
May 10, 2016

Intercepting Functions
for Memoization

Arjun Suresh
Advisor: Erven Rohou

Co-Advisor: André Seznec

Inria, Rennes

Introduction

❖ We live in a performance hungry world

❖ Hardware clock frequency has reached its limit

❖ So, we should try to reduce the no. of cycles required

2

Memoization

3

Memoization

❖ Save the result of execution so that future executions
may be avoided

❖ Hardware as well as Software approaches

❖ Instruction level - DIV (x,y)

❖ Basic block level - { x = y*y/6.75;}

❖ Function level - sin(x)

4

Function Memoization

int fun(int * p, float arg){
 ...
 b = sin(arg);//arg = 6.7
 ...
}

sin(arg)
Arg. Value Result

- - - - -

6.7 0.40484992061
- - - - -

38 0.2963685787
- - - - -

“A	pure	function	always	returns	the	same	result	for	
the	same	input	set	and	does	not	modify	the	global	
state	of	the	program”

❖ Save the result of a function call

❖ When arguments repeat, function
execution can be avoided

❖ But function needs to be pure

5

Not all pure functions need to be memoized

❖ Long latency functions

❖ to make memoization productive

❖ can be statically determined in most cases

❖ Repeatability in arguments across calls

❖ difficult to know before program run

❖ Critical ones

❖ memoized function must be called a lot of times

❖ even otherwise we just lose an opportunity for benefit

6

Examples of memoizable Functions

Transcendental functions in libm

❖ Trigonometric Functions (sin,	cos,	tan)

❖ Bessel Functions (j0,	j1)

❖ Exponential Functions (exp,	pow,	log)

7

Required Repetition Rate

8

H ⇥ t
h

+ (1�H)(T
f

+ t
mo

) < T
f

H ⇥ t
h

+ (T
f

+ t
mo

)�H(T
f

+ t
mo

) < T
f

t
mo

< H(T
f

+ t
mo

� t
h

)

=) H >
t
mo

T
f

+ t
mo

� t
h

(1)

Hit in Table
Original
Function

H ⇥ t
h

+ (1�H)(T
f

+ t
mo

) < T
f

H ⇥ t
h

+ (T
f

+ t
mo

)�H(T
f

+ t
mo

) < T
f

t
mo

< H(T
f

+ t
mo

� t
h

)

=) H >
t
mo

T
f

+ t
mo

� t
h

(1)

Miss in Table

H ⇥ t
h

+ (1�H)(T
f

+ t
mo

) < T
f

H ⇥ t
h

+ (T
f

+ t
mo

)�H(T
f

+ t
mo

) < T
f

t
mo

< H(T
f

+ t
mo

� t
h

)

=) H >
t
mo

T
f

+ t
mo

� t
h

(1)

H ⇥ t
h

+ (1�H)(T
f

+ t
mo

) < T
f

H ⇥ t
h

+ (T
f

+ t
mo

)�H(T
f

+ t
mo

) < T
f

t
mo

< H(T
f

+ t
mo

� t
h

)

=) H >
t
mo

T
f

+ t
mo

� t
h

(1)

H ⇥ t
h

+ (1�H)(T
f

+ t
mo

) < T
f

H ⇥ t
h

+ (T
f

+ t
mo

)�H(T
f

+ t
mo

) < T
f

t
mo

< H(T
f

+ t
mo

� t
h

)

=) H >
t
mo

T
f

+ t
mo

� t
h

(1)

Required Repetition Rate

9

H ⇥ t
h

+ (1�H)(T
f

+ t
mo

) < T
f

H ⇥ t
h

+ (T
f

+ t
mo

)�H(T
f

+ t
mo

) < T
f

t
mo

< H(T
f

+ t
mo

� t
h

)

=) H >
t
mo

T
f

+ t
mo

� t
h

(1)

H ⇥ t
h

+ (1�H)(T
f

+ t
mo

) < T
f

H ⇥ t
h

+ (T
f

+ t
mo

)�H(T
f

+ t
mo

) < T
f

t
mo

< H(T
f

+ t
mo

� t
h

)

=) H >
t
mo

T
f

+ t
mo

� t
h

(1)

Function Hit Time- th (ns) Overhead- tmo (ns) Avg. Time- Tf (ns) Repetition Needed-
H (%)

exp

30 55

90 48

log 92 47

sin 110 41

cos 123 37

j0 395 13

j1 325 16

pow 190 27

2 GHz Intel Ivybridge

Profitability Curves

10

gcc vs icc Intel Ivybridge vs ARM Cortex A9

More repetition needed for icc More repetition needed for ARM

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

R
ep

et
iti

on
 n

ee
de

d
(%

)

Avg. time (ns)

Profitability curve Ivy Bridge
Profitability curve Cortex-A9

Ivy Bridge
Cortex-A9

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

GNU

Intel

R
ep

et
iti

on
 n

ee
de

d
(%

)

Avg. time (ns)

Profitability curve
GNU
Intel

Are arguments repeating?

