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An example from Nature

• raptors approach preys by following spiral trajectories

• falcons acute sight points approx. 45o to the side

• flying on a straight line, would force the falcon to turn its 

head to the side thus considerably increasing air drag

• joint maximization of both perception and action
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[Tucker et Al. 2000]



Outline

• introduction and motivation

• active structure estimation from controlled motion

• dense structure estimation from motion

• coupling visual servoing and active estimation

• conclusions and perspectives
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Introduction and motivation
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Active perception 1/2

• psychology – active perception

- “perceiving is active […].We don’t simply 

see, we look”. [Gibson,1979].

6



Active perception 1/2

• psychology – active perception

- “perceiving is active […].We don’t simply 

see, we look”. [Gibson,1979].

• statistics – experimental design

- “the estimation can never exceed the 

information supplied by the data” [Fisher, 

1947].

- Cramer-Rao bound 

6



Active perception 1/2

• psychology – active perception

- “perceiving is active […].We don’t simply 

see, we look”. [Gibson,1979].

• statistics – experimental design

- “the estimation can never exceed the 

information supplied by the data” [Fisher, 

1947].

- Cramer-Rao bound 

• system identification and adaptive 

control – input design or optimal 

experiment design

- persistence of excitation [Anderson, 1977]

- observability Gramian [Kailath, 1980]
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Active perception 2/2

• experimental robot 

kinematic/dynamic calibration
- [Gautier, Khalil, 1992]
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Active perception 2/2

• experimental robot 

kinematic/dynamic calibration
- [Gautier, Khalil, 1992]

• optimal/dynamic sensor network 

placement

- maximum coverage [Cortes et al. 2002]

- art gallery problem [Borrmann et al. 

2013]

• Active SLAM

- exploration vs exploitation [Davison, 

Murray 2002; Achtelik et al. 2013]
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The sense of vision

• a powerful and complex sensor

- vision takes up to 70% of the brain 

activity and 50% of neural tissue 
[Fixot, 1957]

- almost all animals have eyes in a 

number of different forms [Land, 05]
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The sense of vision

• a powerful and complex sensor

- vision takes up to 70% of the brain 

activity and 50% of neural tissue 
[Fixot, 1957]

- almost all animals have eyes in a 

number of different forms [Land, 05]

• a representative case study

- 3D→2D (nonlinear) projection 

causes information loss [Ma et al., 

‘03]

- estimation performance depends 

on camera motion [Bajcsy, ‘88; 

Aloimonos et al. ‘87]
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Vision based reconstruction

• an inverse problem
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Stereo vision
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Structure from known motion
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Structure from known motion
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Structure from motion in Nature
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Estimation from vision

• Structure from Motion (SfM)

- reconstruct complex scenes and

camera poses (up to a scale factor)

- batch off-line (bundle adjustment)
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Estimation from vision

• Structure from Motion (SfM)

- reconstruct complex scenes and

camera poses (up to a scale factor)

- batch off-line (bundle adjustment)

• visual odometry

- mainly reconstruct camera motion

- ego-centric/local

- sequential real-time processing

• visual-SLAM

- global map consistency

- filtering + batch optimization

(loop closure)

13

[Agarwal, et al. 2011]

[Nister, et al. 2004]

[Davison, 2003]



Effects of the camera motion 1/3

• pure rotations are not informative
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• translations along the projection ray of a point are not 

informative for that point
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Effects of the camera motion 2/3

• translations along the projection ray of a point are not 

informative for that point

• and poorly informative for close points
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Effects of the camera motion 3/3

• optimal motion for a point – more complex in general
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Visual control

• Image Based Visual Servoing (IBVS) [Chaumette, Hutchinson ‘06]

- : camera (controllable) velocity in camera frame 

- : measurable feature vector

- : unmeasurable state component
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Visual control

• Image Based Visual Servoing (IBVS) [Chaumette, Hutchinson ‘06]

- : camera (controllable) velocity in camera frame 

- : measurable feature vector

- : unmeasurable state component

• poor approximation of    can affect stability/performance 

[Malis et al., TRO 2010]. Possible solutions:

- use the value      at desired pose (if known) [Espiau et al. 1992]

- estimate : from known model or structure from motion (SfM) 
[Papanikolopoulos, Khosla ‘93; De Luca et al. ‘08; Mahony, Stramigioli ‘08]

• SfM is non-linear → observability depends on system 

inputs, i.e. on camera trajectory, and can be optimized
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Active Structure from 

Controlled Motion
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Problem statement

• use controlled monocular camera to reconstruct 

the structure of some basic 3D primitives in 

camera frame, e.g.
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Problem statement

• use controlled monocular camera to reconstruct 

the structure of some basic 3D primitives in 

camera frame, e.g.

- calibrated camera (normalized coordinates)

- known and controllable camera motion (in camera/body 

frame) 

- best possible accuracy/convergence time for some

19

𝒞



Basic idea

• dynamics of a point feature

20

≈ sensitivity

𝒞



Basic idea

• dynamics of a point feature

• to maximize the convergence rate of an estimate of    we 

must choose    to maximize (some norm of)     , e.g.

