Contributions to the Design of Novel Hand-based Interaction Techniques for Virtual Environments

Merwan Achibet

Advisors
Maud Marchal
Anatole Lécuyer
Using our hands in virtual environments

- **The hand in the real world**
 - Action
 - Strength or precision
 - High flexibility
 - Perception
 - Different scales
 - High sensitivity to touch

- **The hand in virtual environments**
Applications of hand-based interaction

Virtual prototyping

[Dai, 1996]
[Seth, 2006]

Virtual training

[Cornaglia, 2004]
[Dinsmore, 1997]

Dextrous interaction

[Cutler, 1997]
[Veit, 2008]
Context of hand-based interaction in VR

Virtual reality (VR)

Immersive computer simulations that users can interact with and perceive

3D interaction techniques

Methods allowing users to accomplish a task via the user interface

Haptic feedback

Sensory information relating to the sense of touch
Challenges of hand-based interaction

Challenge 1
Handling the many DoF of the hand

Challenge 2
Providing convincing haptic sensations

Degrees of freedom (DoF)
Independent parameters of a system defining its mechanical configuration
Related work – The human hand

- **Mechanics of the hand**
 - Highly articulated skeleton
 - Extrinsic muscles
 - 27 DoF in a small volume
 [ElKoura, 2003]

- **Function of the hand**
 - Depends on object shape
 - Depends on intended action

[Cutkosky, 1986]
Related work – Virtual hands

- **Rigid proxies**
 - Simple simulation
 - Limited to abstract interaction

- **Articulated rigid hands**
 - Enable grasping
 - Only simulate hard contacts

- **Deformable models**
 - Realistic interaction
 - Higher computational cost

Challenge 1

Handling the many DoF of the hand

References:
- Boeck, 2004
- Craig, 2009
- Jacobs, 2011
- Talvas, 2015
- Borst, 2005
- Maciel, 2004
Related work – Haptic hardware

Whole-hand
- **Desktop**
 - Geomagic
- **Mobile**
 - Haption

Multi-finger
- [Monroy, 2008]

Challenge 2
Providing convincing haptic sensations
Related work – Passive and pseudo-haptics

- **Passive haptic feedback**
 - Real objects to provide haptic cues
 - Elastic input devices
 - Less flexible than active haptics

- **Pseudo-haptics** [Lécuyer, 2000]
 - Leverages the visual dominance on the perception of physical properties
 - For hand-based interaction: alter the motion of the user’s hand
Objective: Improve hand-based interaction in virtual environments

Contributions

Axis I: Improving the control of articulated hands

Axis II: Improving feedback with passive and pseudo-haptics

- **DoF reduction**
- **DoF separation**
- **Whole-hand**
- **Grasping**
- **Multi-finger**

- **DoF reduction**
- **DoF separation**
- **Passive**
- **Active**
- **Pseudo**

- **Virtual environment**

Challenge 1: Handling the many DoF of the hand

Challenge 2: Providing convincing haptic sensations

User
Axis I: Improving the control of articulated hands

DoF reduction DoF separation
Contribution #1: THING

Axis I: Improving the control of articulated hands

DoF reduction
A multi-touch interaction technique for controlling 3D hand models

• **Approach**
 – **Reduce DoF** of hand models to couple them to **common input devices**

• **THING** *(in reference to the Addams Family character)*
 – Multi-touch control for animating hand models
 – Fingers animated via gestures on the tablet
 – Global position controlled via two variants, **mobile** and **desktop**
Animating the fingers

For each fingertip, $p_n = B(f_n) + a_n \cdot ((c_1 - b_1) \times (c_2 - b_2))$

Flexion

$\Delta f = |d_f| \cdot \text{sign}(d \cdot s) \cdot G(v_f)$

Adduction

$a = \text{sign}(d \cdot s^\perp) \cdot |d_a|$
Moving the hand: two variants

MobileTHING

- All DoF integrated on the tablet
- Move and tilt controls

DesktopTHING

- Position DoF delegated to traditional mouse controls
Example

- Integrated in the Blender 3D editor
- Animation produced in ~7 minutes
Objective
- Compare MobileTHING to traditional techniques of computer animation

Task
- Reproduce predefined postures

3 techniques × 4 poses × 5 repetitions × 12 participants

Computer mouse **Data glove (mocap)** **MobileTHING**
User study #1

- **Performance**
 - Glove and MobileTHING outperform Mouse

- **Subjective questionnaire**
 - No significant differences for MobileTHING in terms of ease, speed, comfort, fatigue
 - Glove did not fit 4 participants out of 16
User study #2

