

Inter-Cell Interference Coordination in Wireless Networks PhD Defense, IRISA, Rennes, 2015

Mohamad Yassin*[‡]

*University of Rennes 1, IRISA, France [‡]Saint Joseph University of Beirut, ESIB, Lebanon

Institut de Recherche en Informatique et Systèmes Aléatoires

Background

- Mobile data traffic is exponentially increasing
 - 70% growth in 2012^1 and 81% growth in 2013^2
 - Mobile data traffic in 2017 will be 13 times that of 2012
- METIS project technical objectives³ for 5G networks:
 - 1,000 times higher mobile data volume per area
 - 10 to 100 times higher user data rate
 - 10 to 100 times higher number of connected devices
- Need to increase network capacity and spectral efficiency
 - Network densification
 - Aggressive frequency reuse

IRISA

 ¹Cisco Systems. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012-2017.
 ²Cisco Systems. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018.
 ³METIS D6.6. Final Report on the METIS 5G System Concept and Technology Roadmap. 2015.

Frequency Reuse-1 Model

- Orthogonal Frequency Division Multiple Access (OFDMA)
 - Frequency reuse-1 model is used
 - Improve network capacity
 - Combat spectrum scarcity
 - Inter-cell interference problems

Frequency Reuse-1 Model

- Orthogonal Frequency Division Multiple Access (OFDMA)
 - Frequency reuse-1 model is used
 - Improve network capacity
 - Combat spectrum scarcity
 - Inter-cell interference problems

Frequency Reuse-1 Model

- Orthogonal Frequency Division Multiple Access (OFDMA)
 - Frequency reuse-1 model is used
 - Improve network capacity
 - Combat spectrum scarcity
 - Inter-cell interference problems

Inter-Cell Interference Coordination (ICIC)

- Negative impact of interference on system performance
- Multi-cell radio resource management function⁴
 - Reduce inter-cell interference
 - Alleviate throughput degradation
- 3GPP allows non-standardized ICIC techniques

⁴3GPP. E-UTRAN Overall Description, Stage 2. Technical Specification. 3GPP TS 36.300, 2012.

	Centralized
Cooperation	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

IRISA

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Cooperation	Centralized
	Decentralized
	Hybrid
Objective	Throughput maximization
	Power minimization
	Satisfaction maximization
Mathematical tools	Convex optimization
	Graph theory
	Game theory
Technology	LTE/LTE-A networks
	Cloud-RAN

Overview

- 2 ICIC Techniques Comparison
- 3 Centralized versus Decentralized ICIC
- 4 Autonomous ICIC
- 5 Cooperative ICIC

IRISA

Frequency Reuse Techniques⁵

Figure 1: Fractional Frequency Reuse (FFR) Figure 2: Soft Frequency Reuse (SFR)

⁵M. Yassin et al. "Survey of ICIC Techniques in LTE Networks under Various Mobile Environment Parameters". In: Springer Wireless Networks (accepted for publication, 2015).

Simulation Parameters

- LTE downlink system level simulator⁶
- Seven LTE cells with 10 UEs per cell
- Random UE positions and radio conditions
- UE Classification
 - Good Radio (GR) UEs
 - Bad Radio (BR) UEs

Parameter	Value
Inter-eNodeB distance	500 m
Bandwidth	5 MHz
Resource Blocks (RBs)	25
Scheduler	Round Robin
Traffic model	Full buffer

⁶J.C. Ikuno, M. Wrulich, and M. Rupp. "System Level Simulation of LTE Networks". In: IEEE 71st Vehicular Technology Conf. Taipei, 2010, pp. 1–5.

SIRISA

Mean Throughput per Zone

Mean throughput is calculated for 100 simulation runs

Figure 3: Mean throughput per GR, BR, and all UEs⁷

The frequency reuse-3 model shows the lowest throughputSFR improves BR UEs throughput and mean UE throughput

⁷M. AboulHassan et al. "Classification and Comparative Analysis of Inter-Cell Interference Coordination Techniques in LTE Networks". In: 7th IFIP Int. Conf. New Technologies, Mobility, and Security. Paris, 2015.

