
Increasing the Performance of

Superscalar Processors through

Value Prediction
Arthur Perais

Increasing Performance through Value Prediction 10/12/2015

10/12/2015 Increasing Performance through Value Prediction - 2

Power Wall: Stop increasing the

frequency if you want your additional

transistors.

Dennard scaling: Power density is

up: Avoid hotspots if you want your

additional transistors. Go multicore.

Dennard scaling* goes to transistor

heaven in ~2005/07.

Power wall: around 2005.

*Current and Voltage scale downards with transistor size.

Past and Recent Trends in General Purpose CPUs

 Transistor count increases, but

sequential performance stagnates.

The Multicore Era and Amdah’l Law

10/12/2015 Increasing Performance through Value Prediction - 3

 Sequential performance stagnates, but we have several

cores:
• Thread everything.

• n times faster with n cores (at best).

 What if the code is sequential?

 Amdah’l Law (is Forever)

The Multicore Era and Amdah’l Law

10/12/2015 Increasing Performance through Value Prediction - 4

 Intrinsically sequential codes do not benefit from multicores.

Speedup maxes out at 2.

Number of processors (logscale)

50%

Parallel Portion

The Multicore Era and Amdah’l Law

10/12/2015 Increasing Performance through Value Prediction - 5

 Fairly parallel codes do not even benefit that much.

Number of processors (logscale)

50%

75%

90%

95%

Parallel Portion

𝑃𝑒𝑟𝑓 ~ (𝑊𝑖𝑑𝑡ℎ, 𝐼𝐿𝑃1)

 Intuitive way: Increase the processor width.

i. Super-linear increase in complexity and power.

ii. Timing issues.

iii. Only helps when ILP is already high.

 Instead of increasing ‘‘raw’’ compute capability, try to

improve utilization of existing hardware (ILP).

10/12/2015 Increasing Performance through Value Prediction - 6

Increasing Sequential Performance

1Instruction Level Parallelism

 Processors already do that:

i. Branch prediction: Control dependencies (speculative).

ii. Renaming: False dependencies (non speculative).

iii. Memory Dependency Prediction: Reveal RAW* dependencies for

memory instructions (speculative).

 Performance increases through better utilization.

 What if we could remove RAW dependencies to further

improve utilization?

10/12/2015 Increasing Performance through Value Prediction - 7

Increasing ILP

*Read-after-Write.

Value Prediction (VP) [Lipasti96][Mendelson97]

10/12/2015 Increasing Performance through Value Prediction - 8

I1

I2

I3

I4

I5

t

ILP = 1

I1

I2

I3

I4

I5

ILP = 2

I6

I6

Validate prediction

when I3 executes

Increasing Performance Through VP - Roadmap

10/12/2015 Increasing Performance through Value Prediction - 10

A. Revisiting Value Prediction1

1. Existing Predictors and Their Shortcomings

2. Complex Prediction Validation

3. Evaluation

B. Complexity Remains in the Register File2

1. VP Requires Additional Ports on the Register File

2. Reducing the Execution Engine Complexity through

Value Prediction

3. Evaluation

1Perais and Seznec, HPCA’14 & HPCA’15
2Perais and Seznec, ISCA’14 & IEEE MICRO’s TP’14

Revisiting Value Prediction
1. Existing Predictors and Their Shortcomings

Increasing Performance through Value Prediction 10/12/2015

A

- 11

Different Prediction Schemes

10/12/2015 Existing Predictors and Their Shortcomings - 12

 Context-based: Observe the stream of local values

and identify patterns:

• Finite Context Method (FCM) [Sazeides97&98].

FCM Predictor: Regular Prediction

10/12/2015 Existing Predictors and Their Shortcomings - 13

 What if the last value has not been retired or even

computed?

