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Perception and action are interconnected

* robotics is [B. Siciliano and O. Khatib, 2008]

‘the science that studies the intelligent connection
between perception and action”




Perception and action are interconnected

* robotics is [B. Siciliano and O. Khatib, 2008]

‘the science that studies the intelligent connection
between perception and action”

estimation accuracy affects control
performance for tasks that depend
on the estimation itself

system (controlled) trajectory
affects estimation accuracy for
nonlinear sensor-to-state mapping
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* robotics is [B. Siciliano and O. Khatib, 2008]

‘the science that studies the intelligent connection
between perception and action”




An example from Nature

* raptors approach preys by following spiral trajectories
« falcons acute sight points approx. 45° to the side

« flying on a straight line, would force the falcon to turn its
head to the side thus considerably increasing air drag

* joint maximization of both perception and action

0,
LOS 0,

[Tucker et Al. 2000]
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coupling visual servoing and active estimation

conclusions and perspectives
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» psychology — active perception
- “perceiving is active [...]. We don’t simply
see, we look”. [Gibson,1979].
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» psychology — active perception

- “perceiving is active [...]. We don’t simply
see, we look”. [Gibson,1979].

* statistics — experimental design

- “the estimation can never exceed the

information supplied by the data” [Fisher,
1947].

- Cramer-Rao bound = > Z;*

 system identification and adaptive

control — input design or optimal system |22 N
experiment design Uk | Yk
- persistence of excitation [Anderson, 1977] modeling | Yk

- observability Gramian [Kailath, 1980] filter
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« experimental robot

kinematic/dynamic calibration
- [Gautier, Khalil, 1992]
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Active perception 2/2

« experimental robot

kinematic/dynamic calibration
- [Gautier, Khalil, 1992]

 optimal/dynamic sensor network
placement
- maximum coverage [Cortes et al. 2002]

- art gallery problem [Borrmann et al.
2013]

* Active SLAM

- exploration vs exploitation [Davison,
Murray 2002; Achtelik et al. 2013]
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The sense of vision

« a powerful and complex sensor

S}l;lp|; lens eye Simple cornealeye  Compound eye
- vision takes up to 70% of the brain

activity and 50% of neural tissue
[Fixot, 1957]

- almost all animals have eyes in a
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The sense of vision

« a powerful and complex sensor

Simple lens eye Simple cornealeye  Compound eye
- vision takes up to 70% of the brain

activity and 50% of neural tissue
[Fixot, 1957]

-almost all animals have eyes ina SEAEEN e
number of different forms [Land, 05] e e S

annelids, at least one vertebrates, some

Insects, crustaceans, some
mollusks and annelids

copepod crustacean larval insects

* arepresentative case study

- 3D—2D (nonlinear) projection
causes information loss [Ma et al.,
‘03]

- estimation performance depends

on camera motion [Bajcsy, ‘88;
Aloimonos et al. ‘87]




Vision based reconstruction

« an inverse problem




Stereo vision




Structure from known motion




Structure from known motion




Structure from motion in Nature

Right eye retinal

field margin Left eye retinal

field margin

Optic gikis

50mm

Blind area in
front of bill

Binocular field




Estimation from vision

« Structure from Motion (SfM)

- reconstruct complex scenes and
camera poses (up to a scale factor)

- batch off-line (bundle adjustment)
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- batch off-line (bundle adjustment) [Agarwal, et al. 2011]

* visual odometry
- mainly reconstruct camera motion
- ego-centric/local
- sequential real-time processing

[Nister, et al. 2004]




Estimation from vision

« Structure from Motion (SfM)

- reconstruct complex scenes and
camera poses (up to a scale factor)

- batch off-line (bundle adjustment)

* visual odometry
- mainly reconstruct camera motion
- ego-centric/local
- sequential real-time processing

e visual-SLAM
- global map consistency

- filtering + batch optimization FEENe
(loop closure) P
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Effects of the camera motion 2/3

« translations along the projection ray of a point are not
iInformative for that point