Throughput Cumulative Distribution Function

•
$$CDF(x) = P(X < x)$$

Figure 4: Throughput cumulative distribution function

Reuse-3 CDF curve is the first to reach its maximumThroughput CDF is improved when using SFR

UE Satisfaction

• If R_k is less than 512 kbit/s \Rightarrow UE k is unsatisfied

Figure 5: UE satisfaction versus network load

Reuse-3 improves UE satisfaction for low network loadsUE satisfaction is reduced when network load increases

Spectral Efficiency

Spectral efficiency is evaluated for various UE distributions

Figure 6: Spectral efficiency versus percentage of GR UEs

- Reuse-3 shows the lowest spectral efficiency
- SFR improves spectral efficiency for less than 60% GR UEs

Limitations of Static ICIC Techniques

- Spectrum underutilization
- Non-uniform UE distributions

Figure 7: FFR limitations

- UE throughput demands
- Throughput fairness

Figure 8: SFR limitations

IRISA

Introduction

- 2 ICIC Techniques Comparison
- 3 Centralized versus Decentralized ICIC
- 4 Autonomous ICIC
- 5 Cooperative ICIC

IRISA

Multi-Cell Resource and Power Allocation

State-of-the-art contributions on resource and power allocation

- Formulate a single cell problem
- Neglect inter-cell interference
- Do not guarantee throughput fairness
- Introduce suboptimal approaches

Centralized joint resource and power allocation

- Formulate a multi-cell problem
- Address inter-cell interference
- Guarantee throughput fairness
- Find the optimal solution

Multi-Cell Resource and Power Allocation

State-of-the-art contributions on resource and power allocation

- Formulate a single cell problem
- Neglect inter-cell interference
- Do not guarantee throughput fairness
- Introduce suboptimal approaches
- Centralized joint resource and power allocation
 - Formulate a multi-cell problem
 - Address inter-cell interference
 - Guarantee throughput fairness
 - Find the optimal solution

- Optimization variables:
 - $\pi_{i,n}$: transmit power of cell *i* on RB *n*
 - $\theta_{k,n}$: percentage of time UE k is associated with RB n

Signal to Interference and Noise Ratio (SINR):

$$\sigma_{k,i,n} = \frac{\pi_{i,n} G_{k,i,n}}{N_0 + \sum_{i' \neq i} \pi_{i',n} G_{k,i',n}}$$

Peak rate of UE k associated with RB n on cell i:

$$\rho_{k,i,n} = \log\left(1 + \sigma_{k,i,n}\right) \tag{2}$$

• Objective function:

$$\eta = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}(i)} \log \left(\sum_{n \in \mathcal{N}} \theta_{k,n} \cdot \log \left(1 + \sigma_{k,i,n} \right) \right)$$
(3)

IRISA, Rennes, November 13, 2015

- Optimization variables:
 - $\pi_{i,n}$: transmit power of cell *i* on RB *n*
 - $\theta_{k,n}$: percentage of time UE k is associated with RB n
- Signal to Interference and Noise Ratio (SINR):

$$\sigma_{k,i,n} = \frac{\pi_{i,n} G_{k,i,n}}{N_0 + \sum_{i' \neq i} \pi_{i',n} G_{k,i',n}} \tag{1}$$

Peak rate of UE k associated with RB n on cell i:

$$\rho_{k,i,n} = \log\left(1 + \sigma_{k,i,n}\right) \tag{2}$$

• Objective function:

$$\eta = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}(i)} \log \left(\sum_{n \in \mathcal{N}} \theta_{k,n} \cdot \log \left(1 + \sigma_{k,i,n} \right) \right)$$
(3)