PC Prediction

VHT

VPT n-3 n-2 n-1 Hash

Value history

FCM Predictor: Inflight Predictions

10/12/2015 Existing Predictors and Their Shortcomings - 14

PC Prediction

VHT

n-3 n-2 n-1

Retired value history

n-3 n-2 n-1

Speculative

Window

Speculative history

Hash VPT

Align/

Merge

FCM Predictor: Back-to-back Prediction

10/12/2015 Existing Predictors and Their Shortcomings - 15

PC Prediction

VHT

n-3 n-2 n-1

Retired history

Speculative

Window

Speculative history

n-3 n-2 n-1

Hash VPT

Align/

Merge

Prediction Critical Loop

Bypass

Different Prediction Schemes

10/12/2015 Existing Predictors and Their Shortcomings - 16

 Computational: Apply a function to the last

result/prediction:

• Last Value Predictor [Lipasti96].

• Stride [Gabbay98], 2-delta Stride [Eickemeyer93].

Stride Predictor(s)

10/12/2015 Existing Predictors and Their Shortcomings - 17

PC Prediction

Stride

 Last Value

Stride Predictor(s)

10/12/2015 Existing Predictors and Their Shortcomings - 18

 What if the last value has not been retired or even

computed?

 A speculative window is required (as in FCM).

 Back-to-back prediction of two instances?

 Bypass the first prediction to the input of the adder:

Doable in a single cycle.

Prediction Schemes: Major Shortcomings

10/12/2015 Existing Predictors and Their Shortcomings - 22

 A speculative window is required. How do we

actually build it?

 Existing context-based predictors are not adapted

in case of predictable tight loops because of the

long prediction critical loop.

Learning From Branch Prediction

10/12/2015 Existing Predictors and Their Shortcomings - 23

 Remove the need for the previous result(s) to

generate a prediction by using control-flow as

context.

 Indirect Target Prediction is a specific case of Value

Prediction.

 Modify ITTAGE [Seznec06] to handle all

instructions eligible for VP.

The Value TAgged GEometric Predictor (VTAGE)

10/12/2015 Existing Predictors and Their Shortcomings - 24

VT0

VT1 VTN

pred ctr
pred ctr tag pred ctr tag …

=?

=?

Sat?

hash hash hash hash

pc pc pc ghist[0,L(1)] ghist[0,L(N)]

pred use

Base Predictor:

Tagless LVP

N partially tagged

components

Predicting with VTAGE

10/12/2015 Existing Predictors and Their Shortcomings - 25

VT0

VT1 VTN

pred ctr
pred ctr tag pred ctr tag …

=?

=?

hash hash hash hash

pc pc pc ghist[0,L(1)] ghist[0,L(N)]

pred use

The rightmost

matching component

predicts (VTN)

Sat?

Predicting with VTAGE

10/12/2015 Existing Predictors and Their Shortcomings - 26

VT0

VT1 VTN

pred ctr
pred ctr tag pred ctr tag …

=?

=?

Sat?

hash hash hash hash

pc pc pc ghist[0,L(1)] ghist[0,L(N)]

pred use

No tag match: The

base predictor

predicts (VT0)

What VTAGE is Really About

10/12/2015 Existing Predictors and Their Shortcomings - 27

 Context is available and easy to manage because it

is global.

 The result of the previous instance is not required:

• No speculative window.

• No prediction critical loop: Back-to-back occurrences

can be seamlessly predicted.

VTAGE is not Perfect

10/12/2015 Existing Predictors and Their Shortcomings - 28

 VTAGE requires a lot of storage as a single prediction

requires 64 bits (only a few bits for a branch prediction).

 VTAGE cannot handle strided patterns efficiently:

• Each value in the pattern occupies its own entry (a single

entry for the whole pattern in the Stride predictor).

Refining VTAGE: the Differential VTAGE Predictor

10/12/2015 Existing Predictors and Their Shortcomings - 29

 Inspired by the D-FCM of [Goeman01]

• Store differences between sequential results (strides)

instead of full 64-bit values in the predictor.

• Use a table to track last values (Last Value Table).

 Tightly coupled hybrid of VTAGE and Stride.

What is new in D-VTAGE

10/12/2015 Existing Predictors and Their Shortcomings - 30

str

VT0

VT1 VTN

…

=?

=?

Sat?

hash hash hash hash

pc
pc pc ghist[0,L(1)] ghist[0,L(N)]

pred
use

Last Value

Table

+

LVT

ctr str ctr tag str ctr tag

Refining VTAGE: the Differential VTAGE Predictor

10/12/2015 Existing Predictors and Their Shortcomings - 31

 Pros:

 Space efficient: strides can be small (8/16/32 bits).

