

Contributions to dense visual tracking and visual servoing using robust similarity criteria

Bertrand Delabarre

Lagadic Team

Inria Rennes Bretagne Atlantique & Irisa

http://www.irisa.fr/lagadic
December 23rd, 2014

Context Robotics

More and more robots

Challenges

Our contributions

Tracking algorithm

Visual servoing

- **Use of robust similarity measures** (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

- **Use of robust similarity measures** (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

DENSE APPROACHES

Our contributions

Tracking algorithm

Visual servoing

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

DENSE APPROACHES

(Dis)Similarity functions

Sum of Squared Differences (SSD)

[Lucas, 81] [Baker, 04] [Gay-Bellile, 10]

Lack of robustness

Sum of Conditional Variance (SCV)

[Richa, 11]

Normalized Cross Correlation (NCC)

[Irani, 98] [Scandaroli, 12]

Robustness to global variations

Mutual Information (MI) [Shannon, 48] [Viola, 97] [Dame, 12]

Robustness to local variations

(Dis)Similarity functions | Robustness analysis

Part I Visual Tracking

Tracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

Visual servoing

- Use of robust similarity measures
 (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

DENSE APPROACHES

Camera

Robot

Differential Template Tracking [Baker, 04]

Dense visual tracking

No use of geometrical features

[Simon, 00]

[Petit, 13]

Differential Template Tracking [Baker, 04]

Dense visual tracking

- No use of geometrical features
- Find the displacement that optimizes a (dis)similarity function

$$\widehat{\mathbf{u}} = \arg\min_{\mathbf{u}} \sum_{k=1}^{N_{\mathbf{x}}} f(I^*(\mathbf{x}_k), I(w(\mathbf{x}_k, \mathbf{u})))$$

- Hypothesis: the displacement between two images is small
 - ullet The previous estimated parameters old u are refined to estimate the new parameters

Differential template tracking | Classical SSD approach

[Baker, 04]

- Sum of Squared Differences (SSD)
 - Difference between two sets of pixels

$$SSD = \sum_{l=1}^{N} \left[I(w(\mathbf{x}_k, \mathbf{u})) - I^*(\mathbf{x}_k) \right]^2$$

Simple optimization over the parameters of a displacement function

$$\widehat{\mathbf{u}} = \arg\min_{\mathbf{u}} \sum_{l=1}^{N} \left[I(w(\mathbf{x}_k, \mathbf{u})) - I^*(\mathbf{x}_k) \right]^2$$

- **Easy** to use
- Very poorly robust to perturbations

Sum of conditional variance | Template adaptation

[Richa, 11]

Sum of conditional variance

$$SCV = \sum_{l=1}^{N} \left[I(w(\mathbf{x}_k, \mathbf{u})) - \widehat{I}^*(\mathbf{x}_k) \right]^2$$

Template histogram adaptation

$$\widehat{I}^*(j) = \sum_{i} i \frac{p_{II^*}(i,j)}{p_{I^*}(j)}$$

- Probability density functions
 - $p_{II^*}(i,j) = p(I(x) = i, I^*(x) = j)$ = $\frac{1}{n \times m} \sum_{\mathbf{x}} \alpha(I(\mathbf{x}) - i)\alpha(I^*(\mathbf{x}) - j)$

 $\alpha(u) = 1$ if and only if u = 0

Poorly robust to local perturbations

Current view

Reference template

Adapted template

Mutual information | MI

[Dame, 11]

Quantity of information shared by two signals

$${
m MI}(I,I^*)={
m H}(I)+{
m H}(I^*)-{
m H}(I,I^*)$$
 [Shannon, 1948]

Entropy computation

$$H(I) = -\sum_{r=0}^{N_{\mathbf{x}}} p_I(r) \log (p_I(r))$$

Histogram binning

Multimodality

LE

Map

Satellite images

- Very robust to both global and local variations
- Complex to useComputationally expensive

Visual Tracking | Displacement model

Translation

sRt

$$\mathbf{x} \in \mathbb{R}^2 \quad \mathbf{x} \in SL(2) \times \mathbb{R}^2 \quad \mathbf{x} \in \mathbb{R}^6$$

More accuracy

More freedom

Homography

More freedom

Thin Plate Splines

 $\mathbf{x} \propto N_c$

Part I Visual Tracking

Tracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

Visual servoing

- Use of robust similarity measures
 (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

[Delabarre, IEEE IROS' 13]

Tracking planes [Benhimane, 06]