IRISA, Rennes, November 13, 2015

- Optimization variables:
 - $\pi_{i,n}$: transmit power of cell *i* on RB *n*
 - $\theta_{k,n}$: percentage of time UE k is associated with RB n
- Signal to Interference and Noise Ratio (SINR):

$$\sigma_{k,i,n} = \frac{\pi_{i,n} G_{k,i,n}}{N_0 + \sum_{i' \neq i} \pi_{i',n} G_{k,i',n}}$$
(1)

Peak rate of UE k associated with RB n on cell i:

$$\rho_{k,i,n} = \log\left(1 + \sigma_{k,i,n}\right) \tag{2}$$

• Objective function:

$$\eta = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}(i)} \log \left(\sum_{n \in \mathcal{N}} \theta_{k,n} \cdot \log \left(1 + \sigma_{k,i,n} \right) \right)$$
(3)

IRISA, Rennes, November 13, 2015

- Optimization variables:
 - $\pi_{i,n}$: transmit power of cell *i* on RB *n*
 - $\theta_{k,n}$: percentage of time UE k is associated with RB n
- Signal to Interference and Noise Ratio (SINR):

$$\sigma_{k,i,n} = \frac{\pi_{i,n} G_{k,i,n}}{N_0 + \sum_{i' \neq i} \pi_{i',n} G_{k,i',n}}$$
(1)

Peak rate of UE k associated with RB n on cell i:

$$\rho_{k,i,n} = \log\left(1 + \sigma_{k,i,n}\right) \tag{2}$$

Objective function:

$$\eta = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}(i)} \log \left(\sum_{n \in \mathcal{N}} \theta_{k,n} \log \left(1 + \sigma_{k,i,n} \right) \right)$$
(3)

IRISA, Rennes, November 13, 2015

Optimization variables:

- $\pi_{i,n}$: transmit power of cell *i* on RB *n*
- $\theta_{k,n}$: percentage of time UE k is associated with RB n
- Signal to Interference and Noise Ratio (SINR):

Sum over all the cells and all UEs
• Peak late of UE k associated with RB n on cell i:

$$\rho_{k,i,n} = \log(1 + \sigma_{k,i,n})$$
 (2)
• Objective function:
 $\eta = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}(i)} \log\left(\sum_{n \in \mathcal{N}} \theta_{k,n} \cdot \log(1 + \sigma_{k,i,n})\right)$ (3)

Optimization variables:

- $\pi_{i,n}$: transmit power of cell *i* on RB *n*
- $\theta_{k,n}$: percentage of time UE k is associated with RB n
- Signal to Interference and Noise Ratio (SINR):

Optimization variables:

- $\pi_{i,n}$: transmit power of cell *i* on RB *n*
- $\theta_{k,n}$: percentage of time UE k is associated with RB n
- Signal to Interference and Noise Ratio (SINR):

Problem Decomposition

Optimal solution to the resource and power allocation problem

Problem Decomposition

Problem Decomposition

Problem Decomposition

Problem Decomposition

Optimal solution to the resource and power allocation problem

SIRISA

Centralized Power Allocation Problem

Variable change:

$$\widehat{\pi}_{i,n} = \log(\pi_{i,n}), \ \forall i \in \mathcal{I}, \forall n \in \mathcal{N}.$$
(4)

Solved using Lagrange duality properties⁸

- Constraints are transferred to the objective
- Primal and dual optimization problems

Primal iterations of the subgradient projection method:

$$\widehat{\pi}_{i,n}(t+1) = \widehat{\pi}_{i,n}(t) + \delta(t) \times \frac{\partial L}{\partial \widehat{\pi}_{i,n}}, \forall i \in \mathcal{I}, \forall n \in \mathcal{N}$$
(5)

⁸M. Yassin et al. "Centralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks". In: Submitted for publication in IFIP Networking Conf. Vienna, 2016.