« and poorly informative for close points




Effects of the camera motion 3/3

 optimal motion for a point — more complex in general
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Visual control

* Image Based Visual Servoing (IBVS) [Chaumette, Hutchinson ‘0]

$ = L(s,x)u

- u = (v,w) € R% camera (controllable) velocity in camera frame
- s € R™: measurable feature vector
- x € RP: unmeasurable state component
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* Image Based Visual Servoing (IBVS) [Chaumette, Hutchinson ‘0]
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- u = (v,w) € R% camera (controllable) velocity in camera frame
- s € R™: measurable feature vector
- x € RP: unmeasurable state component
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- use the value x*at desired pose (if known) [Espiau et al. 1992]



Visual control

Servoing task error norm

4 6 8

Approximation error
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Visual control

* Image Based Visual Servoing (IBVS) [Chaumette, Hutchinson ‘0]
s$=L(s,x)u —u=—kL(s,X) (s — s)

- u = (v,w) € R% camera (controllable) velocity in camera frame
- s € R™: measurable feature vector
- x € RP: unmeasurable state component

« poor approximation of x can affect stability/performance
[Malis et al., TRO 2010]. Possible solutions:
- use the value x*at desired pose (if known) [Espiau et al. 1992]

- estimate X : from known model or structure from motion (SfM)
[Papanikolopoulos, Khosla ‘93; De Luca et al. ‘08; Mahony, Stramigioli ‘08]

« SfM is non-linear — observability depends on system
Inputs, I.e. on camera trajectory, and can be optimized

.m
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Active Structure from
Controlled Motion



Problem statement

e use controlled monocular camera to reconstruct
the structure of some basic 3D primitives in

camera frame, e.g.
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- calibrated camera (normalized coordinates)

- known and controllable camera motion (in camera/body

frame)



Problem statement

e use controlled monocular camera to reconstruct
the structure of some basic 3D primitives in

camera frame, e.g.

comi
2= 1viz) i) = [C? S P ]

- calibrated camera (normalized coordinates)
- known and controllable camera motion (in camera/body

frame)
- best possible accuracy/convergence time for some max ||u||
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Basic idea

« dynamics of a point feature [x y| = |[X/Z Y /Z]
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Q(zx,y,v) =~ sensitivity
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Basic idea

« dynamics of a point feature [x y| = |[X/Z Y /Z]

. B .Ff

@
A
\\
m: _ :I:y2 —(1—|—£l?2) Y o TV, — Vg | 1
Y l+y —TY — Yyv, — vy | Z

Q(zx,y,v) =~ sensitivity

* to maximize the convergence rate of an estimate of Z we
must choose v to maximize (some norm of) 2, e.g.

[ v




A nonlinear observer for StM

« s € R™ measurable state component (e.g. s = [z,y]! )
X € R?, unmeasurable component (e.g. x =1/7)
cu = [v! wT]T e R® controllable input camera velocity

* Q e RV, f o€ R™, f, € RP generic time-varying but known

§ = .fs(37 w) + QT(Sv U)X
X — fx(87 X ’LL)

A. De Luca, G. Oriolo, P. Robuffo Giordano. Feature Depth Observation for Image-based Visual Servoing:
Theory and Experiments. The International Journal of Robotics Research, 27(10):1093-1116, October 2008.
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A nonlinear observer for StM

« s € R™ measurable state component (e.g. s = [z,y]! )
X € R?, unmeasurable component (e.g. x =1/7)

T : :
» u = [v w!|" € RO controllable input camera velocity

* Q e RV, f o€ R™, f, € RP generic time-varying but known

{ 5= Fuls, )+ Q7 (s, V)X — H3
X = fy(s. X: u) — afd(s, v)3

$=38—s,x=X— X estimation errors (x = [3' ,x" |1 € R™tP)

H o free gains

A. De Luca, G. Oriolo, P. Robuffo Giordano. Feature Depth Observation for Image-based Visual Servoing:
Theory and Experiments. The International Journal of Robotics Research, 27(10):1093-1116, October 2008.
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A nonlinear observer for StM