- From a camera pose, homographies are computed for every planes considered
- Minimization of the Sum of Squared Differences

$$\widehat{\mathbf{r}} = \arg\min_{\mathbf{r}} \sum_{l=1}^{N} \left[I(w(\mathbf{x}_k, \mathbf{r})) - I^*(\mathbf{x}_k) \right]^2$$

- Including Euclidean constraints allows to add several planes to the same optimization loop
- Several drawbacks
 - No adaptation to a dynamic model
 - No robustness of the SSD

3 trackers

1 tracker

Model-based tracking

Common for every plane in the model

$$\mathbf{H}_l(\mathbf{T}(\mathbf{r})) = \mathbf{c}\mathbf{R}_o + \mathbf{c}\mathbf{t}_o \mathbf{c}_{\mathbf{d}_l}$$

Different for each plane in the model

where ${}^{\mathbf{c}}\mathbf{n} = {}^{\mathbf{c}}\mathbf{R}_{\mathbf{o}}{}^{\mathbf{o}}\mathbf{n}$, sim. ${}^{\mathbf{c}}\mathbf{d}$

3D pose estimation

$$\hat{\mathbf{r}} = \arg\min_{\mathbf{r}} f(I^*, w(I, \mathbf{r}))$$

Dynamic adaptation to model changes

Sum of conditional variance | Adapting the current view

Differential tracking

$$\widehat{\mathbf{r}} = rg \min_{\mathbf{r}} \sum_{l=1}^{N_l} \sum_{k=1}^{N_{\mathbf{x}}} \left[I^*(\mathbf{x}_k) - \widehat{I}(w_l)(\mathbf{x}_k, \mathbf{r}) \right]^2$$

Different for each plane in the model

Common for every plane in the model

- Image adaptation
 - \hat{I} is the current view seen in the same conditions as I^*

$$\hat{I}(\mathbf{x}) = \mathcal{E}(I^*(\mathbf{x}) \mid I(\mathbf{x}))$$
 where $\hat{I}(j) = \sum_{i} i \frac{p_{II^*}(i,j)}{p_I(j)}$

• Inverse compositional optimization scheme [Baker, 04]

$$\widehat{\Delta \mathbf{r}} = \arg\min_{\mathbf{\Delta r}} \sum_{l=1}^{N_l} \sum_{k=1}^{N_{\mathbf{x}}} \left[I^* (\mathbf{w}_l) (\mathbf{x}_k, \mathbf{\Delta r})) - \widehat{I} (\mathbf{w}_l) (\mathbf{x}_k, \mathbf{r}) \right]^2$$

Computation of the the displacement update

$$\mathbf{J}(\Delta\mathbf{r}) = \frac{\partial I^*}{\partial w_l} \frac{\partial w_l}{\partial \mathbf{T}} \frac{\partial \mathbf{T}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \Delta \mathbf{r}} = \mathbf{J}_{I^*} \mathbf{J}_{w_l} \mathbf{J}_{\mathbf{T}} \mathbf{J}_{\mathbf{x}} (\Delta \mathbf{r})$$

$$\widehat{\Delta \mathbf{r}} = -(\mathbf{J}_{I^*} \mathbf{J}_{w_l} \mathbf{J}_{\mathbf{T}} \mathbf{J}_{\mathbf{x}} (\mathbf{0}))^+ SCV(\mathbf{0})$$

Mutual information | MI

Quantity of information shared by two signals

$$MI(I, I^*) = H(I) + H(I^*) - H(I, I^*)$$

Complete formulation

$$MI = \sum_{r,t} p_{II^*}(r,t) \left(\frac{p_{II^*}(r,t)}{p_I(r)p_{I^*}(t)} \right)$$

Maximization over SE(3)

$$\widehat{\Delta \mathbf{r}} = \arg \max_{\Delta \mathbf{r}} MI(I(w_l(\mathbf{x}, \Delta \mathbf{r})), I^*(\mathbf{x}))$$

Computation of the gradient and Hessian

$$\mathbf{G}_{MI} = \sum_{r,t} \left(\frac{\partial p_{II^*}}{\partial \Delta \mathbf{r}} \right) \left(1 + \log \left(\frac{p_{II^*}}{p_{I^*}} \right) \right)$$

$$\mathbf{H}_{MI} = \sum_{r,t} \left(\frac{\partial p_{II^*}}{\partial \Delta \mathbf{r}} \right)^{\top} \frac{\partial p_{II^*}}{\partial \Delta \mathbf{r}} \left(\frac{1}{p_{II^*}} - \frac{1}{p_{I^*}} \right) + \left(\frac{\partial^2 p_{II^*}}{\partial \Delta \mathbf{r}^2} \right) \left(1 + \log \frac{p_{II^*}}{p_{I^*}} \right)$$