Centralized Power Allocation Algorithm

1: Initialization: set
$$t = t_{primal} = t_{dual} = 0$$
, and $\pi_{i,n}(0) \ge \pi_{min}$.
2: Set $\lambda_{k,i,n}(0)$ and $\nu_i(0) \ge 0$
3: $(\widehat{\pi}^*(t+1), \widehat{\rho}^*(t+1)) \leftarrow \text{PRIMALPROBLEM}(\nu^*(t), \lambda^*(t))$
4: $(\nu^*(t+1), \lambda^*(t+1)) \leftarrow \text{DUALPROBLEM}(\widehat{\pi}^*(t+1), \widehat{\rho}^*(t+1))$
5: if $(\Delta \widehat{\pi}^*(t+1) > \epsilon)$ or $(\Delta \widehat{\rho}^*(t+1) > \epsilon)$ or $(\Delta \nu^*(t+1) > \epsilon)$
or $(\Delta \lambda^*(t+1) > \epsilon)$ then
6: $t \leftarrow t+1$
7: go to 3

8: end if

Centralized Power Allocation Algorithm

Primal variables: $\widehat{\pi}, \widehat{
ho}$ Dual variables: u, λ

1: Initialization: set
$$t = t_{primal} = t_{dual} = 0$$
, and $\pi_{i,n}(0) \ge \pi_{min}$.

2: Set
$$\lambda_{k,i,n}(0)$$
 and $\nu_i(0) \ge 0$
3: $(\widehat{\pi}^*(t+1), \widehat{\rho}^*(t+1)) \leftarrow \text{PRIMALPROBLEM}(\nu^*(t), \lambda^*(t))$
4: $(\nu^*(t+1), \lambda^*(t+1)) \leftarrow \text{DUALPROBLEM}(\widehat{\pi}^*(t+1), \widehat{\rho}^*(t+1))$
5: if $(\Delta \widehat{\pi}^*(t+1) > \epsilon)$ or $(\Delta \widehat{\rho}^*(t+1) > \epsilon)$ or $(\Delta \nu^*(t+1) > \epsilon)$
or $(\Delta \lambda^*(t+1) > \epsilon)$ then

6:
$$t \leftarrow t+1$$

8: end if

Centralized Power Allocation Convergence

Convergence of the primal variables $\hat{\pi}_{i,1}$

Figure 9: Convergence of the primal variables $\hat{\pi}_{i,n}$

Optimal solution to the power allocation problem

Solution to the Resource Allocation Problem

Theorem

The optimal solution to the resource allocation problem in cell *i* is: $\theta_{k,n}^{\star} = \frac{1}{\max(|\mathcal{K}(i)|,|\mathcal{N}|)}, \forall k \in \mathcal{K}(i), \forall n \in \mathcal{N},$ $|\mathcal{K}(i)|$: number of active UEs in cell *i*, $|\mathcal{N}|$: number of available RBs in cell *i*.

Example:
$$|\mathcal{K}(i)| < |\mathcal{N}| \Rightarrow \theta_{k,n}^{\star} = \frac{1}{|\mathcal{N}|}$$
.

Decentralized Power Allocation

Multi-player game where the players are the cells
Utility function U_i for cell i:

$$U_i = \sum_{k \in \mathcal{K}(i)} \sum_{n \in \mathcal{N}} \log \left(\log \left(1 + \sigma_{k,i,n} \right)
ight)$$

- A Nash Equilibrium (NE) exists
- Subgradient projection method

Decentralized Power Allocation

Centralized power allocation:

$$\eta_1 = \sum_{i \in \mathcal{I}} \sum_{k \in \mathcal{K}(i)} \sum_{n \in \mathcal{N}} \log \left(\log \left(1 + \sigma_{k,i,n} \right) \right)$$

Multi-player game where the players are the cells

Utility function U_i for cell i:

$$U_i = \sum_{k \in \mathcal{K}(i)} \sum_{n \in \mathcal{N}} \log \left(\log \left(1 + \sigma_{k,i,n} \right)
ight)$$

- A Nash Equilibrium (NE) exists
- Subgradient projection method

Introduction Comparison Centralized vs. Decentralized Autonomous ICIC Cooperative ICIC Conclusion

Decentralized Power Allocation Convergence⁹

- Optimization variables: $\pi_{i,n}$
- Cluster of seven adjacent cells

Figure 10: Optimization variables $\pi_{i,1}$

Figure 11: $\Delta \pi_i$ versus number of iterations

⁹M. Yassin et al. "Centralized versus Decentralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks". In: *Submitted for publication in IEEE Trans. Wireless Commun.* (2015).