« s € R™ measurable state component (e.g. s = [z,y]! )
X € R?, unmeasurable component (e.g. x =1/7)

T : :
» u = [v w!|" € RO controllable input camera velocity

* Q e RV, f o€ R™, f, € RP generic time-varying but known

{ 8= fs(s,w)+ Q" (s, v)X— H3 : { §=— H3+Q"(s, v)X
X = (8, X u) — aQ(s, v)3

X = — afd(s, v)3 + d(X, u)
g — 3§ — Y = Y — i I s s T m-+p
s =8— 8, X =X— X estimation errors (x = [s" ,x |' € R"™"P)
H o free gains
d(i;], u) = fx’X — fx\fcvanishing disturbance (d — 0asx — 0)
Wi

M| oc [u]

A. De Luca, G. Oriolo, P. Robuffo Giordano. Feature Depth Observation for Image-based Visual Servoing:
Theory and Experiments. The International Journal of Robotics Research, 27(10):1093-1116, October 2008.
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Persistence of excitation

 PE lemma (~ observability) [Marino, Tomei, 1995]:
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Persistence of excitation

 PE lemma (~ observability) [Marino, Tomei, 1995]:
t+1T

SZ%O<:>] ﬂ('r)QT(T)alT2')/Ip>07 Yt >t
¢

- convergence is exponential and semi-global w.r.t. |u|
x = 0 = d = 0 and convergence is global

-if m > p (more measures than unknowns) a sufficient
condition is

Q) Q" (1) > LI, >0, Vt>t
e since, 2(t) = Q(s, v) we can “optimize” the behavior by
- controlling camera motion (v ) [Spica, Robuffo Giordano, CDC 2013].

- selecting the set of measurements (s) [Robuffo Giordano, Spica,
Chaumette, ICRA 2015].

- Independently of the estimator (~ Fisher matrix and Gramian)

v d poe
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Estimation error dynamics assignment

Q=UxVv"’
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Estimation error dynamics assignment

Q=UxVv"’
m-v[? 0l ~  [¢=|(I1- Dy)i-[ax’d
€ = éz—lUTi ~mass ~damper  ~spring

. eigenvalues ac? of a2Q’ determine the convergence rate

* in StM Q(t) = Q(s,v), 01 (t) = 0{(s,v) < --- < 0, (t) = 0.(s,v)

kl’U

T
(g) ¥ :[”,UHQ (llvoll - ||v||>]+ ke (13 - "’52)

const.||v|| null projector max. o3

V0o? is known in closed form

e one must act on v (camera linear acceleration)
w Is free (can be used, e.g. to maintain visibility of s )
« trades-off between convergence speed and noise
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Experimental results for a point

Active estimation Constant linear velocity

Estimation error

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Active Structure from Motion: Application to Point,
& Sphere and Cylinder,” IEEE Trans. on Robotics, vol. 30, no. 6, pp. 1499-1513, 2014.
. “ _\ ’ .v‘# :



Point depth estimation using a EKF filter

09l ——Active
' —0—-Not active
0.8 -
U observability (207 ) is a
0.6 property of the system

dynamics, not of the observer




Structure estimation for a plane

Plane fitting on estimated point | Direct estimation from image
cloud (active vs constant v) moments (active vs constant v)

S = (ajg? Ygs H20, H02, /’Lll)

Note: all robot dofs are controlled Note: all robot dofs are controlled

using visual information using visual information

R. Spica, P. Robuffo Giordano, F. Chaumette, "Plane Estimation by Active Vision from Point Features and
Image Moments." in IEEE Int. Conf. on Robotics and Automation, ICRA'15, Seattle, Wa, May. 2015
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Plane estimation in presence of outliers