 Tightly coupled: combines the prediction schemes rather

than just selecting between them.

 Cons: Needs the previous result.

 Prediction critical loop (adder and multiplexer, like Stride).

 A speculative window is needed*.

*A practical implementation is provided in Perais and Seznec, HPCA’15.

Revisiting Value Prediction
2. Complex Prediction Validation

Increasing Performance through Value Prediction 10/12/2015

A

- 32

Some Important Metrics

10/12/2015 Complex Prediction Validation - 33

 Only confident predictions are actually used in the

pipeline. We differentiate:

• 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 One is meaningless without the other.

 Neither is really conclusive regarding speedup.

Validation and Recovery for Value Prediction

10/12/2015 Complex Prediction Validation - 34

 Prediction validation is usually done out-of-order,

at the output of the functional units.

 Additional hardware.

 Additional Register File pressure.

 Recovery:

• Pipeline squashing, simple but slow (~20-30 cycles).

• Selective replay (reissue), very complex but faster

(few cycles).

Avoid Selective Replay if Possible

10/12/2015 Complex Prediction Validation - 35

 Arbitrarily long dependency chain to replay.

 Sequential replay: wrong execution can still continue

while replay catches up.

SQ

LQ

St

St

Ld

Forwarded

ALU

Mispred

Ld Ld

Getting Performance from Value Prediction

10/12/2015 Complex Prediction Validation - 36

 Focus on providing very high accuracy at

reasonable cost in coverage.

Accuracy
Selective

Replay

 The cycles lost due to few mispredictions may

offset the cycles won thanks to many correct

predictions.

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ≈ 𝑁𝑚𝑖𝑠𝑝 ∗ 𝑀𝑖𝑠𝑝𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Late Validation and Recovery

10/12/2015 Complex Prediction Validation - 37

 Assuming high accuracy, the misprediction penalty

is less important.

• Validate and recover at commit time, in-order.

Fetch Decode Rename Dispatch Issue Exec. Valid. Commit

Wr. Pr.

in PRF
Pred. Train

Value Prediction

Regular OoO

In-order frontend
Out-of-order

backend
In-order commit

Writeback

Providing Very High Accuracy

10/12/2015 Complex Prediction Validation - 38

 Wide (10-bit) saturating counters can do the trick but this

takes area.

 Use 3-bit counters and a PRNG to control incrementing

[Riley06]: Forward Probabilistic Counters (FPC).

Reset

++

Correct

&&

Incorrect

PRNG
!(rand() % (1/proba))

𝑝𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = {1,
1

8
,

1

8
,

1

8
,

1

8
,

1

16
,

1

16
} 𝑝𝑠𝑞𝑢𝑎𝑠ℎ = {1,

1

16
,

1

16
,

1

16
,

1

16
,

1

32
,

1

32
}

Revisiting Value Prediction
3. Evaluation

Increasing Performance through Value Prediction 10/12/2015

A

- 39

Simulator and Benchmarks

10/12/2015 Revisiting Value Prediction - Evaluation - 40

 Cycle-level simulator: gem5 (x86_64).

 4GHz, 8-wide, 6-issue, 20 cycles Bmispred., 192ROB,

60IQ, 72LQ/42SQ. 32KB L1D/L1I, 1MB unified L2 with

stride prefetcher, 4GB DDR3-1600.

 Single-thread benchmarks: Subset of SPEC’00 and

SPEC’06 (36 benchmarks).

 Simpoint: One slice per benchmark, warmup for

50Minsts, run for 100Minsts.

Predictors

10/12/2015 Revisiting Value Prediction - Evaluation - 41

 8K-entry 2-delta Stride predictor [Eickemeyer93].

 8K-entry VHT/8K-entry VPT order 4 FCM [Sazeides97].

 6+1 component VTAGE (6 x 1K-entry + 8K-entry tagless

LVP). History lengths : 2 to 64 bits.

 Regular 3-bit saturating confidence counters/3-bit FPC.

