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Power Wall: Stop increasing the 

frequency if you want your additional 

transistors. 

Dennard scaling: Power density is 

up: Avoid hotspots if you want your 

additional transistors. Go multicore. 

Dennard scaling* goes to transistor 

heaven in ~2005/07. 

Power wall: around 2005. 

 
*Current and Voltage scale downards with transistor size. 

 

Past and Recent Trends in General Purpose CPUs 

 Transistor count increases, but 

sequential performance stagnates. 



The Multicore Era and Amdah’l Law 
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 Sequential performance stagnates, but we have several 

cores: 
• Thread everything. 

• n times faster with n cores (at best). 

 

 

 What if the code is sequential? 

 

 

 Amdah’l Law (is Forever) 
 



The Multicore Era and Amdah’l Law 
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 Intrinsically sequential codes do not benefit from multicores. 

Speedup maxes out at 2. 

 

 

 

Number of processors (logscale) 
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The Multicore Era and Amdah’l Law 
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 Fairly parallel codes do not even benefit that much. 

 

 

Number of processors (logscale) 
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𝑃𝑒𝑟𝑓 ~ (𝑊𝑖𝑑𝑡ℎ, 𝐼𝐿𝑃1) 

 

 Intuitive way: Increase the processor width.  

i. Super-linear increase in complexity and power. 

ii. Timing issues. 

iii. Only helps when ILP is already high. 

 

 Instead of increasing ‘‘raw’’ compute capability, try to 

improve utilization of existing hardware (ILP).  
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Increasing Sequential Performance 

 
1Instruction Level Parallelism 

 



 Processors already do that: 

i. Branch prediction: Control dependencies (speculative). 

ii. Renaming: False dependencies (non speculative). 

iii. Memory Dependency Prediction: Reveal RAW* dependencies for 

memory instructions (speculative). 

 

 

 Performance increases through better utilization. 

 

 What if we could remove RAW dependencies to further 

improve utilization? 
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Increasing ILP 

 
*Read-after-Write. 

 



Value Prediction (VP) [Lipasti96][Mendelson97] 
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Increasing Performance Through VP - Roadmap 
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A. Revisiting Value Prediction1 

1. Existing Predictors and Their Shortcomings 

2. Complex Prediction Validation 

3. Evaluation 

B. Complexity Remains in the Register File2 

1. VP Requires Additional Ports on the Register File 

2. Reducing the Execution Engine Complexity through 

Value Prediction 

3. Evaluation 

 

 

 

 

 

 
1Perais and Seznec, HPCA’14 & HPCA’15 
2Perais and Seznec, ISCA’14 & IEEE MICRO’s TP’14 



 

 

Revisiting Value Prediction 
1. Existing Predictors and Their Shortcomings 
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Different Prediction Schemes  
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 Context-based: Observe the stream of local values 

and identify patterns:  

• Finite Context Method (FCM) [Sazeides97&98]. 

 

 

 



FCM Predictor: Regular Prediction 
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 What if the last value has not been retired or even 

computed? 

 

 

 

 

 

 

 

PC Prediction 

VHT 

VPT n-3 n-2 n-1 Hash 

Value history 



FCM Predictor: Inflight Predictions 
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FCM Predictor: Back-to-back Prediction 
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Different Prediction Schemes   
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 Computational: Apply a function to the last 

result/prediction: 

• Last Value Predictor [Lipasti96]. 

• Stride [Gabbay98], 2-delta Stride [Eickemeyer93]. 

 



Stride Predictor(s) 
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PC Prediction 

Stride 

 Last Value 



Stride Predictor(s) 
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 What if the last value has not been retired or even 

computed? 

 A speculative window is required (as in FCM). 

 

 

 

 Back-to-back prediction of two instances? 

 Bypass the first prediction to the input of the adder: 

Doable in a single cycle. 

 

 

 

 

 

 

 



Prediction Schemes: Major Shortcomings  
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 A speculative window is required. How do we 

actually build it?  

 

 

 Existing context-based predictors are not adapted 

in case of predictable tight loops because of the 

long prediction critical loop. 

 

 
 

 



Learning From Branch Prediction 
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 Remove the need for the previous result(s) to 

generate a prediction by using control-flow as 

context. 

 

 Indirect Target Prediction is a specific case of Value 

Prediction. 