~inclined picture 3
introduces outliers g

Note: all robot dofs are controlled
using visual information

R. Spica, P. Robuffo Giordano, F. Chaumette, "Plane Estimation by Active Vision from Point Features and
Image Moments." in IEEE Int. Conf. on Robotics and Automation, ICRA'15, Seattle, Wa, May. 2015
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Experimental results for spheres and cylinders

Sphere Cylinder

Estimation error

Estimation error

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Active Structure from Motion: Application to Point,
Sphere and Cylinder,” IEEE Trans. on Robotics, vol. 30, no. 6, pp. 1499-1513, 2014.
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Adaptive image moments for plane estimation

« weighted discrete image moments
j

D3P RI T (iRl

j=1 k=0 weights traditional
moments

e.

!

My (0) = Zw(mk, Ui, 0)
k=1

e using s = (M (01), ..., My(0,,)) € R™

Q(0, v, t), Pp(O, v, t) =det (QQ)



Adaptive image moments for plane estimation

« weighted discrete image moments

J

) O G

j=1 k=0 weights traditional
moments

[N
ME

N
m,w(Q) — Zw(mk, Yk 9) E
k=1

e using s = (M (01), ..., My(0,,)) € R™
Q(0, v, t), Pp(O, v, t) =det (QQ)

« We can optimize w.r.t. v and/or 8 with
vol - 00"’
] p— k‘v I _— v p— s —
(% < ”UT'U> V (I)D 0 k@ (I 0T0> V@CI)D

« additional constraints on 6 to impose w(zg, yx, 8) = 0 at
the image borders (limited camera field of view)
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Adaptive image moments — simulation results

p
z [1/m]

[ 2 4 5 8 L) C 2 4 L} 5 0

time [s] time [s]

P. Robuffo Giordano, R. Spica, F. Chaumette, "Learning the Shape of Image Moments for Optimal 3D
Structure Estimation." in IEEE Int. Conf. on Robotics and Automation, ICRA'15, Seattle, Wa, May 2015




Adaptive image moments — simulation results

e solid lines: s = (M (01), ..., my(03)) € R?
» dashed lines: s = (.’,Ug,yg,,ugo, o2, Mll) c RE)
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Dense Photometric
Structure from Motion

In collaboration with Prof. Robert Mahony
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Problem statement

 assuming measurements of

- luminance Y (¢, r) at each time and pixel = = [z, y, 1]
- camera velocity [v, w]”

estimate the dense depth map Z(t, m)

Y (t, ) Z(t, )

www.mip.informatik.uni-kiel.de

avoid feature extraction, matching and tracking
fast enough for typical robot dynamics (~100-200Hz)
« computationally affordable for robot onboard processing



Dense strategies for estimation/control
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e dense structure from motion [Matthies, Szelinski, Kanade, 1989:
Zarrouati, Aldea, Rouchon, 2012]




Image as a fluid

e assuming constant brightness [Horn, Schunck,1981] and static

environment

L0 (m= g S

= Ces (v — [m], @)

Z(t, ) dt
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environment
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Image as a fluid

e assuming constant brightness [Horn, Schunck,1981] and static

environment

1 d
~0 m) = o g = Ceh (o[l w)
* assuming smooth Y (¢, w),dt,w)
W _ o oy, O A _ g iy %
a VT, a =V T g,
« optical flow ¢ = [es], [7], v(t), © = — [es], [7]° w(t)

7(t, ) = ((t,m)p(v(t), ) + O(w(t), w)

« finally we obtain a system of PDEs

oY

ot
9¢

ot

= —V.YT0 - ¢V, YTy

= —Vx('O = (VT + Ces (Cv — [7], w)

S O & m



Image as a fluid

e assuming constant brightness [Horn, Schunck,1981] and static

environment

=0 G(t, ) = Zum @ ° (Cv — [7], W)
* assuming smooth Y (¢, w),dt,w)

W _ o oy, O A _ g o1y,

a Ty a = VT g
« optical flow ¢ = [es], [7], v(t), © = — [es], [7]° w(t)

7(t, ) = ((t,m)p(v(t), ) + O(w(t), w)