Speedup – Ideal Selective Replay

10/12/2015 Revisiting Value Prediction - Evaluation - 42

i. 5% to 9% average speedup.

ii. More than 10% speedup in 13 benchmarks out of 36.

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

geomean

2d-Stride o4-FCM VTAGE

Speedup – Ideal Selective Replay

10/12/2015 Revisiting Value Prediction - Evaluation - 43

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

2d-Stride o4-FCM VTAGE

i.

ii.

iii. Some benchmarks favor the computational 2d-Stride.

Speedup – Ideal Selective Replay

10/12/2015 Revisiting Value Prediction - Evaluation - 44

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

2d-Stride o4-FCM VTAGE

i.

ii.

iii.

iv. Other favor context-based FCM and VTAGE.

0.8

0.9

1

1.1

1.2

186.crafty 445.gobmk 453.povray 458.sjeng geomean

Impact of the Recovery Mechanism

10/12/2015 Revisiting Value Prediction - Evaluation - 45

Ideal Selective Replay

Validation & Squash at Commit

0.8

0.9

1

1.1

1.2

186.crafty 445.gobmk 453.povray 458.sjeng geomean

VTAGE (Baseline) VTAGE (FPC)

Impact of FPC on Coverage (Squash at Commit)

10/12/2015 Revisiting Value Prediction - Evaluation - 46

 No strong correlation between coverage and

performance:

 FPC costs around 10% coverage on average.

 Yet performance generally increases.

 Also have to consider accuracy:

 Regular counters are > 97%.

 FPC are > 99.7%

 We really need FPC to cost-effectively push accuracy

very high so the cost of recovery can be absorbed.

D-VTAGE vs. Other Hybrids (Squash at Commit, FPC)

10/12/2015 Revisiting Value Prediction - Evaluation - 47

 2dS-FCM, 2dS-VTAGE: Slightly better than the best of both components.

 D-FCM comparable to 2dS-FCM.

1

1.05

1.1

1.15

1.2

geomean

2dS-FCM 2dS-VTAGE o4-D-FCM D-VTAGE

D-VTAGE vs. Other Hybrids (Squash at Commit)

10/12/2015 Revisiting Value Prediction - Evaluation - 48

0.95

1.05

1.15

1.25

1.35

1.45

1.55

1.65

2dS-FCM 2dS-VTAGE o4-D-FCM D-VTAGE

 D-VTAGE comparable to 2dS-VTAGE but much better in a few cases.

Increasing Performance Through VP - Roadmap

10/12/2015 Increasing Performance through Value Prediction - 49

A. Revisiting Value Prediction

1. Existing Predictors and Their Shortcomings

2. Complex Prediction Validation

3. Evaluation

B. Complexity Remains in the Register File

1. VP Requires Additional Ports on the Register File

2. Reducing the Execution Engine Complexity through

Value Prediction

3. Evaluation

Validation &

Squash at

commit.

D-VTAGE

Complexity Remains in the Physical

Register File
1. Value Prediction Requires additional Ports on

the Register File

Increasing Performance through Value Prediction 10/12/2015

B

- 50

The – Slightly – Hidden Costs of VP

10/12/2015 Value Prediction Requires additional Ports on the PRF - 51

Fetch

VPredict

PC

n-issue Out-of-order

Engine

ROB2 IQ3

PRF1

Validation +

Squash

@Commit

FUs4

More ports on the PRF:

• Write ports to write predictions.

• Read ports to validate/train.

1Physical Register File
2Reorder Buffer
3Instruction Queue (Scheduler)
4Functional Units

Let us Count.

10/12/2015 Value Prediction Requires additional Ports on the PRF - 52

 Assume strict RISC-style µ-ops: 2 sources, 1 destination.

 Baseline 6-issue:

• 12 read (R) ports, 6 write (W) ports.

 VP 8-wide, 6-issue:

• 12R/6W for execution.

• 8W to write 8 predictions/cycle in the Physical Register File

(PRF).

• 8R to validate/train 8 instructions/cycle.

 12R/6W vs. 20R/14W! PRF area and power proportional to

number of ports squared [Zyuban1998].