Argument behaviour can be classified into three:

❖ There are only a few unique arguments

❖ A small memoization table is enough

❖ There are a large number of unique calls but arguments do have
repetitions

❖ Memoization benefit increases with size of memoization table

❖ Arguments are largely unique

❖ Memoization gives no benefit

11

An Example of Argument Repetition

12

Case of j0() function in ATMI application

 Fully Associative Table
Size %Capture

4k 8

16k 13

64k 28

256k 100

Cumulative call count with respect to no.
of unique arguments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 50k 100k 150k 200k 250k

Pe
rc

en
ta

ge
 o

f t
ot

al
 c

al
ls

No. of unique arguments

(b) Cumulative call count with respect to number of unique arguments
216k

Pe
rc

en
ta

ge
 o

f t
ot

al
 ca

lls
No. of unique arguments

216 k100
90
80
70

50
60

30
40

10
20

250k50k50k50k50k

Memoization Table
❖ A direct-mapped hash-table for each memoized function

❖ Up to 64k entries tagged with arguments

❖ Requires up to 1MB of physical memory per
memoized function — 2 * 8 bytes * 64 k

13

Tag Value

arg sin(arg)

arg Index
Hash Memoization	Table

XOR Hashing

14

63 32 31 0
- - - - - - - - - -

31 16 15 0

- - - - - - - - - -

15 8 7 0
- - - - - - - - - -

• Is fast
• 6 SSE instructions
• Very reasonable collisions

• Mask higher order bits for
smaller tables

• XOR arguments in case of
multiple arguments

XOR

XOR

Our Memoization Approaches

We propose 3 different approaches for function
memoization each with its own merits and demerits

1. Load time Approach

2. Compile time Approach

3. Compile time Approach Assuming Hardware
Support

15

Load-time Function Interception

16

Load-time Approach

❖ LD_PRELOAD to intercept dynamic calls to shared library
functions

❖ Memoization wrapper of function from preloaded library gets
precedence to original ones and takes care of memoization

❖ No need of re-compilation or availability of source code

❖ Can be used even a naive user

❖ We illustrate the working for libm but same mechanism
works for any dynamically linked library

17

Intercepting Calls to libm

18

int	fun(){	
		...	
		b	=	sin(arg);	
<call	sin@plt>	
		...	
}

Stub	for	sin	
jmp	*(GOT	+	sin_offset)	

libm	
double	sin(double	arg)	{	
			...	
}

Global	Offset	
Table	
….	

sin	:	sin	in	libm	
….

double	sin(double	arg)	{	
		look	up	table	
		return	on	success	
		call	real	sin	
		update	table	
}

int	fun(){	
		...	
		b	=	sin(arg);	
<call	sin@plt>	
		...	
}

Stub	for	sin	
jmp	*(GOT	+	sin_offset)	

Global	Offset	
Table	
….	

sin	:	sin	in	
memlibm	

….

LDPRELOAD=“memlibm.so”

In case of slowdown?

When there are a large number of calls to a memoized function but arguments
to them are not repeating enough, memoization can cause slowdown

