the Heat equation with phase change in 1D and
2D coordinate systems.

a Identification of the thermophysical properties of the
soil by inverse problem.

e A simplified physical model for phase change in presence
of air.

e Conclusions and Perspectives.
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Identification of the thermophysical
— properties of the soil (dry case)

Objective: : Estimation of the thermal diffusivity a of the soil by inverse problem knowing
the history of heat curves at selected points (few sensors) of the domain.
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Dry Soil

Forward Problem:

Modeling: Replacing the soil by a perfect porous medium heated from above by a strong
temperature.

aTé’;’t) =a diV(VT(x, t)) where a is the diffusivity

Resolution of the heat diffusion equation in 3D axi-symmetric coordinate system.

L
=




|Inverse Problem:

4
A

Sl |
ol

between experimental and numerical temperature):

]

_ 1M vF f f 2
S(a) (I E i=1 Zf=1(Ti,num 1= Ti,exp)

9 (BT(x, t)> 9

5z 5 == (a div(VT(x, t)))

U (xt) i |
—e 1 T ¢ dlv(VUa(x, t)) + dlv(VT(x, t))
Where U, = or is the sensitivity coefficient.

Ja

* The problem is composed of solving 2 partial differential
equations ( Heat Equation + a sensitivity equation).

12/9/2015

Use the least square criterion where we try to minimize the error function S (difference

* Differentiate the main heat equation w.r.t to the parameter :

* Obtaining a PDE having a sensitivity coefficient as unknown:

26




Numerical Strategy

Discretization using the method of lines.
Spatial discretization (Finite Volume Method).

After discretization, the system of coupled equations can be written in
the form of a system of first order implicit ODEs:

{F(t, Y,Y) =0 =i

Y(to) =Y,
Use an automatic ODE solver.

Obtain the values of T and the sensitivity coefficient U,,.

Solve the nonlinear least square problem by the Levenberg-Marquardt
Algorithm (LMA)




Inverse Problem (Estimation of diffusivity)

Using experimental data (A. Cordero), the values of obtained
using different mesh sizes are as follows:

Mesh Diffusivity a (m?/s) Residue
o 3 Same sand with
30x50 3.909 X 10 6.581 x 10 different method in 1D:
120x200 3.203 X 107> 6.584 x 103 1077 <a<4x1077
300x500 3.060 X 107> 6.582 x 103

List of difficulties:
* Suspections on the measurement of sensors’ positions ——— to be treated as unknowns

* Non-uniform initial temperature across sensors—— Use a fit

* Non-uniform heating plate temperature —— Preliminary tests show an important role...
to be taken into account in future.

* The value of a is very sensitive w.r.t sensors’ positions: a change of 1 mm of a sensor

“close to the fire” will cause a change of approximately 100 in the value of «.



erse Problem (Estimation of a and sensors’ positions)

1. This inverse problem (without any constraint) has infinitely many solutions:

. - 5 Z
The analytical solution in 1D = erf(ﬁ)

2. To obtain a unique solution: a constraint is needed

* Experiments with large number of sensors.
» Statistically: we can assume that the

sum of the measurement error in — S
sensors’ positions (0, and 6,,) is zero. S <K
H n i n | I 7 /,
(i.e. Xi=q 6,,=0and };;_, 6,,=0). Ll
*_—’ //

3. In 3D-axisymmetric coordinate system: F---7"
 The isotherms has a shape close to an ellipse.

* Each sensor is constrained to move only in
the direction normal to the isotherm.




/'/_—~

Constraints:
1. sin@;8,, = cos@; 0
2. Y. 6,=0
3 Xty Szl.=0

4. An error in measurement method

12/9/2015

A bias represented by a shift in
both directions should be added as
unknowns
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nverse Problem: Reformulation

A sensor new position can be defined as follows:

fi =1+ 6p, + B
Zi=2zi+ 65+ B,
i=1,2,..,n
The unknowns in our inverse problem are:
» Diffusivity a
* Change in r-position and z-position of each sensor (4,., and 6;,)
* The bias in both r and z directions (S, and £3,)

The constraints are:
* Xie16,,=0and };_,6, =0.
* For each sensor, sin ¢;6,, = cos ¢;6,,
New sensor's position belongs to physical domain

e Box constraints to insure: ) Il
a attains a positive value



w to Solve the Constrained Inverse Problem?

