y 4

informatiques g mathématiques UNIVERSITE D E%
LA RENNES 1

T — T

T —

IﬂtCI'CCptiﬂg FUﬂCtiOHS Arjun Suresh

Advisor: Erven ROhOU

for MemOiZ ation Co-Advisor: André Seznec

Inria, Rennes May 10, 2016



Introduction

* We live in a performance hungry world
* Hardware clock frequency has reached its limit

* S50, we should try to reduce the no. of cycles required



Memoization



Memoization

+ Save the result of execution so that future executions

may be avoided

+ Hardware as well as Software approaches
* Instruction level - DIV (x,y)

+ Basic block level - {x=y"y/6.75;}

+ Function level - sin(x)



Function Memoization

“A pure function always returns the same result for
the same input set and does not modify the global
state of the program”

int fun(int * p, float arg) {

5.; sin(arqg);//arg = 6.7
+ Save the result of a function call

“ When arguments repeat, function sin(arg)

execution can be avoided Arg. Value Result

* But function needs to be pure

6.7 0.40484992061

38 0.2963685787



Not all pure functions need to be memoized

* Long latency functions
*  to make memoization productive
“ can be statically determined in most cases
* Repeatability in arguments across calls
« difficult to know before program run
+ (ritical ones
+ memoized function must be called a lot of times

» even otherwise we just lose an opportunity for benefit



Examples of memoizable Functions

Transcendental functions in libm

* Trigonometric Functions (sin, cos, tan)
+ Bessel Functions (70, j1)

+ Exponential Functions (exp, pow, log)



Required Repetition Rate




Required Repetition Rate

2 GHz Intel Ivybridge
m Hit Time- t (ns) | Overhead- tno (ns) | Avg. Time- Te(ns) | oPer o7 Needee

(o]

exp 90 48

log 92 47

sin 110 41

CoS 30 55 123 37

0 395 13

i1 325 16

pow 190 27

HXth+(1—H)(Tf—|-tmo) <Tf

tmo

— H >
Tf—l'tmo_th




Repetition needed (%)

Profitability Curves
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gCC VS icC Intel Ivybridge vs ARM Cortex A9
More repetition needed for icc More repetition needed for ARM
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Are arguments repeating?

Argument behaviour can be classified into three:
* There are only a few unique arguments
+ A small memoization table is enough

* There are a large number of unique calls but arguments do have
repetitions

+ Memoization benefit increases with size of memoization table
* Arguments are largely unique

* Memoization gives no benefit
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An Example of Argument Repetition

Case of j0() function in ATMI application Cumulative callo count with respect to no.
of unique arguments
100 216 k

o 90}
Fully Associative Table ° s 80}
2 60}l
4k 8 T 50}
oo 40 |
16k 13 _,g a0l
S 20}
64k 28 3l

el 100 50k 50k 50k 50k 250k

No. of unique arguments
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Memoization Table

* A direct-mapped hash-table for each memoized function
« Up to 64k entries tagged with arguments

* Requires up to IMB of physical memory per
memoized function — 2 * 8 bytes * 64 k

Memoization Table

—l Tag

eiieeineeed arg Sin(arg)
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XOR Hashing

63 32 | 31 0
XOR
31 16 15 0
XOR
D Mask higher order bits for
o Is fast l smaller tables

* 6 SSE instructions
* Very reasonable collisions

15 8 | 7

14

XOR arguments in case of
multiple arguments




Our Memoization Approaches

We propose 3 different approaches for function
memoization each with its own merits and demerits

1. Load time Approach
2. Compile time Approach

3. Compile time Approach Assuming Hardware
Support
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Load-time Function Interception
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Load-time Approach

* LD_PRELOAD to intercept dynamic calls to shared library
functions

* Memoization wrapper of function from preloaded library gets

precedence to original ones and takes care of memoization

* No need of re-compilation or availability of source code

+ Can be used even a naive user

* We illustrate the working for libm but same mechanism
works for any dynamically linked library
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Intercepting Calls to libm

Stub for sin int fun(){

' *(GOT + si ffset) =
Global Offset imp *( sin_offset)

Table b = sin(arg);
. <call sin@plt>

sin :sinin libm

|_DPRELOAD=”memIibm.so"

Stub for sin int fun(){
jmp *(GOT + sin_offset) =

}...