Minimizing the gradient
$$\widehat{\Delta \mathbf{r}} = -\mathbf{H}_{MI}^{-1}\mathbf{G}_{MI}^{ op}$$

Convergence analysis | SSD vs SCV vs MI

Nominal conditions:

$$\sigma_t = 0$$

$$\sigma_t = 0.002$$

$$\sigma_t = 0.02$$

$$\sigma_t = 0.05$$

Convergence analysis | SSD vs SCV vs MI

Global variations:

$$\sigma_t = 0$$

$$\sigma_t = 0.002$$

$$\sigma_t = 0.02$$

$$\sigma_t = 0.05$$

Convergence analysis | SSD vs SCV vs MI

Local variations:

Experiments

Nominal conditions

No perturbation

MI and SCV very effective

Light Variations

Global perturbation

MI and SCV not impacted

Specular spots

Local perturbation

MI not impacted SCV impacted and fails

Part I Visual Tracking

Tracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

Visual servoing

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

Camera

[Delabarre, IEEE ICIP' 14]

Non-rigid displacement | Thin-Plate Splines [Arad, 95]

[Gay-bellile, 2008]

$$w(\mathbf{x}, \mathbf{u}) = \underbrace{\begin{pmatrix} a_0 & a_1 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a_2 \\ a_5 \end{pmatrix}}_{\text{Affine warp}} \quad \textbf{+} \quad \text{Deformation term}$$

Non-rigid displacement | Thin-Plate Splines

Thin-Plate Spline:

$$w(\mathbf{x}, \mathbf{u}) = \underbrace{\begin{pmatrix} a_0 & a_1 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a_2 \\ a_5 \end{pmatrix}}_{\text{Affine warp}} + \underbrace{\sum_{k=1}^{N_p} \begin{pmatrix} w_x^k \\ w_y^k \end{pmatrix}}_{\text{TPS kernel}} \phi(d^2(\mathbf{x}, \mathbf{c}_k))$$

Kernel function:

$$\phi(x) = \frac{x^{(4-p)} \log(x)}{\alpha} \xrightarrow{\qquad \alpha = 2} \qquad \phi(x) = \frac{1}{2} x^2 \log(x)$$

Warp parameters:

$$\mathbf{u}^{\top} = (a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5) \mathbf{w}_x^{\top} \ \mathbf{w}_y^{\top})$$

Affine warp

Deformation

Thin-Plate Splines | Derivation

• Warp parameters:
$$\mathbf{u}^{ op} = (a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5) \mathbf{v}_x^{ op} \mathbf{v}_y^{ op}$$

Affine warp Deformation

Derivation with relation to the parameters:

with:

$$\mathbf{J_A} = \begin{pmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{pmatrix}$$

$$\frac{\partial w}{\partial \mathbf{\Delta u}} = (\mathbf{J_A J_\Omega})$$

Affine parameters Deformation

Differential template tracking | SCV and MI

Differential template tracking

• SCV
$$\widehat{\mathbf{u}} = \arg\min_{\mathbf{u}} \sum_{i=1}^{N_{\mathbf{x}}} \left[I^*(\mathbf{x}_i) - \widehat{I}(w(\mathbf{x}_i, \mathbf{u})) \right]^2$$

$$\widehat{\Delta \mathbf{u}} = -\mathbf{J}^+(\mathbf{u}) \left[I^* - w(\widehat{I}, \mathbf{u}) \right] \quad \text{where} \quad \mathbf{J}(\mathbf{u}) = \nabla I^* \frac{\partial w}{\partial \mathbf{u}}$$

• MI $\widehat{\mathbf{u}} = \arg\max MI(I^*, w(I, \mathbf{u}))$ $\widehat{\Delta \mathbf{u}} = -\mathbf{H}_{MI}^{-1} \mathbf{G}_{MI}^{\top}$

- Same optimization schemes (here shown in forward form for clarity)
- Only one plane considered
- Computational differences lie in the warp derivations

Convergence domain analysis

No deformation:
 Extension:
 Light changes:
 Occlusion:

Experiments A few examples

Nominal conditions

Extension of the template

MI and SCV very effective

Nominal conditions

Compression of a paper with template

MI and SCV very effective

Depth approximation (original idea from [Malis, 07])