« finally we obtain a system of PDEs

oY

ot
9¢

ot

S v g[v,rYTw] QY v) { :

(sensitivity)

= —Vx('O = (VT + Ces (Cv — [7], w)

S O & m
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Image as a fluid

e assuming constant brightness [Horn, Schunck,1981] and static
environment

dy” 1 d¢ . 7
E =0 C(taﬂ-) - Z(t,ﬂ') E - Cei’) (C’U— [ﬂ-]xw)
* assuming smooth Y (¢, «), {(¢, )
vy . 0Y d¢ ¢
d— vﬂ-Y ™+ E a — VTI'C P
« optical flow ¢ = [es], [7], v(t), © = — [es], [7]° w(t)

w(t, ) = (1t m)p(o(t), 7) + O(w(l), )

« finally we obtain a system of PDEs and the observer

9 ~
a—j = —ValTO - (VCTy + Ce] (v~ [, w)




Image as a fluid

e assuming constant brightness [Horn, Schunck,1981] and static
environment

dy” 1 ¢ p
E =0 C(t, ﬂ-) - Z(t, 71') dt - Cei’) (C’U [ﬂ-]xw)
 assuming smooth Y (¢, «), (¢, 7)
W _ o oy, O A _ g o1y,
a—V,,Y 1r+8t dt—V,TC 7r+at
« optical flow ¢ = [es], [7], v(t), © = — [es], [7]° w(t)

(t, ) = ((t, m)Y(v(t), ™) + O(w(t), 7)
« finally we obtain a system of PDEs and the observer

%—1; = -V.YT0 - (V. YTy — h(Y - Y)

aC ~ ~

A

o = V(1O = (ValTy + (ej (Cv = [r], w) +a(VaY ) (Y —Y)




Image as a fluid

e assuming constant brightness [Horn, Schunck,1981] and static
environment

dy” 1 ¢ 7 B
E =0 C(t, ﬂ-) - Z(t, 71') dt - Cei’) (C’U [ﬂ-]xw)
* assuming smooth Y (¢, «), {(¢, )
dy .Y d¢ e
E—VWYT’TF—FE E—VWCT’JT‘FE
« optical flow ¢ = [es], [7], v(t), © = — [es], [7]° w(t)

(t, ) = ((t, m)Y(v(t), ™) + O(w(t), 7)
« finally we obtain a system of PDEs and the observer

O . ¥TO -V YTy — h(V — V) highly
ot parallelizable
¢ ~ R

= = —ValTO — (VT + Cel (Cv — [r], w) +a(VaYT9)(Y —Y)




Dense disparity observability

* the estimation C will not converge If 0 = ]V,TYTM ~0:
- if the camera does not translate ¢ = [es],, [7], v =0 V=
- in non textured areas VY =0 Vv
- in areas where the image moves along contours V.Y ¢ =0

|V, 7|
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Dense disparity observability

* the estimation C will not converge If 0 = ]V,TYTM ~0:
- if the camera does not translate ¢ = [es],, [7], v =0 V=
- in non textured areas VY =0 Vv
- in areas where the image moves along contours V.Y ¢ =0

|V, 7|

* regularization is necessary in unobservable areas, e.g.
¢ 92 0% B T
o (...)[ q(t, ) (ax?+ay2 q(t, ) ka(mH%

== G




Simulation for planar surface w/o regularization
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Simulation for planar surface with regularization
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Coupling vision based control
and active estimation



Problem statement

» standard visual servoing control law E. Chaumette, S. Hutchinson.

. R Visual servo control, Part I

S = L(S, X)’U, — U = —kL(S, X)T(S — 8*) Basic approaches. RAM, 2006.
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Problem statement

» standard visual servoing control law E. Chaumette, S. Hutchinson.