20

≈ sensitivity

𝒞



• , measurable state component (e.g.                  )

• , unmeasurable component (e.g. )

• controllable input camera velocity

• ,               ,               generic time-varying but known

A nonlinear observer for SfM

21

A. De Luca, G. Oriolo, P. Robuffo Giordano. Feature Depth Observation for Image-based Visual Servoing: 

Theory and Experiments. The International Journal of Robotics Research, 27(10):1093-1116, October 2008.
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• , measurable state component (e.g.                  )

• , unmeasurable component (e.g. )

• controllable input camera velocity

• ,               ,               generic time-varying but known

,                   estimation errors (                                    )

,       free gains

vanishing disturbance (           as          ) 

with 

A nonlinear observer for SfM

21

A. De Luca, G. Oriolo, P. Robuffo Giordano. Feature Depth Observation for Image-based Visual Servoing: 

Theory and Experiments. The International Journal of Robotics Research, 27(10):1093-1116, October 2008.
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Persistence of excitation

• PE lemma (~ observability) [Marino, Tomei, 1995]:

- convergence is exponential and semi-global w.r.t.

and convergence is global

- if             (more measures than unknowns) a sufficient 

condition is

• since,                         we can “optimize” the behavior by

- controlling camera motion (   ) [Spica, Robuffo Giordano, CDC 2013].

- selecting the set of measurements (  ) [Robuffo Giordano, Spica, 

Chaumette, ICRA 2015].

- independently of the estimator (~ Fisher matrix and Gramian)
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• eigenvalues of            determine the convergence rate

• in SfM

is known in closed form

• one must act on    (camera linear acceleration)

is free (can be used, e.g. to maintain visibility of    )

trades-off between convergence speed and noise

Estimation error dynamics assignment

23

(e.g.)

~
~mass ~damper ~spring

const. |v| null projector max.  _



Experimental results for a point

Active estimation Constant linear velocity

24

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Active Structure from Motion: Application to Point, 

Sphere and Cylinder,” IEEE Trans. on Robotics, vol. 30, no. 6, pp. 1499–1513, 2014.



Point depth estimation using a EKF filter

25

observability (           ) is a 

property of the system 

dynamics, not of the observer



Structure estimation for a plane

Plane fitting on estimated point 
cloud (active vs constant )

Direct estimation from image 
moments (active vs constant )

26

R. Spica, P. Robuffo Giordano, F. Chaumette, "Plane Estimation by Active Vision from Point Features and

Image Moments." in IEEE Int. Conf. on Robotics and Automation, ICRA'15, Seattle, Wa, May. 2015



Plane estimation in presence of outliers

R. Spica, P. Robuffo Giordano, F. Chaumette, "Plane Estimation by Active Vision from Point Features and

Image Moments." in IEEE Int. Conf. on Robotics and Automation, ICRA'15, Seattle, Wa, May. 2015
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Experimental results for spheres and cylinders

Sphere Cylinder

28

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Active Structure from Motion: Application to Point, 

Sphere and Cylinder,” IEEE Trans. on Robotics, vol. 30, no. 6, pp. 1499–1513, 2014.
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• using                                                        
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Adaptive image moments for plane estimation

• weighted discrete image moments

• using                                                        

• we can optimize w.r.t.     and/or    with

• additional constraints on    to impose                            at 

the image borders (limited camera field of view)

29

traditional

moments
weights



Adaptive image moments – simulation results

30

P. Robuffo Giordano, R. Spica, F. Chaumette, "Learning the Shape of Image Moments for Optimal 3D

Structure Estimation." in IEEE Int. Conf. on Robotics and Automation, ICRA'15, Seattle, Wa, May 2015



Adaptive image moments – simulation results

• solid lines:

• dashed lines:  
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Dense Photometric

Structure from Motion

32

In collaboration with Prof. Robert Mahony



Problem statement

• assuming measurements of

- luminance at each time and pixel                     

- camera velocity

• estimate the dense depth map

• avoid feature extraction, matching and tracking

• fast enough for typical robot dynamics (~100-200Hz)

• computationally affordable for robot onboard processing

33

www.mip.informatik.uni-kiel.de



Dense strategies for estimation/control

• visual servoing [Collewet, Marchand, 2011]

• optical flow estimation [Horn, Schunck, 1981; Adarve, Austin, Mahony, 2014]

• dense structure from motion [Matthies, Szelinski, Kanade, 1989; 

Zarrouati, Aldea, Rouchon, 2012]
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Image as a fluid

• assuming constant brightness [Horn, Schunck,1981] and static 

environment

• assuming smooth

• optical flow

• finally we obtain a system of PDEs

35

and the observer

highly 

parallelizable



Dense disparity observability

• the estimation     will not converge if                               :

- if the camera does not translate 

- in non textured areas 

- in areas where the image moves along contours
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Dense disparity observability

• the estimation     will not converge if                               :

- if the camera does not translate 

- in non textured areas 

- in areas where the image moves along contours

• regularization is necessary in unobservable areas, e.g.