 

 Modify ITTAGE [Seznec06] to handle all 

instructions eligible for VP. 



The Value TAgged GEometric Predictor (VTAGE) 
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Predicting with VTAGE 
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Predicting with VTAGE 
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What VTAGE is Really About 
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 Context is available and easy to manage because it 

is global. 

 

 

 The result of the previous instance is not required: 

• No speculative window. 

• No prediction critical loop: Back-to-back occurrences 

can be seamlessly predicted. 

 

 

 



VTAGE is not Perfect 
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 VTAGE requires a lot of storage as a single prediction 

requires 64 bits (only a few bits for a branch prediction). 

 

 VTAGE cannot handle strided patterns efficiently: 

• Each value in the pattern occupies its own entry (a single 

entry for the whole pattern in the Stride predictor). 

 

 

 



Refining VTAGE: the Differential VTAGE Predictor 
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 Inspired by the D-FCM of [Goeman01] 

 

• Store differences between sequential results (strides) 

instead of full 64-bit values in the predictor.  

• Use a table to track last values (Last Value Table). 

 

 Tightly coupled hybrid of VTAGE and Stride. 

 



What is new in D-VTAGE 
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Refining VTAGE: the Differential VTAGE Predictor 
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 Pros: 

 Space efficient: strides can be small (8/16/32 bits). 

 Tightly coupled: combines the prediction schemes rather 

than just selecting between them. 

 

 

 Cons: Needs the previous result. 

 Prediction critical loop (adder and multiplexer, like Stride). 

 A speculative window is needed*. 

 

 
*A practical implementation is provided in Perais and Seznec, HPCA’15. 

 



 

 

Revisiting Value Prediction 
2. Complex Prediction Validation 
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Some Important Metrics 
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 Only confident predictions are actually used in the 

pipeline. We differentiate: 

 

• 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
 

 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 +  𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

 One is meaningless without the other.  

 Neither is really conclusive regarding speedup. 



Validation and Recovery for Value Prediction 
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 Prediction validation is usually done out-of-order, 

at the output of the functional units. 

 Additional hardware. 

 Additional Register File pressure. 

 

 Recovery: 

• Pipeline squashing, simple but slow (~20-30 cycles). 

• Selective replay (reissue), very complex but faster 

(few cycles). 

 

 



Avoid Selective Replay if Possible 
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 Arbitrarily long dependency chain to replay. 

 Sequential replay: wrong execution can still continue 

while replay catches up. 
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Getting Performance from Value Prediction 
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 Focus on providing very high accuracy at 

reasonable cost in coverage. 

 

 

Accuracy 
Selective 

Replay 

 The cycles lost due to few mispredictions may 

offset the cycles won thanks to many correct 

predictions. 

 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ≈  𝑁𝑚𝑖𝑠𝑝 ∗ 𝑀𝑖𝑠𝑝𝑝𝑒𝑛𝑎𝑙𝑡𝑦 



Late Validation and Recovery 
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 Assuming high accuracy, the misprediction penalty 

is less important. 

• Validate and recover at commit time, in-order. 

 

 

Fetch Decode Rename Dispatch Issue Exec. Valid. Commit 

Wr. Pr. 

in PRF 
Pred. Train 

Value Prediction 

Regular OoO 

In-order frontend 
Out-of-order  

backend 
In-order commit 

Writeback 



Providing Very High Accuracy 
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 Wide (10-bit) saturating counters can do the trick but this 

takes area. 

 Use 3-bit counters and a PRNG to control incrementing 

[Riley06]: Forward Probabilistic Counters (FPC). 
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Revisiting Value Prediction 
3. Evaluation 
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Simulator and Benchmarks 
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 Cycle-level simulator: gem5 (x86_64). 

 4GHz, 8-wide, 6-issue, 20 cycles Bmispred., 192ROB, 

60IQ, 72LQ/42SQ. 32KB L1D/L1I, 1MB unified L2 with 

stride prefetcher, 4GB DDR3-1600. 

 

 Single-thread benchmarks: Subset of SPEC’00 and 

SPEC’06 (36 benchmarks). 

 Simpoint: One slice per benchmark, warmup for 

50Minsts, run for 100Minsts. 



Predictors 
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 8K-entry 2-delta Stride predictor [Eickemeyer93]. 