Constrained non-linear least square problem with linear constraints (Equality constraints)

Using
variable
\ substitution

Unconstrained non-linear least square problem with less number of unknowns

Use Levenberg Marquardt algorithm with parameters’ scaling
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Experiment

Experimental positions of sensors

3 T + T T + T T
+ + "
i S + + i
+ o+
+
L + i
+
+
+ +
L L L L L L L L L

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

r

Sensors on the top-right are more
sensitive in r-direction

Sensors close to the axis of symmetry
are more sensitive in the z-direction.
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0.1

Variation of sensors’ initial temperature as function of their z—position

32| o

30

28

271

26

* Initial temperature # homogenous
* Exponential fit
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Comparison between uniform & non-uniform initial temperature
(Mesh: 300x500)

a (m?/s) 2.1x 1077 2.42 x 1077
B (cm) -0.014 -0.664
B, (cm) 0.473 0.187
Standard deviation of §,. (cm) 0.658 0.197
Standard deviation of §, (cm) 0.544 0.440
Residual 816.5 787.6
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Old position of sensors (blue) and new position of sensors (red)
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Solving the Heat equation with phase change in 1D and
2D coordinate systems.

a Identification of the thermophysical properties of the
soil by inverse problem.

e A simplified physical model for phase change in presence
of air.

e Conclusions and Perspectives.
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. Phase change in a porous
medium in presence of dry air

,

~

* Archaeologists are interested in studying the

heating and cooling stages of prehistoric hearths.
* The old model based on the AHC method can’t be
. used to describe the cooling stage.

water water

Evaporation Condensation

>

water air

Evaporation

L

Condensation

>

37
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Physical Model
Fire

I &7ound

Gas (vapor + air)
Diffusion of air inside vapor

Pure Conduction Water Vapor Flow

quid/'Vapor interface

Water saturated zone

A separated phase model. < Hiquiceone

Gaseous zone

The interface position is calculated explicitly 38
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Governing Equations:

The main Variables are :
- Temperature (T), Pressure (P) and the molar density of water vapor (n,,)

1. The energy conservation in the two zones:

aT _ K(pO)f
(pC)e ot I'Lf

VPVT =div(A,VT) + energy source term

2. The mass conservation of the gaseous mixture in the gaseous zone:

1op_ poary . o prKopY -
0 l,[)’T ot B2 atl + dIV( il VP)— 0 + mass flux at interface

3. The mass conservation of the water vapor in the gaseous zone:

a(dny,) : —
Py il LD dlv( NywVy — DW,aVnW)— 0

4. Explicit interface tracking:

0¢& K
A= = ny,M,, o VP + M, Dy, ,Vn,,
9
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3 PDEs and 1 ODE

[ 3 = f(t,x,T,P) + energy source term
( ar
A ET + B vl g(t,x,T,P) + mass flux at interface (gaseous zone)
9
) a—P = 0 (liquid zone)
L 0x
on,,
o = h(t,x,T,P,n,) only for 0 <x<¢
ds
[ E T Q(t, B TLW)

Method of lines: spatial discretization “Finite volume method“
—— ODE system ——— ODE solver “BDF scheme”

12/9/2015
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Numerical Example

Fire Fire

e [N Air+
£ positionf = = = = = = —{ —Air only " Water
- vapor

£ position]. — — — — — —

Liquid water
Liquid water
At tO =0 At tfinal =4h

e 20cm 1D Domain
* Initially interface at 5 mm
- Tfire = 2500 C

* Final position of interface (§ = 23.3 mm)