Comparison with State-of-the-Art Approaches

Compared techniques:

• Reuse-1, reuse-3, FFR, SFR, centralized, and decentralized

Figure 12: System throughput comparison Figure 13: Spectral efficiency comparison

- The centralized power allocation outperforms the other approaches
- Centralized approach \Rightarrow high processing load and high complexity

Introduction

- 2 ICIC Techniques Comparison
- 3 Centralized versus Decentralized ICIC
- 4 Autonomous ICIC
- 5 Cooperative ICIC

6 Conclusion

- \blacksquare Self-organized networks \Rightarrow less signaling messages
- Overcome the limitations of static ICIC techniques
 - Adjust resource allocation between cell zones¹⁰
 - No additional signaling load is generated
- Initial resource and power allocation:

¹⁰M. Yassin et al. "Non-Cooperative Inter-Cell Interference Coordination Technique for Increasing Throughput Fairness in LTE Networks". In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

- \blacksquare Self-organized networks \Rightarrow less signaling messages
- Overcome the limitations of static ICIC techniques
 - Adjust resource allocation between cell zones¹⁰
 - No additional signaling load is generated
- When BR UEs are unsatisfied:

¹⁰M. Yassin et al. "Non-Cooperative Inter-Cell Interference Coordination Technique for Increasing Throughput Fairness in LTE Networks". In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

- \blacksquare Self-organized networks \Rightarrow less signaling messages
- Overcome the limitations of static ICIC techniques
 - Adjust resource allocation between cell zones¹⁰
 - No additional signaling load is generated
- When BR UEs are unsatisfied:

¹⁰M. Yassin et al. "Non-Cooperative Inter-Cell Interference Coordination Technique for Increasing Throughput Fairness in LTE Networks". In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

- \blacksquare Self-organized networks \Rightarrow less signaling messages
- Overcome the limitations of static ICIC techniques
 - Adjust resource allocation between cell zones¹⁰
 - No additional signaling load is generated
- When GR UEs are unsatisfied:

¹⁰M. Yassin et al. "Non-Cooperative Inter-Cell Interference Coordination Technique for Increasing Throughput Fairness in LTE Networks". In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

- Self-organized networks \Rightarrow less signaling messages
- Overcome the limitations of static ICIC techniques
 - Adjust resource allocation between cell zones¹⁰
 - No additional signaling load is generated
- When GR UEs are unsatisfied:

¹⁰M. Yassin et al. "Non-Cooperative Inter-Cell Interference Coordination Technique for Increasing Throughput Fairness in LTE Networks". In: IEEE 81st Vehicular Technology Conf. Glasgow, 2015.

Autonomous ICIC Algorithm

- 1: Allocate RBs and power according to SFR
- 2: Every T TTIs:

3: if
$$(\overline{R}_{GR}\,-\,\overline{R}_{BR}>\Delta_{th})$$
 then

- 4: Borrow the RB with the highest CQI from GR to BR zone
- 5: else if $(\overline{R}_{BR} \overline{R}_{GR} > \Delta_{th})$ then
- 6: Borrow the RB with the lowest CQI from BR to GR zone 7: else
- 8: Keep the same RB distribution
- 9: end if

Throughput Cumulative Distribution Function

Seven adjacent cells with 10 active UEs per cell

Figure 14: Throughput cumulative distribution function

Negative impact of single cell resource and power allocation¹¹
 Autonomous ICIC: lowest CDF for throughput less than 1 Mbit/s

¹¹T.Q.S. Quek, Zhongding Lei, and Sumei Sun. "Adaptive Interference Coordination in Multi-Cell OFDMA Systems". In: IEEE 20th Int. Symp. Personal, Indoor and Mobile Radio Communications. 2009.