❖ Turn-off memoization

❖ Same mechanism as turning-on

❖ Modify GOT

❖ A helper thread monitors the argument behaviour

❖ Replaces the memoizedlibm entry with the libm entry in case of low
repetition

❖ Application runs exactly as without memoization

19

Experimental Set-up

❖ 2 Application Sets
❖ SPEC benchmarks
❖ Selected Applications

❖ Intel Ivybridge and ARM
Cortex A9

❖ gcc as well as icc using Intel
Math

20

Intel Ivybridge ARM Cortex A9

Processor Intel Core i7 ARM Cortex A9

L3 Cache 8 MB 1 MB

Clock Speed 2 GHz 1.2 GHz

RAM 8 GB 1 GB

Linux kernel 3.11 3.11

gcc version 4.8 4.7

icc version 9 —

optimisation flag -O3 -O2

libm version 2.2 2.2

Results - Intel Ivybridge

21

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

bwaves

gamess

povray
GemsFDTD

tonto
wrf

equake

gafort

Sp
ee

d
U

p

1.76 1.73 1.69

64k
16k

4k

SPEC Benchmarks

Results - Intel Ivybridge

22

Selected Benchmarks

 0.8

 1

 1.2

 1.4

 1.6

 1.8

ATMI
population_dynamics

barsky
fmm

ocean_cp

water_spatial

Sp
ee

d
U

p
64k
16k

4k

Results - ARM Cortex A9

23

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

bwaves

gamess

GemsFDTD

tonto
wrf

equake

ATMI
population_dynamics

barsky

Sp
ee

d
U

p

3.1 3.0 2.9

64k
16k

4k

SPEC and Selected Applications

Results - icc

24

Spec Benchmarks

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

bwaves

gamess

povray
GemsFDTD

tonto
wrf

equake

N
or

m
al

iz
ed

 S
pe

ed
 U

p

64k
16k

4k

Results - icc

25

Selected Applications

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

ATMI
population_dynamics

barsky
fmm

ocean_cp

water_spatial

Sp
ee

d
U

p
64k
16k

4k

Free Result

❖ bwaves of SPEC 2006 gave 1.76 times improvement on
runtime on Intel Ivybridge

❖ 3.1 times on ARM

❖ pow implementation of libgcc has a performance bug

❖ Happens for pow(m, n), where m is very close to 1 and n
is very close to 0.75

❖ With icc/IntelMath the benefit drops to 3%

26

Result-Summary
❖ SPEC benchmarks give 1-24% speedup on Intel Ivybridge

❖ Drops to up to 10% on ARM Cortex A9

❖ Other selected applications give 1-50% speed up on Intel Ivybridge

❖ Drops to up to 14% on ARM Cortex A9

❖ With icc, speed-ups drop to 1-15%

❖ Again Selected Applications give more benefit compared to SPEC ones

27

Associativity
❖ A 4 way associative hash-table

❖ 4 sets of 2 X 8 bytes (8 bytes each for a double-precision
argument and result) for each table entry

❖ Each table access requires exactly one cache-line fetch (64 bytes
on x86-64)

❖ Allows for even larger size for memoization table without
much penalty of last level cache miss

❖ 2 way associative implementation for ARM due to 32 byte
cache line

28

Applying Associativity

29

Associativity on Intel Ivybridge

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

chipedges

Fisher
migration

onoff
Xu Goh

pentium

ppc1
ppc2

ppc3

Sp
ee

d
U

p

64k
64k,4-way

256k
256k,4-way

 Fully Associative
Table Size

%Capture

4k 8
16k 13

64k 28

256k 100

ATMI

Applying Associativity

30

Associativity on ARM Cortex A9

❖ Associativity gave very good result
❖ >64k without associativity gave slowdown on Intel

Ivybridge

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

chipedges

Fisher
migration

onoff
Xu Goh

pentium

ppc1
ppc2

ppc3

Sp
ee

d
U

p
32k

32k,2-way
128k

128k,2-way

 Fully Associative
Table Size

%Capture

4k 8
16k 13

64k 28

256k 100

ATMI

if-memo

❖ Our memoization tool
❖ Takes care of function interception
❖ Maintains the memoization table, hashing and helper thread

monitoring
❖ Works for our selected transcendental functions and can be easily

extended for newer functions

31

Summary

Advantages:

❖ Simple to use – just set an environment variable

❖ No need of source code

Disadvantage:

❖ Works for only dynamically linked functions

32

Compile Time Function
Interception

33

Compile Time Approach
Advantages:

❖ More generic- can be applied to any memoizable function

❖ Facilitates inlining of memoization wrapper

❖ Allows to handle functions having pointers and global
variable usage

❖ Constants can be handled efficiently

Disadvantage:

❖ Requires recompilation and hence the availability of user code

34

Profitability Curve

35

Function Hit Time
(ns)

Overhead
(ns) Avg. Time (ns) Repetition

Needed (%)

exp

21 55

90 44

log 92 43

11 110 38

cos 123 35

j0 395 13
j1 325 15

pow 190 25

• Inlining lowers the memoization threshold
• Smaller functions require lower repetition rates