 8K-entry VHT/8K-entry VPT order 4 FCM [Sazeides97]. 

 6+1 component VTAGE (6 x 1K-entry + 8K-entry tagless 

LVP). History lengths : 2 to 64 bits. 

 

 

 Regular 3-bit saturating confidence counters/3-bit FPC. 



Speedup – Ideal Selective Replay 
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i. 5% to 9% average speedup. 

ii. More than 10% speedup in 13 benchmarks out of 36. 
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Speedup – Ideal Selective Replay 
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Speedup – Ideal Selective Replay 
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Impact of FPC on Coverage (Squash at Commit) 
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 No  strong correlation between coverage and 

performance: 

 FPC costs around 10% coverage on average. 

 Yet performance generally increases. 

 

 Also have to consider accuracy: 

 Regular counters are > 97%. 

 FPC are > 99.7% 

 

 We really need FPC to cost-effectively push accuracy 

very high so the cost of recovery can be absorbed. 



D-VTAGE vs. Other Hybrids (Squash at Commit, FPC) 
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 2dS-FCM, 2dS-VTAGE: Slightly better than the best of both components. 

 D-FCM comparable to 2dS-FCM. 
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D-VTAGE vs. Other Hybrids (Squash at Commit) 
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 D-VTAGE comparable to 2dS-VTAGE but much better in a few cases. 



Increasing Performance Through VP - Roadmap 
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A. Revisiting Value Prediction 

1. Existing Predictors and Their Shortcomings 

2. Complex Prediction Validation 

3. Evaluation 

B. Complexity Remains in the Register File 

1. VP Requires Additional Ports on the Register File 

2. Reducing the Execution Engine Complexity through 

Value Prediction 

3. Evaluation 

 

 

 

 

 

Validation & 

Squash at 

commit. 
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Complexity Remains in the Physical 

Register File  
1. Value Prediction Requires additional Ports on 

the Register File 
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The – Slightly – Hidden Costs of VP 
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Fetch 
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More ports on the PRF: 

• Write ports to write predictions. 

• Read ports to validate/train.  

 

1Physical Register File 
2Reorder Buffer 
3Instruction Queue (Scheduler) 
4Functional Units 



Let us Count. 
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 Assume strict RISC-style µ-ops: 2 sources, 1 destination. 

 Baseline 6-issue: 

• 12 read (R) ports, 6 write (W) ports. 

 

 VP 8-wide, 6-issue: 

• 12R/6W for execution. 

• 8W to write 8 predictions/cycle in the Physical Register File 

(PRF). 

• 8R to validate/train 8 instructions/cycle. 

 

 12R/6W vs. 20R/14W! PRF area and power proportional to 

number of ports squared [Zyuban1998]. 

 



Leveraging the – slightly – Hidden Benefits of 

VP 
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 Value Prediction provides: 

• Instructions with ready operands flowing from the value 

predictor. 

• Predicted instructions not needing to be executed before 

retirement. 

 

 

 Offload execution to some other in-order parts of the core 

to reduce complexity in the out-of-order core. Save PRF 

ports in the process. 



Introducing Early Execution 
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Validation 

Introducing Late Execution 
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{Early | OoO | Late} Execution: EOLE 
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 Much fewer instructions enter the IQ: We may be able to 

reduce the issue-width: 

• Less Wakeup logic. 

• Fewer ports on the PRF. 

• Less bypass logic. 

 Faster and less power hungry execution engine. 

 

 

 What about hardware cost? 



Hardware Cost of EOLE 
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 Early Execution: 

• A single rank of simple ALUs. 

• No additional PRF ports. 

• Associated bypass network. 

 

 Late Execution & Validation: 

• Rank of simple ALUs and comparators (to validate). 

• No bypass. 

• n read ports to validate becomes 2n to handle n 

instructions per cycle: 16R for an 8-wide pipeline. 

 

 

 28R/14W! Only 12R/6W for the baseline… 



Complexity Remains in the Physical 

Register File  
2. Reducing the Execution Engine Complexity 

through Value Prediction 
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Reducing the Issue Width 
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 If fewer instructions enter the IQ, then we can reduce 

the issue width: 

• From 6 to 4 (-4R and -2W): 24R/12W. 

 

 

 

 Reduces complexity in the execution engine, but still too 

many ports on the PRF. 