Global Offset

b = sin(arg);

Table double sin double <call sin@plt>
_ C look up table
sin > sinin return on success
memlibm call real sin }
update table
}
P
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In case of slowdown?

When there are a large number of calls to a memoized function but arguments
to them are not repeating enough, memoization can cause slowdown

+ Turn-off memoization
* Same mechanism as turning-on
+ Modity GOT
* A helper thread monitors the argument behaviour

* Replaces the memoizedlibm entry with the libm entry in case of low
repetition

“ Application runs exactly as without memoization
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Experimental Set-up

* 2 Application Sets
* SPEC benchmarks
* Selected Applications

* Intel Ivybridge and ARM
Cortex A9

* gcc as well as icc using Intel
Math

Intel Ivybridge
Processor Intel Core i7  ARM Cortex A9
2 GHz 1.2 GHz

3.11 3.11
. - -
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Results - Intel lvybridge

SPEC Benchmarks

1.761.731.69
1.3

1.25
1.2
1.15

1.1

Speed Up

1.05

0.95
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Results - Intel lvybridge

Selected Benchmarks

Speed Up
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Results - ARM Cortex A9

SPEC and Selected Applications

1 1 2 3.13.02.9 :
3 3 3 3 : ‘ 64K m—
11+ B0 g 16k
A —
108+ BN s R o =
=
> 106 BN D | O T || R
© : : : : s :
3
& 104 NN S | [ R — S | .
72
102 S0 S . R | B
1 ; : : : :
0.98
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Normalized Speed Up

1.05
1.04
1.03
1.02
1.01

0.99
0.98

Results -icc

Spec Benchmarks
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Speed Up

1.2

1.15

1.1

1.05

0.95

0.9

Results -icc

Selected Applications
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Free Result

“ bwaves of SPEC 2006 gave 1.76 times improvement on
runtime on Intel Ivybridge

+ 3.1 times on ARM

* pow implementation of libgcc has a performance bug

+ Happens for pow(m, n), where m is very close to 1 and n
is very close to 0.75

+ With icc/IntelMath the benefit drops to 3%
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Result-Summary

SPEC benchmarks give 1-24% speedup on Intel Ivybridge

Drops to up to 10% on ARM Cortex A9

Other selected applications give 1-50% speed up on Intel Ivybridge
Drops to up to 14% on ARM Cortex A9

With icc, speed-ups drop to 1-15%

Again Selected Applications give more benefit compared to SPEC ones
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Associatvity

* A 4 way associative hash-table

* 4 sets of 2 X 8 bytes (8 bytes each for a double-precision
argument and result) for each table entry

« Each table access requires exactly one cache-line fetch (64 bytes
on x86-64)

+ Allows for even larger size for memoization table without
much penalty of last level cache miss

* 2 way associative implementation for ARM due to 32 byte
cache line
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Applying Associativity

Associativity on Intel Ivybridge

64k m——

: : : 64k,4-way
3o 8 O T T S— 2560k mmm—
- 256k,4-way mm—

ATMI

Speed Up
N

Fully Associative %Capture
Table Size

4k 8
16k 13
64k 28

29 256k 100



Applying Associativity

Associativity on ARM Cortex A9

3-5 i B
32k
32k,2-way
CJ)| MUUUE S WS WS NS S S 128k mmmm |

 128K,2-way m—

ATMI

Speed Up
N

0.5
%, B % %, T By %, % % %
o) %, (o (o) /)//n (&) C;g O&
G%@@ 7 %/) 9 7

Fully Associative % Capt
+ Associativity gave very good result 4k 8
» >64k without associativity gave slowdown on Intel 16k 13
64k 28

Ivybridge

30 256k 100



if-memo

“ Our memoization tool

* Takes care of function interception

* Maintains the memoization table, hashing and helper thread
monitoring

* Works for our selected transcendental functions and can be easily
extended for newer functions

31



Summary

Advantages:
« Simple to use —just set an environment variable

+ No need of source code

Disadvantage:

“ Works for only dynamically linked functions
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Compile Time Function
Interception
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Compile Time Approach

Advantages:
* More generic- can be applied to any memoizable function
* Facilitates inlining of memoization wrapper

* Allows to handle functions having pointers and global
variable usage

* Constants can be handled efficiently
Disadvantage:

“ Requires recompilation and hence the availability of user code
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Profitability Curve

Repetition

Needed (%)

2 GHz Intel Ivybridge
Function Ali M | OVEH Avg. Time (ns)
exp 90
log 92
11 110
21 55
cos 123
jo 395
j1 325
pow 190

44

43

38

35

13
15

25

Repetition needed (%)

100

(0]
(@)

)
o

LN
o

N
o

* Inlining lowers the memoization threshold
e Smaller functions require lower repetition rates

35

Preload profitability curve -
Inline profitablility curve -

O 50 100 150 200 250 300 350 400
Avg. time (ns)
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Implementation

# Use LLVM Compiler Infrastructure

* Memoization Pass to identity potential functions

* Re-use the memoization framework — extending
“if-memo” tool
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Memoization Pass

# Is a transtorm pass at module level

* Checks each function to be memoizable — pure and
calling only pure functions — and generates the
corresponding information in a file

# This information — function name and prototype — is
used at link time for generating and linking the
memoization code
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[.I.VM workflow for Memoization

Source 1

g Memoization BERAVELE
Pass

>RV osl LLVM IR

Souice 2

Pass

Soulce n)

Memoization ERRAYA RIS
Pass
Memoization.c

+
S -

Memoization
Information

Use dragonegg to convert source code to
LLVM IR

Memoization code is generated by if-
memo tool and linked to the binary

llvm-link opt .y

(single (For inlining ¢ gcct:

LLVM IR memoizatio genetale
Memoization file) n code) final exe

LLVM IR
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Function Prototypes

* We handle up to 2

parameters fOr memOizatiOn Generalized Function Prototypes
excluding constants i - int,int
ff — float , float
dd — double, double
# Requires a large number of (i _ flost, float, float
. ddd - dO}lblc: douPlc, double
function prototypes to be I .
viijj — void, int, int, int*, int=x
handled vfg“ — void, float , float=
vigg — void, float, floatx, float=
vifgg — vo?d, float , float , float=*, float=x
# Sort the parameters based Ve  void, double, doubles, doubles
. vddee — void, double, double, doublex, doublex
on their type to reduce the

number of memoization
function types
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Pointers

Pointed value is the concern

# RD Only — Pointed value handled like a normal
argument. Takes part in table indexing

* WR Only - Pointed value is not used for table
indexing, but just to store the result in the
memoization table

+ RD/WR - Pointed value is used for table indexing
and final value is stored in table

40



Constants

Example:
* foo (2,x) -> memoized_foo(x)
* Memoized_foo(x) calling foo(2,x)

+ Facilitated by passing a call string to the memoization
wrapper

* Memoization becomes call site specific

41



Experimental Set-up

* blackscholes from PARSEC and

histo from Parboil suite are
additional benchmarks

* Experiments run on Intel

Ivybridge

42

Processor
L3 Cache

Clock Speed

Linux Version

llvm version

optimisation flag

Intel Core i7
8 MB

2.3 GHz

8 GB

3.19

3.7

-O3



Results: Compile time vs Preload

SPEC benchmarks

1.3

1.25
12
1.15 F

Speed Up

11}
1.05 |

0.95
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Results: Compile time vs Preload

Selected Applications

1.3 : :
| g g g 3 Compile I
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2 115 = | e B R B .
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0.95
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)
gz
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Results

* Most benchmarks gave better runtime compared to
LD_PRELOAD approach

“ Performance improvement for histo and blackscholes

where memoized functions were user defined (statically

linked)
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Increase in Code Size

1.4 =
~ sizeChange
L R
* Inlining memorisation § s
© | | | | | | | | | | | | |
- =12 e
wrapper increases the g '
. o 1.2
code size g 115
_“N-’ 1.1 |
* Code size increase can g 105
° Q 1 - Co o Co o Co o o o C 7
atfect run time S S T N T O e _
ol
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% ) S
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Summary

“ Compile Time approach enables more functions to be
memoized

* Increases the efficiency of memoization

“ Code size is increased but not much performance degradation

Can we further increase performance benefit?
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Hardware Memoization
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Hardware Support

+ Makes memoization more efficient

+ Reduces overhead by faster indexing
+ Faster table look-up

+ Enables parallel look-up /execution and hence almost no overhead of look-up
failure