IRISA

Fairness Index

Jain's fairness index: • $J(R_1, ..., R_K) = \frac{(\sum_{k=1}^K R_k)^2}{K \cdot \sum_{k=1}^K R_k^2}$

Figure 15: Fairness index versus UE distribution

FFR and SFR performance depends on UE distributionAutonomous ICIC shows the highest fairness index

Fairness Index

Figure 15: Fairness index versus UE distribution

FFR and SFR performance depends on UE distribution Autonomous ICIC shows the highest fairness index

I Introduction

- 2 ICIC Techniques Comparison
- 3 Centralized versus Decentralized ICIC
- 4 Autonomous ICIC
- 5 Cooperative ICIC

6 Conclusion

Cooperative Resource and Power Allocation

- X2 interface interconnects adjacent cells
- Signaling messages concerning resource usage
- Compromise between centralized and decentralized approaches

Figure 16: LTE/LTE-A system architecture

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send Release messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - · Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send *Release* messages to the neighbors
- Second phase (autonomous)
 - Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send Release messages to the neighbors
- Second phase (autonomous)
 - · Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send Release messages to the neighbors
- Second phase (autonomous)
 - · Locally adjust resource allocation between cell zones

- First phase (collaborative)
 - Request information about neighbors satisfaction
 - Send Stop messages to the neighbors
 - Adjust power allocation if needed
 - Send Release messages to the neighbors
- Second phase (autonomous)
 - · Locally adjust resource allocation between cell zones

UE Satisfaction

• Satisfaction function: $S_k(t) = 1 - \exp(-\frac{R_k(t)}{R_s})$

Figure 17: UE satisfaction versus network load

Percentage of unsatisfied UEs increases with network loadCooperative ICIC: lowest percentage of unsatisfied UEs

Energy Efficiency

Crucial need for green networks

Figure 18: Energy efficiency versus UE distribution

Performance comparable to SFR and autonomous ICIC

Overview

I Introduction

- 2 ICIC Techniques Comparison
- 3 Centralized versus Decentralized ICIC
- 4 Autonomous ICIC
- 5 Cooperative ICIC

IRISA

Summary

- Resource and power allocation in wireless networks
- Dense cellular networks with aggressive frequency reuse \Rightarrow ICI
- Overview and classification of ICIC techniques
 - · Cooperation, objectives, tools, technology
 - Quantitative comparisons
- Centralized multi-cell joint resource and power allocation
- Decentralized power allocation based on game theory
- Autonomous and cooperative ICIC techniques
- System level simulations and comparisons

SIRISA

Summary

Centralized versus decentralized ICIC

- Centralized: optimal solution, high processing load, high complexity
- · Decentralized: near-optimal solution and lower complexity

Autonomous ICIC techniques

- Efficient for self-organizing networks
- Do not generate additional signaling messages
- Improve static ICIC techniques performance
- Cooperative ICIC techniques
 - Compromise between centralized and decentralized approaches
 - Make use of the signaling messages between adjacent cells

SIRISA

Short-Term Perspectives

- Interference-aware heterogeneous wireless networks
 - Co-tier interference
 - Cross-tier interference
- Enhanced ICIC for downlink/uplink imbalance problems
 - Downlink/uplink decoupling
 - Handover more UEs to the small cells

IRISA

Long-Term Perspectives

- Compromise between spectral efficiency and energy efficiency
 - Cannot be maximized simultaneously
 - Crucial need for future green networks
- Practical implementation of ICIC algorithms
 - · Limitations: latency, processing time, reliability
 - Functionality split between access and core networks

IRISA