Leveraging the – slightly – Hidden Benefits of

VP

10/12/2015 Value Prediction Requires additional Ports on the PRF - 53

 Value Prediction provides:

• Instructions with ready operands flowing from the value

predictor.

• Predicted instructions not needing to be executed before

retirement.

 Offload execution to some other in-order parts of the core

to reduce complexity in the out-of-order core. Save PRF

ports in the process.

Introducing Early Execution

10/12/2015 Value Prediction Requires additional Ports on the PRF - 54

VPred

Rename Dispatch
Out-of-order

engine
Fetch Decode

Execute ready single-cycle

instructions in parallel with

Rename, in-order.

Do not dispatch to the IQ.

A
L
U

Early Execution

In-order Out-of-order

Validation

Introducing Late Execution

10/12/2015 Value Prediction Requires additional Ports on the PRF - 55

Out-of-order

engine

VPredict

Retire

A
L
U

Prediction FIFO Queue

CMP

Execute single-cycle predicted instructions

just before retirement, in-order.

Do not dispatch to the IQ either.

In-order Out-of-order
Late

Execution

{Early | OoO | Late} Execution: EOLE

10/12/2015 Value Prediction Requires additional Ports on the PRF - 56

 Much fewer instructions enter the IQ: We may be able to

reduce the issue-width:

• Less Wakeup logic.

• Fewer ports on the PRF.

• Less bypass logic.

 Faster and less power hungry execution engine.

 What about hardware cost?

Hardware Cost of EOLE

10/12/2015 Value Prediction Requires additional Ports on the PRF - 57

 Early Execution:

• A single rank of simple ALUs.

• No additional PRF ports.

• Associated bypass network.

 Late Execution & Validation:

• Rank of simple ALUs and comparators (to validate).

• No bypass.

• n read ports to validate becomes 2n to handle n

instructions per cycle: 16R for an 8-wide pipeline.

 28R/14W! Only 12R/6W for the baseline…

Complexity Remains in the Physical

Register File
2. Reducing the Execution Engine Complexity

through Value Prediction

Increasing Performance through Value Prediction 10/12/2015

B

- 58

Reducing the Issue Width

10/12/2015 Reducing the Execution Engine Complexity through Value Prediction - 59

 If fewer instructions enter the IQ, then we can reduce

the issue width:

• From 6 to 4 (-4R and -2W): 24R/12W.

 Reduces complexity in the execution engine, but still too

many ports on the PRF.

Banking the Physical Register File

10/12/2015 Reducing the Execution Engine Complexity through Value Prediction - 60

 Prediction and Validation are done in-order.

 Bank the PRF and attribute predictions to consecutive

banks.

Bank 0 Bank 1 Bank 2 Bank 3

 2 write ports per bank instead of 8 for a 4-bank file.

 2 read ports per bank?

8 pred/cycle

8 valid/cycle

pred0 pred4 pred1 pred5 pred2 pred6 pred3 pred7

rslt0 rslt4 rslt1 rslt5 rslt2 rslt6 rslt3 rslt7

Read Port Sharing

10/12/2015 Reducing the Execution Engine Complexity through Value Prediction - 61

 8 instructions can be validated with 2R per bank…

 …but Late Execution still needs 16R per-bank to process

8 instructions.

 Fortunately, not all instructions are predictable (e.g.,

stores) or late-executable (e.g., loads).

 Constrain the number of read ports and share them: 4R

per-bank is a good tradeoff.

Let us Count, Second Take

10/12/2015 Reducing the Execution Engine Complexity through Value Prediction - 62

 4-issue out-of-order engine (4W/8R per bank).

 8 predictions per cycle (2W per bank).

 Constrained late-execution/validation (4R per bank).

 12R/6W per bank in total.

 From 28R/14W, we now only need 12R/6W! This is the

same amount as the PRF without VP, except issue

width is 33% smaller.

Complexity Remains in the Physical

Register File
3. Evaluation

Increasing Performance through Value Prediction 10/12/2015

B

- 65

Early Executed – Late Executed

10/12/2015 Complexity Remains in the Physical Register File - Evaluation - 66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Early Executed Late Executed: High-Conf Branches Late Executed: ALU Load Immediate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

average

Load
Immediate

Late Executed:
ALU

Late Executed:
High-Conf
Branches

Early Executed

Reducing the Issue Width

10/12/2015 Complexity Remains in the Physical Register File - Evaluation - 67

 Decreasing the issue-width to 4 without compensating for the lost compute

capability has noticeable impact on performance.