36



Simulation for planar surface w/o regularization
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Simulation for planar surface with regularization
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Coupling vision based control 

and active estimation

39



Problem statement

• standard visual servoing control law 
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Problem statement

• standard visual servoing control law 

• act on the camera motion during the servoing transient so as to 

‘optimally’ estimate the scene structure

• results:

- better knowledge of the scene during task execution

task convergence closer to ideality

- better knowledge of the scene at the end of the task

can be used for other purposes

40

goal

start

F. Chaumette, S. Hutchinson.

Visual servo control, Part I: 

Basic approaches. RAM, 2006.



2nd order redundancy resolution

• excitation cost function

• classical 2nd order projected gradient

• if

- completely constraints camera motion

- only “internal” redundancy → not useful for active SfM

41

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a Large 

Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.

requires acceleration action

constrainedredundancy



Redundancy maximization

• excitation cost function

• redundant 2nd order projected gradient 

(extension of [Marey, Chaumette 2010])

• now (even if                   ) in general

- redundancy to maximize excitation

42

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a Large 

Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.

requires acceleration action

start

goal



Second order switching strategy

• alternative control laws:

1)

2)
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Second order switching strategy

• alternative control laws:

1)

2)

• (1) is singular when           → we need to switch to (2)

• monotonic convergence only if        aligned before switch 

• finally the secondary task is

observability maximization

alignment

43
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Experimental results

44

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a 

Large Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.



Experimental results for 4 point features

task error

camera trajectory with active estimation

approximation error

active estimation
estimation (non active)
final

94

active estimation
estimation (non active)
final
ideal

observer eigenvalue

active estimation
estimation (non active)

control error norm
braking phase
full error control
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Active estimation triggering

• weight active part depending on estimation status
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Experimental results with adaptive strategy 1/2

47

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a 

Large Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.



Experimental results with adaptive strategy 2/2

48

R. Spica, P. Robuffo Giordano, and F. Chaumette, “Bridging Visual Control and Active Perception via a 

Large Projection Operator,” IEEE Trans. on Robotics, under review since April 2015.
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Conclusions 1/2

• generic strategy to: [CDC, 2013]

- characterize the (nonlinear) dynamics of SfM

- impose a transient ~linear 2nd-order

reference system (i.e., assign the poles)

• by acting online on:

- observer gains to fix damping factor

- inputs (“active” estimation) to maximize cut-off frequency

• byproduct:

- optimized convergence for a given max

- predictability (like linear system)

• experimental case studies: point [CDC‘13, TRO‘14], sphere 

[ICRA‘14, TRO‘14], cylinder [ICRA‘14, TRO‘14], plane [ICRA‘14/‘15]

• extension to dense state estimation (with Prof. Mahony)
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Conclusions 2/2

• general strategy for “deforming” the camera trajectory 

during IBVS transient to maximize observability [ICRA‘14]

- improved performance during task execution

- better final estimation accuracy
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Conclusions 2/2

• general strategy for “deforming” the camera trajectory 

during IBVS transient to maximize observability [ICRA‘14]

- improved performance during task execution

- better final estimation accuracy

• extension of [Marey, Chaumette 2010] to 

maximize redundancy while maintaining

monotonic convergence [ICRA‘14]

• automatic activation/deactivation and tuning of active 

estimation depending on the current accuracy [TRO‘15]

• experimental validation with simple target and realistic 

unstructured object [ICRA‘14, TRO‘15]

50
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• optimization of                   might result in local minima
- use extended horizon planning (and re-planning)

- consider             (                   can never be full-rank)

• deterministic framework → possibly not robust w.r.t. noise

- probabilistic estimators

- noise-aware metrics (Fisher information matrix)

• moving target (           )
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Open issues and perspectives – dense SfM

• modeling/propagation of depth discontinuities

- shock/rarefaction waves

• robustness w.r.t. numerical discretization

- alternative (dis)similarity measurements to

(e.g. mutual information)

• no stability proof

- infinite dimensional port-Hamiltonian framework [van der 

Schaft, 2006]

• apply active estimation
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Open issues and perspectives – control + SfM

• no formal stability proof for IBVS + active estimation

- no separation principle

- encouraging experimental results
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Open issues and perspectives – control + SfM

• no formal stability proof for IBVS + active estimation

- no separation principle

- encouraging experimental results

• possible constraints violation (e.g. limited field of view, 

joints limits, …)

- advanced task priority framework

- model predictive control

• need velocity measurement/control typically difficult on 

mobile robots and UAVs

- acceleration measurements (IMU) and torque/force input

- non-holonomic/under-actuated control
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Possible application

• multi-robot systems, e.g. estimate/control formation from 

bearing measurements (cameras)

• many robots = many degrees of freedom to optimize

• decentralization

54

[Franchi et al. 2012; Bishop et al. 2011]
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Lagadic group

Inria Rennes Bretagne Atlantique & IRISA

http://www.irisa.fr/lagadic
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