Visual servo control, Part I:

S = L(S, X)’U, — U = —kL(S, X)T(S — 8*) Basic approaches. RAM, 2006.
=<
0.8 \\\\\
<>|< 06 \\\\
>0 04 \‘~\\\
0.2} el
goal L T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time
« act on the camera motion during the servoing transient so as to
‘optimally’ estimate the scene structure

e results:

- better knowledge of the scene during task execution
L task convergence closer to ideality

- better knowledge of the scene at the end of the task
L can be used for other purposes
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2"d order redundancy resolution
« excitation cost function V = V(c?(s,v)) = V(s, q)
Va~VaV'§  requires acceleration action

« classical 2"d order projected gradient e = s — s*

g=J (ke —kpe—Jg) +|(I-JINWsV  J=LJo
P

e ifrank L =6
PVyV =0, YV (v(q))

constrained

- s completely constraints camera motion
- only “internal” redundancy — not useful for active SfM

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a Large
Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.
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Redundancy maximization
« excitation cost function V = V(c?(s,v)) = V(s, q)
Va~VaV'§  requires acceleration action

* redundant 2" order projected gradient v = ||s — s*||
(extension of [Marey, Chaumette 2010])

G =J(—ker — kv — J,q) +|I — T, IV T, =1eTT
P,
* now (even if rank L = 6) in general

P,V V0,

- redundancy to maximize excitation

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a Large
Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.
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Second order switching strategy

« alternative control laws:
1) G=J (koo —kyv — J,q) + (I, — JLJ.)d,
2) §=J(—k,e—kye—Jq)




Second order switching strategy

- alternative control laws:
1) G=JN (ko —kyv = J,q) + (I, — T J.)d,
2) =J"(—keée—ke—Jq)
* (1) is singular when p ~ 0 — we need to switch to (2)
* monotonic convergence only if e, € aligned before switch

e
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Second order switching strategy

- alternative control laws:
1) G=JN (ko —kyv = J,q) + (I, — T J.)d,
2) =J"(—keée—ke—Jq)
* (1) is singular when p ~ 0 — we need to switch to (2)
* monotonic convergence only if e, € aligned before switch

T . .
5 — (Im o gge) e = Pee ~ () error norm control

« finally the secondary task is
q, = VgV observability maximization
q., = ksV4lld| alignment




Experimental results

Servoing task error norm

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a
Large Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.
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Experimental results for 4 point features

task error approximation error
051 active estimation 5.
estimation (non active) active estimation
041 final estimation (non active)
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Active estimation triggering

« weight active part depending on estimation status
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Active estimation triggering

« weight active part depending on estimation status

1

o
|
> 04F
goa I .OO 0.‘1 0.2 0.‘3
« if 0% > 0 (exciting camera motion)

I _
E:—/ Is(7) — 3(7)|2dr = 0 = % = 0
T t—T

0.4

9.5 0.6 0.7 0.8 0.9 1
time

error norm control




Experimental results with adaptive strategy 1/2

Servoing task error norm
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Phase 3:
classical full error control

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a
Large Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.
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Experimental results with adaptive strategy 2/2
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Servoing task error norm
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R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a
Large Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.

lagadic



Conclusions 1/2

 generic strategy to: [CDC, 2013]
- characterize the (nonlinear) dynamics of SfM

- Impose a transient ~linear 2nd-order
reference system (i.e., assign the poles)




Conclusions 1/2

 generic strategy to: [CDC, 2013]
- characterize the (nonlinear) dynamics of SfM

- Impose a transient ~linear 2nd-order
reference system (i.e., assign the poles)

* by acting online on:
- observer gains to fix damping factor
- inputs v (“active” estimation) to maximize cut-off frequency




Conclusions 1/2

 generic strategy to: [CDC, 2013]
- characterize the (nonlinear) dynamics of SfM

- Impose a transient ~linear 2nd-order
reference system (i.e., assign the poles)

* by acting online on:
- observer gains to fix damping factor
- inputs v (“active” estimation) to maximize cut-off frequency

 byproduct:
- optimized convergence for a given max ||v||
- predictability (like linear system)