Objective
- Compare MobileTHING vs. DesktopTHING

3 techniques \(\times \) 3 poses \(\times \) 5 repetitions \(\times \) 12 participants

Performance
- Both THING variants outperform Mouse
- No differences between DesktopTHING and MobileTHING

Appreciation
- DesktopTHING for precision, fatigue
- Overall preference for DesktopTHING
THING: Multi-touch technique for manipulating 3D hand models

• **Common** low-cost input device

• The user’s gestures on the tablet are reflected on the hand models

• User studies
 – Performance similar to data glove, better than traditional computer mouse
 – Desktop version preferred over mobile variant, similar performance
Contribution #2: DesktopGlove

Axis I: Improving the control of articulated hands
Separating the DoF of virtual hands for haptic manipulation

- **Approach**
 - Separate DoF between two distinct interfaces

- **DesktopGlove**
 - Distribute the DoF of one virtual hand between both user’s hands
 - Global wrist control on one side, Local finger control on the other
System

Global motion

Interface
Modified DigiHaptic [Casiez, 2003]

Input
Finger flexion

Output
Local grasping force

Interface
Common haptic arm

Input
Position and orientation

Output
Global forces (collisions, weight)

Local motion
• **Pink arrows**: forces sent to the fingers (left hand)
• **Orange arrow**: force sent to the wrist (right hand)
Conclusion

DesktopGlove: Separate the degrees of freedom of one virtual hand between both user’s hands

- **Exhaustive haptic feedback** (local + global forces) with **accessible** interfaces

- User studies
 - Separated control: no significant negative effect on performance, preferred by users
 - Separated feedback: no significant negative effect
 - User preference:
 - global controls with dominant hand,
 - full force feedback on both hands
Axis I: Improving the control of articulated hands

DoF reduction DoF separation
Axis II: Improving feedback with passive and pseudo-haptics

User

Interface

Haptic feedback

Virtual environment

Interaction technique

Whole-hand
Grasping
Multi-finger

Level of detail

Axis II: Improving feedback with passive and pseudo-haptics
Contribution #3: Elastic-Arm

Axis II: Improving feedback with passive and pseudo-haptics

Whole-hand
Human-scale haptic feedback for augmenting 3D interaction

• **Approach**
 – Leverage **passive components** to design **lightweight and mobile** haptic interfaces

• **Elastic-arm**
 – Elastic armature providing egocentric force feedback to the hand
 – Several interaction techniques based on a stretchable arm
System

- **Two states**
 - Relaxed (feedback on)
 - Extended (feedback off)

- **Main parameters**
 - Reach $r = h - s$
 - Rest length d_e
 - Max. extension d_m
Interacting through the Elastic-Arm

- Navigation
- Exploration
- Manipulation
Navigation

- **Stretchable arm to navigate towards out-of-reach objects**
 - *Go-Go*: extension of the user’s arm [Poupyrev, 1996]
 - *Bubble*: hybrid *position/rate control* [Dominjon, 2005]
• Simulate collisions with the Elastic-Arm

 - *Redirected touching*: warp virtual hand to simulate shapes [Kohli, 2010]
 - Match the rubber band extension with virtual collisions

\[h_v = s + d_o \min(1, \frac{|r|}{d_e}) \]

Virtual hand position \(h_v \)

Distance to facing obstacle

Shoulder position \(d_o \)

\(s \)

\(r \)

\(d_e \)

= 1 when the cable is extended

Feedback

Collision!
Simulating different levels of effort with the Elastic-Arm

- Inspired by pseudo-haptic stiffness [Lécuyer, 2000]
- First, match the rubber band extension
- Then, scale the Control/Display ratio

\[h_v = s + d_o \min(1, \frac{|r|}{d_e}) + \frac{|r| - d_e}{d_m - d_e} k \]

High \(k \) = low stiffness
Low \(k \) = high stiffness

Same as with redirected touching
Extension beyond rest length
Object-dependent Control/Display ratio
Alternative designs

Layers of stiffness

- Rubber bands with different lengths
- Each band matches a different event

Weight

- Rubber bands attached to the waist
- Pseudo-haptic simulation of weight
Conclusion