12/9/2015
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Results

temperature history: N = 640 temperature profile: N = 640, t = 4 hr.

e 1 L L L L | | | | | 1 ] 1 L 1 1 8 _ 1 1 | L L L L 1 1 L 1 1 1 1 |
& 1 1 ___ temperature of fire || N L
] _ x=-7.50E-03 m. i L
1 _ x=-125E-02m. |[ i i
11 _ x=-200E-02m. |[ i i
o 1 B = |
&7 - & I
11 - ] i
! - -
° 8! L 28 -
S ™ |t I - -
T 1! | & g L
g - i
£ o i L E o -
g3 - 23 -
=i I , L
11 L
1 - ] i
1 F o | -
3~ - 0] I
. . . . | : . . I . . : I . . . . T T T T I T T T T T T T | T T T T |
. phase—change interface position: N = 640 x (m)
time (hr)
b ) P [ M
o L
o - —_
D‘ e =
o -
25 -
"5'_ o L
@
g ] L
s | B
D‘ - =
C"J - |-
o
"; T T T T T T T T T T T T T T T T
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=4 hr.

N =640, t

molar fraction profile in gas

—e— Mmolar fraction of air

[
G| —— molar fraction of vapor

. T T _
I 80 90 70 0
SuoIo e} Jejow

02

0

015

0

1

0

0

1073

5x
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A sequence of heating and cooling stages

temperature history: N = 640

= 1 | L | |
0 —5 ;
o] '1 1 II _ _ _ temperature of fire L
' 1 ! . _ z-750E-03m.
) \ 1 " 2= 1.25E-02 m.
-: ! : ' _ z=200E-02m. B
y ! 1 L
o ! i ! i
o ! [ ! \ -
« | ' ' i
| ' | i
=H ! ' 1 L
| \ 1 }
—_ 1 ' II ' .
o _ll ! 1 ! L
© v - ' I \ =
27 1 ! ) - L
! |
© 4 i ' ! |
[F] : ' :
o N ' -
| \ '
£ _ . ! i
o © h
= o - ' L
— ' L
i 1
4 1 -
1
i ! L
- I -
1 !
o _| il B
uw 1
- I:’ -
-
I T ' | - T . | -

0 2 4 6 8 10
time (hr)
Stages The temperature of the closest sensor to heating
source
15t heating stage Maximum Temperature 150 °C
2" heating stage Maximum Temperature 178 °C
15t cooling stage Minimum Temperature 23 °C
] 2"d cooling stage Minimum Temperature 24.5°C




A sequence of heating and cooling stages

phase—change interface position: N = 640

| L | 1 | L |
[T}
S B .
e Sequence Change in
= interface
£ _ position
T -~
S A - 1stsequence 9.15 mm
2" sequence  4.15mm
l‘?
o
e | | | |
0 2 4 6 8 10
time (hr)
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Solvf‘_\i‘_}ng the Heat equation with phase change in 1D and
2D coordinate systems.

a Identification of the thermophysical properties of the
soil by inverse problem.

e A simplified physical model for phase change in presence
of air.

e Conclusions and Perspectives.
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Conclusion

* Importance of the choice of AT in the AHC method (Direct and Inverse
Problems)

* A phase change problem using 2D home-made adaptive mesh.

* |Inverse problem in 3D axisymmetric coordinate system (synthetic and
experimental data)

* A new separated phase model was presented. (interface tracking):
o Presence of air
o Alternating heating/cooling stages can be simulated.
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Perspectives

* The application of a new model which deals with phase change in a wet
unsaturated porous medium.

— Calculate the value of A, for a realistic grains’ distribution in a wet
porous medium using statistical information.

— Use this value of A, as an input parameter in the new physical
model.

* Taking radiation, gravity and capillary forces into account in the future
models.

e Studying the effect of the variation of the parameters related to the use

of Zohour (phase change and Hessian coefficients).
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