2 GHz Intel Ivybridge

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
ep

et
iti

on
 n

ee
de

d
(%

)
Avg. time (ns)

Preload profitability curve
Inline profitablility curve

Implementation

❖ Use LLVM Compiler Infrastructure

❖ Memoization Pass to identify potential functions

❖ Re-use the memoization framework — extending  
 “if-memo” tool

36

Memoization Pass

❖ Is a transform pass at module level

❖ Checks each function to be memoizable — pure and
calling only pure functions — and generates the
corresponding information in a file

❖ This information — function name and prototype — is
used at link time for generating and linking the
memoization code

37

LLVM workflow for Memoization

38

Memoization code is generated by if-
memo tool and linked to the binary

Use dragonegg to convert source code to
LLVM IR

llvm-link
(single

LLVM IR
file)

opt
(For inlining
memoizatio

n code)

llc/gcc
generate
final exe

Memoization
Pass

Memoization
Pass

if-Memo

LLVM IR

LLVM IR

LLVM IR

Memoization.c

LLVM
Memoization
LLVM IR

….………

Memoization
Pass

Source 1

M
em

oi
za

tio
n

In
fo

rm
at

io
n

Source 2

Source n

Function Prototypes
❖ We handle up to 2

parameters for memoization
excluding constants

❖ Requires a large number of
function prototypes to be
handled

❖ Sort the parameters based
on their type to reduce the
number of memoization
function types

39

Pointers
Pointed value is the concern

❖ RD Only – Pointed value handled like a normal
argument. Takes part in table indexing

❖ WR Only – Pointed value is not used for table
indexing, but just to store the result in the
memoization table

❖ RD/WR – Pointed value is used for table indexing
and final value is stored in table

40

Constants

Example:

❖ foo (2,x) -> memoized_foo(x)

❖ Memoized_foo(x) calling foo(2,x)

❖ Facilitated by passing a call string to the memoization
wrapper

❖ Memoization becomes call site specific

41

Experimental Set-up

❖ blackscholes from PARSEC and
histo from Parboil suite are
additional benchmarks

❖ Experiments run on Intel
Ivybridge

42

Processor Intel Core i7

L3 Cache 8 MB

Clock Speed 2.3 GHz

RAM 8 GB

Linux Version 3.19

llvm version 3.7

optimisation flag -O3

Results: Compile time vs Preload

43

SPEC	benchmarks

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

bwaves

tonto
wrf

gemsFDTD

povray
equake

gafort

Sp
ee

d
U

p
compile
preload

Results: Compile time vs Preload

44

Selected	Applications

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

bwaves

tonto
wrf

gemsFDTD

povray
equake

gafort

Sp
ee

d
U

p

compile
preload

Results

❖ Most benchmarks gave better runtime compared to
LD_PRELOAD approach

❖ Performance improvement for histo and blackscholes
where memoized functions were user defined (statically
linked)

45

Increase in Code Size

❖ Inlining memorisation
wrapper increases the
code size

❖ Code size increase can
affect run time

46

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4

tonto
bwaves

gems.FDTD

wrf
povray

equake

gafort
ATMI

simupuceron

barsky
histo

blackscholes

water_spatial

ocean_cp

fmm

C
od

e
Si

ze
 In

cr
ea

se
 fa

ct
or

Size-Change

Summary
❖ Compile Time approach enables more functions to be

memoized

❖ Increases the efficiency of memoization

❖ Code size is increased but not much performance degradation

47

Can we further increase performance benefit?

Hardware Memoization

48

Hardware Support
❖ Makes memoization more efficient

❖ Reduces overhead by faster indexing

❖ Faster table look-up

❖ Enables parallel look-up/execution and hence almost no overhead of look-up
failure

❖ Associativity becomes more practical

❖ Smaller memoization table size

❖ Centralised table

❖ Introduces branch mis-prediction penalty in case of a miss prediction in table
look-up

49

Profitability Curve

50

Function Hit Time
- th (ns)

Miss-
prediction
Penalty -
tpen(ns)

Avg. Time- Tf
(ns)

Repetition
Needed - H

(%)

exp

2 20

90 2

log 92 2

sin 110 2

cos 123 2

j0 395 1

j1 325 1

pow 190 1

H ⇥ th + (1�H)(Tf) + tpen < Tf

H ⇥ th + Tf �H ⇥ Tf + tpen < Tf

tpen < H(Tf � th)