0.9

0.95

1

1.05

1.1

1.15

1.2

173.applu 400.perlbench 444.namd 453.povray 459.GemsFDTD geomean

Baseline_VP_4 EOLE_4 EOLE_6

0.9

0.95

1

1.05

1.1

1.15

1.2

173.applu 400.perlbench 444.namd 453.povray 459.GemsFDTD geomean

Baseline_VP_4 EOLE_4 EOLE_6

Reducing the Issue Width

10/12/2015 Complexity Remains in the Physical Register File - Evaluation - 68

 Performance is at worst comparable with the 6-issue VP pipeline for EOLE_4.

 The additional compute capability yields a small additional speedup in a few

benchmarks.

Unrelated to issue-width reduction (EOLE)

Limited Issue and PRF Ports

10/12/2015 Complexity Remains in the Physical Register File - Evaluation - 69

 Constrained Late Execution/Validation provides the same performance

as the unconstrained version.

 Value Prediction with as many PRF ports as the baseline, and a

simpler execution engine.

0.85

0.875

0.9

0.925

0.95

0.975

1

1.025

1.05

geomean

Baseline_6 EOLE_4 EOLE_4_4ports_4banks

Increasing Performance Through VP - Roadmap

10/12/2015 Increasing Performance through Value Prediction - 70

A. Revisiting Value Prediction

1. Existing Predictors and Their Shortcomings

2. Complex Prediction Validation

3. Evaluation

B. Complexity Remains in the Register File

1. VP Requires Additional Ports on the PRF

2. Reducing the Execution Engine Complexity

through Value Prediction

3. Evaluation

Validation &

Squash at

commit.

D-VTAGE

EOLE

Perais and

Seznec,

HPCA’15

Increasing Performance Through VP - Roadmap

10/12/2015 Increasing Performance through Value Prediction - 71

A. Revisiting Value Prediction

1. Existing Predictors and Their Shortcomings

2. Complex Prediction Validation

3. Evaluation

B. Complexity Remains in the Register File

1. VP Requires Additional Ports on the PRF

2. Reducing the Execution Engine Complexity

through Value Prediction

3. Evaluation

C. Practical Value Prediction Infrastructure

1. n-ported predictor to predict n instructions/cycle

2. D-VTAGE requires a speculative window

Validation &

Squash at

commit.

D-VTAGE

EOLE

Conclusion

Increasing Performance through Value Prediction 10/12/2015

Almost Done

- 72

Value Prediction In a Processor?

10/12/2015 Increasing Performance through Value Prediction - 73

 D-VTAGE: tightly-coupled hybrid having good

performance with reasonable budget thanks mostly to

partial strides (Perais & Seznec, HPCA’14/’15).

 Validation and Squash at commit: no overhaul of the

OoO engine (Perais & Seznec, HPCA’14).

 EOLE: avoid additional ports on the PRF for VP,

reduce the complexity of the OoO engine (Perais &

Seznec, ISCA’14, IEEE MICRO’s TP’14).

Future Work

10/12/2015 Increasing Performance through Value Prediction - 74

 Better predictors are always required. Especially if they

can predict more long-latency instructions (e.g., cache

misses).

 Interactions of VP with other mechanisms (‘‘TAGE à

tous les étages’’):
i. Predicting addresses looks like prefetching.

ii. It also looks like memory dependency prediction.

Unrelated Work

10/12/2015 Increasing Performance through Value Prediction - 75

 Perais, Seznec, Michaud, Sembrant & Hagersten,

ISCA’15. Improve the speculative scheduling of load

dependents in the presence of a banked L1 cache.

 Sembrant, Hagersten, Black-Schaffer, Carlson, Perais,

Seznec & Michaud, MICRO’15. Park non-critical

instructions before they are inserted in the scheduler to

improve MLP.

Increasing Performance through Value Prediction 10/12/2015

EOF

-