Elastic-Arm: Body-mounted armature providing egocentric force feedback to the user’s hand

Proposed 3D interaction techniques:

- Navigation/selection by **stretching the arm**
- Perceptual effects: **collisions** and **different levels of effort**
- Alternative designs: **layers of stiffness** and **weight**
Contribution #4 – The Virtual Mitten

Axis II: Improving feedback with passive and pseudo-haptics
Haptic manipulation of virtual objects using grip force

- **Approach**
 - Simulate grasping sensations with passive devices providing grip forces

- **Virtual mitten**
 - Real hands represented by simplified mittens
 - Elastic devices to control the mitten and deliver grip force
 - Visual feedback and pseudo-haptic effect to vary perceptions
System

Interface

Elastic device

Control scheme

Compression

\[r \quad \begin{array}{c}
\text{Compression} \\
\end{array} \quad \begin{array}{c}
0 \\
\text{r}_{\text{folding}} \\
\text{r}_{\text{grasping}} \\
1
\end{array} \]
System

Feedback

Boolean

Progressive
Objective: simulate different levels of effort for different virtual objects

Object A

- \(r \) (0)
- \(r_{\text{folding}} \)
- \(r_{\text{grasping}} \) (1)

Object B

- \(r \) (0)
- \(r_{\text{folding}} \)
- \(r_{\text{grasping}} \) (1)
• Bimanual cooking scenario
• Stiffness of the fruits, weight of the glass, different interactive parts
Objective
- Evaluate if users can perceive levels of effort
- Compare *Boolean* and *Progressive* feedback

Task
- Perform various manipulation tasks with pairs of objects
 - « Which object required more effort? »

2 types of feedback \times 4 tasks \times 3 repetitions \times 12 participants

With Progressive feedback
- Significantly more correct answers
- Compression applied closer to the grasping threshold

[Bloomfield, 2003]
User study #2

- **Objective**
 - Determine the resolution of the effect

- **Task**
 - *Rotating the cylinder* with the *Progressive* feedback

- **Just Noticeable Difference:**
 minimum difference between stimuli that can be discriminated

- **Four** different levels of effort
Multi-finger extension

- **ElasticGlove**
 - Modular passive exoskeleton
 - Constrains each finger individually

- **Pseudo-haptic simulation of heterogeneous materials**
 - Finger-specific Control/Display ratio
 - Haptic data embedded into mesh
Examples

Medical palpation

Piano Learning
Conclusion

Virtual Mitten: Interaction metaphor based on an elastic device

- **Lightweight elastic** input device
- Pseudo-haptic effect to simulate different levels of effort

- User studies
 - *Progressive* visual feedback provided better results
 - Can simulate up to 4 levels of effort

ElasticGlove: Extension to multi-finger interaction with passive exoskeleton
General conclusion

• **Objective**
 – Improve hand-based interaction in virtual environments

• **Contributions**
 – **Axis I:** Improving the control of articulated hand models
 • **DoF reduction** and multi-touch input
 • **DoF separation** between two haptic devices
 – **Axis II:** Combining passive and pseudo-haptics
 • Body-mounted elastic interface for **whole-hand** interaction
 • Elastic grip force device for simulating **grasping**
 • Passive exoskeleton for **multi-finger** manipulation
Future work

Axis I

- **Additional input to handle more DoF**
 - Force sensing for THING,
 - Greater number of fingers for DesktopGlove

- **Bimanual interaction**
 - Parallel hand animation for THING
 - Bimanual interaction techniques for DesktopGlove

Axis II

- **Low-cost tracking**
 - Pressure sensing for Virtual Mitten, bend sensing for ElasticGlove

- **Evaluate passive interfaces vs. active counterparts**
 - Elastic-Arm vs. Desktop interfaces
 - ElasticGlove vs. active exoskeletons
Perspectives

• **Software control of the missing DoF**
 – Inspiration from robotics (grasp planning), computer animation (shape matching, behavioral data)

• **Pseudo-haptic feedback for the simulation of complex sensations**
 – Multiple stimuli (multi-finger, bimanual)
 – Complex environments

• **Combining different haptic modalities**
 – Design a passive exoskeleton from passive components
 – Active/Passive/Crossmodal feedback combinations
Publications

• International conferences

• National conferences

• Submitted

• Patents
Contributions to the Design of Novel Hand-based Interaction Techniques for Virtual Environments

Thank you for your attention