Low texture + specularity

MI not impacted SCV fails to register properly

Contributions | Visual Tracking

Tracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

- Dense algorithms
 - SCV-based
 - Simple to use (close to the SSD, few parameters)
 Robust to global perturbations
 - Impacted by local perturbations
 - MI-based
 - Robust to global and local perturbations
 - More complex to use (more parameters)

Part II | Visual Servoing

Tracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

Visual servoing

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

DENSE APPROACHES Camera Robot

Visual Servoing | Classical feature-based servoing

[Chaumette, Hutchinson, 06]

Similarity function

$$e = s(r) - s^*$$

Control law

$$\mathbf{v} = -\lambda \widehat{\mathbf{L}_{\mathbf{s}}}^+ (\mathbf{s}(\mathbf{r}) - \mathbf{s}^*)$$

 $\mathbf{L_s}$ is the interaction matrix linking the variations of \mathbf{S} in the image to the camera velocity

Part II | Visual Servoing

Tracking algorithm

- Robust model-based dense tracker >
- Robust non-rigid deposit tra

- **Use of robust similarity measures** (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

ENSE APPROACHES

Robot

Visual servoing

Visual Servoing | Photometric visual servoing

[Collewet, Marchand, 11]

Current view

Error Image

• Similarity function: SSD

$$\mathbf{e} = \mathbf{I}(\mathbf{r}) - \mathbf{I}^*$$

Control law

$$\mathbf{v} = -\lambda \widehat{\mathbf{L}_{\mathbf{I}}}^{+} (\mathbf{I}(\mathbf{r}) - \mathbf{I}^{*})$$

• ${f L_I}$ is the interaction matrix linking the variations of intensities of ${f I}({f r})$ to the camera velocity

Photometric visual servoing | Luminosity issue

When conditions change, the reference is not relevant anymore

 $\mathbf{I}(\mathbf{r})$

 $\mathbf{I}(\mathbf{r})$

Servoing fails if no robustness scheme is added

Value of SSD

Distance to the goal

Shape of the cost function

Part II | Visual Servoing

Tracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

[Delaha

[Delabarre, IEEE IROS' 12]

Visual servoing | Adapting SSD-based VS to SCV

Minimizing the SCV:

$$\widehat{\mathbf{r}} = \arg\min_{\mathbf{r}} \sum_{i=1}^{n \times m} \left[\widehat{I}(\mathbf{r})(\mathbf{x}_i) - I^*(\mathbf{x}_i) \right]^2$$

- Image adaptation:
 - \widehat{I} is the current image seen in the same conditions as the template I^*

$$\widehat{I}(\mathbf{x}) = \mathcal{E}(I^*(\mathbf{x}) \mid I(\mathbf{x}))$$
 where $\widehat{I}(j) = \sum_{i} i \frac{p_{II^*}(j,i)}{p_{I}(j)}$

Interaction matrix of the task evaluated at the desired position:

$$\frac{\partial I^*}{\partial t} = \mathbf{L}_{I^*} \mathbf{v}$$
$$= -\nabla I^* \mathbf{L}_{\mathbf{x}} \mathbf{v}$$

Control law (exponential decrease of the error):

$$\mathbf{v} = -\lambda \ \mathbf{L_{I^*}}^+ (\widehat{\mathbf{I}}(\mathbf{r}) - \mathbf{I^*})$$

SCV Nominal conditions

SCV Light Variations

Part II | Visual Servoing

Tracking algorithm

- Use of robust similarity measures
 (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

Camera

[Delabarre, IFAC SYROCO' 12]

Visual Servoing | Using the mutual information

[Dame, 11]

- Mutual information:
 Quantity of information shared by two signals. [Shannon, 1948]
- Similarity measure:
 - Difference of entropies

$$MI(I(\mathbf{r}), I^*) = H(I(\mathbf{r})) + H(I^*)$$
$$- H(I(\mathbf{r}), I^*)$$

Task:

$$\arg\min_{\mathbf{r}} \mathbf{L}_{MI} = \arg\min_{\mathbf{r}} \frac{\partial MI(I(\mathbf{r}), I^*)}{\partial \mathbf{r}}$$

Control law:

$$\mathbf{v} = -\lambda \mathbf{H}_{MI}^{-1} \mathbf{L}_{MI}$$

Visual servoing | From MI to NMI

- Classical mutual information: $MI(I(\mathbf{r}), I^*) = H(I(\mathbf{r})) + H(I^*) H(I(\mathbf{r}), I^*)$
- Problem: No fixed upper bound
- Our solution: use a normalized version (NMI)

$$NMI(I(\mathbf{r}),I^*) = \frac{H(I)+H(I^*)}{H(I(\mathbf{r}),I^*)}$$
 [Studholme, 99]