Conclusions 1/2

 generic strategy to: [CDC, 2013]
- characterize the (nonlinear) dynamics of SfM

- Impose a transient ~linear 2nd-order
reference system (i.e., assign the poles)

* by acting online on:
- observer gains to fix damping factor
- inputs v (“active” estimation) to maximize cut-off frequency

 byproduct:
- optimized convergence for a given max ||v||
- predictability (like linear system)

« experimental case studies: point [CDC'13, TRO*14], Sphere
[ICRA14, TRO'14], cylinder [ICRA'14, TRO'14], plane [ICRA14/15]




Conclusions 1/2

 generic strategy to: [CDC, 2013]
- characterize the (nonlinear) dynamics of SfM

- Impose a transient ~linear 2nd-order
reference system (i.e., assign the poles)
by acting online on:
- observer gains to fix damping factor

- inputs v (“active” estimation) to maximize cut-off frequency

 byproduct:
- optimized convergence for a given max ||v||
- predictability (like linear system)

« experimental case studies: point [CDC'13, TRO*14], Sphere
[ICRA14, TRO'14], cylinder [ICRA'14, TRO'14], plane [ICRA14/15]

« extension to dense state estimation (with Prof. Mahony)
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Conclusions 2/2

» general strategy for “deforming” the camera trajectory
during IBVS transient to maximize observability [ICRA14]

- Improved performance during task execution
- better final estimation accuracy

start{

» extension of [Marey, Chaumette 2010] tO =
maximize redundancy while maintaining P
monotonic convergence [ICRA'14] |

e automatic activation/deactivation and tuning of active
estimation depending on the current accuracy [TRO'15]

« experimental validation with simple target and realistic
unstructured object [ICRA'14, TRO'15]
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Open issues and perspectives — active StM

- optimization of Q(#)Q2(¢)! might result in local minima
- use extended horizon planning (and re-planning)
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Open issues and perspectives — active StM

- optimization of Q(#)Q2(¢)! might result in local minima
- use extended horizon planning (and re-planning)
t+T

/ Q(r) Q' (r)dr

t
- consider m < p ( Q(t)Q2(t)! can never be full-rank)
» deterministic framework — possibly not robust w.r.t. noise
- probabilistic estimators

- noise-aware metrics (Fisher information matrix)
t+T

/ Q((r)R'Q" (r)dr
t
* moving target (m < p)
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Open issues and perspectives —dense StM

* modeling/propagation of depth discontinuities
- shock/rarefaction waves

* robustness w.r.t. numerical discretization

- alternative (dis)similarity measurements to Y -Y
(e.g. mutual information)

* no stability proof

- Infinite dimensional port-Hamiltonian framework [van der
Schaft, 2006]

« apply active estimation
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Open issues and perspectives — control + SfM

« no formal stability proof for IBVS + active estimation
- N0 separation principle
- encouraging experimental results

 possible constraints violation (e.g. limited field of view,
joints limits, ...)
- advanced task priority framework
- model predictive control

* need velocity measurement/control typically difficult on
mobile robots and UAVs

- acceleration measurements (IMU) and torque/force input
- non-holonomic/under-actuated control



Possible application

« multi-robot systems, e.g. estimate/control formation from
bearing measurements (cameras)

Master Devibceks Multi-UAVs Slave System

(with force feedback)
D 3

« many robots = many degrees of freedom to optimize
 decentralization
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Possible application

« multi-robot systems, e.g. estimate/control formation from
bearing measurements (cameras)

Master Devibceks Multi-UAVs Slave System

(with force feedback)
D .

translation
contrel  control

> - el ==
and re 2 o yellow

[Franchi et al. 2012; Bishop et al. 2011]

« many robots = many degrees of freedom to optimize
 decentralization

=z ¢ m



UNIVERSITE DE €Y e (. <
REN ‘Es“i YEIRISA

Thanks for your attention

Riccardo Spica

Lagadic group
Inria Rennes Bretagne Atlantique & IRISA

.m

http://www.irisa.fr/lagadic

rd s
e 4