+ Associativity becomes more practical

+ Smaller memoization table size

+ Centralised table

# Introduces branch mis-prediction penalty in case of a miss prediction in table
look-up
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Profitability Curve

Miss-
Hit Time | prediction | Avg. Time- Tt
Penalty -
tpen(ns)

Repetition
Needed - H 100

Function

Software ‘profita‘bility curve
 Hardware profitablility curve -

e L L s
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9
© 1 1 1 1 1 1 1 1
) 1 1 1 1 1 1 1 1
D 60 - """"""""' I - B
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jo 395 1
0 i i i \ 1 —0— - —
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New Instructions

* MSCALL — does indexing and table look-up
+ MSUPDATE — updates the memoization table

+ Both have different variants for each function prototype
being handled

* These two instructions are doing the same function as
done by “if-memo” tool but in hardware

51



Working

* Same scheme as for compile time approach in
identifying memoizable functions

“ Instead of calling memoization wrapper, MSCALL and

MSUPDATE instructions are inserted at each call site of
a memoizable function by the compiler

* Low latency functions also become memoizable now -

example sgrt
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Hit is
Miss is predicted predicted

Conditional call to
actual function
MSCALL >
> MSUPDATE -
<

MSCALL and HIT predicted

MSUPDATE are Inc RET address < and

adjacent instructions RETURN Ll 2l

MSCALL does 1

memoization table On look-up success,

look-up MSCALL returns Pipeline Flush

g incrementing the return /
S| address to skip MSUPDATE

On look-up failure, an Hardware Memo Table 0
actual function call takes Tag Value

1 .
place Hit v

e Returns to , -
Miss
MSUPDATE
 Memoization table
gets updated
JMP <func> [« MM

1
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Pipeline Flush




Hardware Memoization Table

+ Centralised
+ Assoclative

“ Pseudo-LRU policy using 3 LRU bits for replacement

1112 |8 | 64 [ ___ 64 | ____ 64 _____ 64

V [ ASID | FID Arg1 Arg2 Res1 | |1 Res2

1112 |8 | &4 | ___ 64 | ___. 64__ 64

V | ASID | FID Arg1 Arg2 Rest | | Res2

3t [ 12 |8 | 64 | ___ 64 ___ | ____ 64 | ___. 64 .
V| ASID |FID | Arg1 Arg2 Res1 Res2

O - - 64 | 64 | 64 | .. 64 ____
V| ASID |FID | Arg1 Arg2 Res1 Res2
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Evaluation

* Applications are run with hardware memoization table
being implemented in software

+ Hit rates and function run times are measured

* Hardware runtime estimated using the found hit rates
and the run times assuming 4 clock cycle table look-up
time

* No extra overhead in case of table look-up failure

+ Table look-up prediction failure causes a pipeline flush
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Hardware Time Estimation

Application runtime with hardware memoization is calculated as

th'me — Etime + Z hwtimei + Pbm
1=1

Etime - application execution time excluding the memoizable functions
hWiime; - estimated hardware runtime for function i

Py; - average branch mis-prediction penalty for function i

Branch mis-prediction is measured using a single counter
software predictor (4 bits and 16 states) and given a 20 cycle
penalty on mis-prediction
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Result: Memoization with Hardware Support

SPEC benchmarks

Speed Up
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Result: Memoization with Hardware Support

Selected Applications

1-8 : : B
~ software
1.6 F B e - — g - hardware D -

Speed Up
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Results

* Most benchmarks have a much better speed-up
compared to compile time approach

* Some benchmarks — ocean_cp, bwaves, ATMI — have a
lower speed-up mainly due to increased collision in the
memoization table (table being smaller in hardware)

* Very high speed-up for equake as the memoized
functions were small and highly critical
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Conclusion

“ At present Memoization gives speed up even in software
* Arguments do repeat a lot in real applications

* A simple LD_PRELOAD technique is good for memoizing
dynamically linked functions

* Compile time approach allows memoization of user defined
functions and lowers the threshold of memoization by inlining

* Hardware support can further increase the memoization
efficiency
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Further Extensions

+ Hardware Memoization with a back-up software
memoization

+ Pre-filling memoization table
« Similar to pre-fetching

+ Requires a helper thread to be made using just enough
code to generate the argument to function

» Requires proper synchronisation with main thread

« Applicability to approximation domains
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Thank You
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