- Fixed bounds: 1 < NMI < 2
- More complexity induced by the division of entropies
- More robustness to overlapping situations
- Task:

$$\arg\min_{\mathbf{r}} \mathbf{L}_{NMI} = \arg\min_{\mathbf{r}} \frac{\partial NMI(I(\mathbf{r}), I^*)}{\partial \mathbf{r}} \qquad \mathbf{v} = -\lambda \mathbf{H}_{NMI}^{-1} \mathbf{L}_{NMI}$$

Control law:

$$\mathbf{v} = -\lambda \mathbf{H}_{NMI}^{-1} \mathbf{L}_{NMI}$$

NMI Nominal conditions

NMI Light variations

NMI Large occlusions

NMI Large occlusions

Nominal conditions

Presence of occlusions

Part II | Visual Servoing

Fracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

Camera

[Delabarre, IFAC SYROCO' 12]

Omnidirectional cameras | Another way to see the world

• Different types of omnidirectional sensors but one unified projection model

[Barreto, 01]

Computations done on the sphere

- Result: CSVS (Cartesian Spherical VS)
 - Better behaviour of the control law
 - Better estimation of the Jacobians
 - More accuracy
- Closer to the projection model
- More adapted image processing

Omnidirectional cameras | Another way to see the world

• Different types of omnidirectional sensors but one unified projection model

[Barreto, 01]

- Computations done on the sphere
- Result: CSVS (Cartesian Spherical VS)
 - Better behaviour of the control law
 - Better estimation of the Jacobians
 - More accuracy
- Closer to the projection model
- More adapted image processing
 - Gradient example

Results | Perturbed conditions

Part II | Visual Servoing

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors

- Dense visual servoing processes
 - SCV-based
 - Simple to use (close to the SSD, few parameters)
 Robust to global perturbations
 - Impacted by local perturbations
 - NMI-based
 - Robust to global and local perturbations
 - More complex to use (more parameters)

Conclusion

Tracking algorithm

- Use of robust similarity measures (SCV and MI)
- Robust model-based dense tracker
- Robust non-rigid dense tracker

- Use of robust similarity measures (SCV and NMI)
- Robust dense visual servoing
- Adaptation to omnidirectional sensors
- Dense algorithms, with no specific robustness schemes
- Robust (dis)similarity functions to achieve natural robustness
- Redefinition of the SCV to have a constant reference
- Model-based and non-rigid tracking algorithms
- Definition of a SCV-based visual servoing control scheme
- Adaptation of the MI-based visual servoing process to a normalized MI
- Extension of that technique to omnidirectional sensors

Perspectives

- Visual tracking:
 - Detect automatically models from a model bank
 - Study more adapted control points localizations for TPS displacement model
 - Extend the TPS warp to take into account more complex motions
 - Code optimizations (real-time tracking)
- Visual servoing:
 - Using the model-based tracker to perform visual servoing
 - Create a visual servoing process with relation to a deformable object
- Navigation:
 - Use of the SCV and NMI algorithms to perform navigation based on visual paths
 - UAV localization and control [Yol, Delabarre, IEEE IROS' 14]

Publications

- Omnidirectional Visual Servoing using the Normalized Mutual Information
 - 10th IFAC Symposium on Robot Control, Syroco 2012, Dubrovnik, Croatia, Septembre 2012
- Visual Servoing using the Sum of Conditional Variance
 - IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'12, Pages 1689-1694, Vilamoura, Portugal, Octobre 2012
- Camera Localization using Mutual Information-based Multiplane Tracking
 - IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'2013, Pages 1620-1625, Tokyo, Japon, Novembre 2013
- Vision-based Absolute Localization for Unmanned Aerial Vehicles
 - IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'14, Pages 3429-3434, Chicago, IL, Septembre 2014
- Dense non-rigid visual tracking with a robust similarity function
 - IEEE Int. Conf. on Image Processing, ICIP'14, Pages 4942-4946, Paris, France, Octobre 2014

Contributions to dense visual tracking and visual servoing using robust similarity criteria

Bertrand Delabarre

Lagadic Team

Inria Rennes Bretagne Atlantique & Irisa

http://www.irisa.fr/lagadic
December 23rd, 2014