=) H >
tpen

Tf � th
(1)

H ⇥ th + (1�H)(Tf) + tpen < Tf

H ⇥ th + Tf �H ⇥ Tf + tpen < Tf

tpen < H(Tf � th)

=) H >
tpen

Tf � th
(1)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400

R
ep

et
iti

on
 n

ee
de

d
(%

)

Avg. time (ns)

Software profitability curve
Hardware profitablility curve

Average mis-
prediction penalty

New Instructions

❖ MSCALL – does indexing and table look-up

❖ MSUPDATE – updates the memoization table

❖ Both have different variants for each function prototype
being handled

❖ These two instructions are doing the same function as
done by “if-memo” tool but in hardware

51

Working

❖ Same scheme as for compile time approach in
identifying memoizable functions

❖ Instead of calling memoization wrapper, MSCALL and
MSUPDATE instructions are inserted at each call site of
a memoizable function by the compiler

❖ Low latency functions also become memoizable now -
example sqrt

52

53

Inc	RET	address	
RETURN

Hit	in	Table

Miss	in	Table

Conditional	call	to		
actual	function

Tag Value

Hardware	Memo	Table

…	
MSCALL	

MSUPDATE	
...

HM

MM

HH

MH

Pipeline	Flush

JMP	<func>

Pipeline	Flush

Hit
Miss

Hit	is	
predictedMiss	is	predicted

MSCALL and
MSUPDATE are
adjacent instructions
MSCALL does
memoization table
look-up

On look-up success,
MSCALL returns
incrementing the return
address to skip MSUPDATE

On look-up failure, an
actual function call takes
place

• Returns to
MSUPDATE

• Memoization table
gets updated

HIT predicted  
and  

it is a HIT

in
de
x

Hardware Memoization Table
❖ Centralised

❖ Associative

❖ Pseudo-LRU policy using 3 LRU bits for replacement

54

Evaluation
❖ Applications are run with hardware memoization table

being implemented in software

❖ Hit rates and function run times are measured

❖ Hardware runtime estimated using the found hit rates
and the run times assuming 4 clock cycle table look-up
time

❖ No extra overhead in case of table look-up failure

❖ Table look-up prediction failure causes a pipeline flush

55

Hardware Time Estimation

56

Application runtime with hardware memoization is calculated as

Htime = Etime +

nX

i=1

hwtimei + Pbi ,

where Etime is the application execution time excluding the memoizable func-

tions, hwtimei is the estimated hardware runtime and Pbi is the average branch

miss prediction penalty for the ith memoized function per function call

Branch mis-prediction is measured using a single counter
software predictor (4 bits and 16 states) and given a 20 cycle
penalty on mis-prediction

Etime - application execution time excluding the memoizable functions  
hwtimei - estimated hardware runtime for function i 
Pbi - average branch mis-prediction penalty for function i

Result: Memoization with Hardware Support

57

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

bwaves

tonto
wrf

gemsFDTD

povray
equake

gafort

Sp
ee

d
U

p

software
hardware

SPEC benchmarks

Result: Memoization with Hardware Support

58

 0.8

 1

 1.2

 1.4

 1.6

 1.8

ATMI
population-dynamics

barsky
histo

blackscholes

fmm
ocean_cp

water_spatial

Sp
ee

d
U

p

software
hardware

Selected Applications

Results

❖ Most benchmarks have a much better speed-up
compared to compile time approach

❖ Some benchmarks — ocean_cp, bwaves, ATMI — have a
lower speed-up mainly due to increased collision in the
memoization table (table being smaller in hardware)

❖ Very high speed-up for equake as the memoized
functions were small and highly critical

59

Conclusion

❖ At present Memoization gives speed up even in software

❖ Arguments do repeat a lot in real applications

❖ A simple LD_PRELOAD technique is good for memoizing
dynamically linked functions

❖ Compile time approach allows memoization of user defined
functions and lowers the threshold of memoization by inlining

❖ Hardware support can further increase the memoization
efficiency

60

Further Extensions
❖ Hardware Memoization with a back-up software

memoization

❖ Pre-filling memoization table

❖ Similar to pre-fetching

❖ Requires a helper thread to be made using just enough
code to generate the argument to function

❖ Requires proper synchronisation with main thread

❖ Applicability to approximation domains

61

Thank You

62