Banking the Physical Register File 
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 Prediction and Validation are done in-order.  

 Bank the PRF and attribute predictions to consecutive 

banks. 

Bank 0 Bank 1 Bank 2 Bank 3 

 2 write ports per bank instead of 8 for a 4-bank file. 

 2 read ports per bank? 

8 pred/cycle 

8 valid/cycle 

 

pred0 pred4 pred1 pred5 pred2 pred6 pred3 pred7 

rslt0 rslt4 rslt1 rslt5 rslt2 rslt6 rslt3 rslt7 



Read Port Sharing 
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 8 instructions can be validated with 2R per bank… 

 …but Late Execution still needs 16R per-bank to process 

8 instructions. 

 

 Fortunately, not all instructions are predictable (e.g., 

stores) or late-executable (e.g., loads). 
 

 

 

 Constrain the number of read ports and share them: 4R 

per-bank is a good tradeoff. 
 

 

 

 

 

 



Let us Count, Second Take 
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 4-issue out-of-order engine (4W/8R per bank). 

 8 predictions per cycle (2W per bank). 

 Constrained late-execution/validation (4R per bank). 

 12R/6W per bank in total. 

 

 

 From 28R/14W, we now only need 12R/6W! This is the 

same amount as the PRF without VP, except issue 

width is 33% smaller. 

 



Complexity Remains in the Physical 

Register File 
3. Evaluation 
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Early Executed – Late Executed 
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Reducing the Issue Width 
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 Decreasing the issue-width to 4 without compensating for the lost compute 

capability has noticeable impact on performance. 
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Reducing the Issue Width 
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 Performance is at worst comparable with the 6-issue VP pipeline for EOLE_4. 

 The additional compute capability yields a small additional speedup in a few 

benchmarks. 

 

Unrelated to issue-width reduction (EOLE) 



Limited Issue and PRF Ports 
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 Constrained Late Execution/Validation provides the same performance 

as the unconstrained version. 

 Value Prediction with as many PRF ports as the baseline, and a 

simpler execution engine. 
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Increasing Performance Through VP - Roadmap 
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A. Revisiting Value Prediction 

1. Existing Predictors and Their Shortcomings 

2. Complex Prediction Validation 

3. Evaluation 

B. Complexity Remains in the Register File 

1. VP Requires Additional Ports on the PRF 

2. Reducing the Execution Engine Complexity 

through Value Prediction 

3. Evaluation 
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Perais and 

Seznec, 

HPCA’15 
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A. Revisiting Value Prediction 

1. Existing Predictors and Their Shortcomings 

2. Complex Prediction Validation 

3. Evaluation 

B. Complexity Remains in the Register File 

1. VP Requires Additional Ports on the PRF 

2. Reducing the Execution Engine Complexity 

through Value Prediction 

3. Evaluation 

C. Practical Value Prediction Infrastructure 

1. n-ported predictor to predict n instructions/cycle 

2. D-VTAGE requires a speculative window 
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Conclusion 
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Value Prediction In a Processor?  
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 D-VTAGE: tightly-coupled hybrid having good 

performance with reasonable budget thanks mostly to 

partial strides (Perais & Seznec, HPCA’14/’15). 

 

 

 Validation and Squash at commit: no overhaul of the 

OoO engine (Perais & Seznec, HPCA’14). 

 

 

 EOLE: avoid additional ports on the PRF for VP, 

reduce the complexity of the OoO engine (Perais & 

Seznec, ISCA’14, IEEE MICRO’s TP’14). 

 

 

 

 

 

 

 



Future Work 
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 Better predictors are always required. Especially if they 

can predict more long-latency instructions (e.g., cache 

misses). 

 

 

 Interactions of VP with other mechanisms (‘‘TAGE à 

tous les étages’’): 
i. Predicting addresses looks like prefetching. 

ii. It also looks like memory dependency prediction. 

 

 

 

 

 

 

 

 



Unrelated Work 
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 Perais, Seznec, Michaud, Sembrant & Hagersten, 

ISCA’15. Improve the speculative scheduling of load 

dependents in the presence of a banked L1 cache. 

 

 

 Sembrant, Hagersten, Black-Schaffer, Carlson, Perais, 

Seznec & Michaud, MICRO’15. Park non-critical 

instructions before they are inserted in the scheduler to 

improve MLP.  
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