y 4

informatiques g mathématiques UNIVERSITE D E%
LA RENNES 1

T — T

T —

IﬂtCI'CCptiﬂg FUﬂCtiOHS Arjun Suresh

Advisor: Erven ROhOU

for MemOiZ ation Co-Advisor: André Seznec

Inria, Rennes May 10, 2016



Introduction

* We live in a performance hungry world
* Hardware clock frequency has reached its limit

* S50, we should try to reduce the no. of cycles required



Memoization



Memoization

+ Save the result of execution so that future executions

may be avoided

+ Hardware as well as Software approaches
* Instruction level - DIV (x,y)

+ Basic block level - {x=y"y/6.75;}

+ Function level - sin(x)



Function Memoization

“A pure function always returns the same result for
the same input set and does not modify the global
state of the program”

int fun(int * p, float arg) {

5.; sin(arqg);//arg = 6.7
+ Save the result of a function call

“ When arguments repeat, function sin(arg)

execution can be avoided Arg. Value Result

* But function needs to be pure

6.7 0.40484992061

38 0.2963685787



Not all pure functions need to be memoized

* Long latency functions
*  to make memoization productive
“ can be statically determined in most cases
* Repeatability in arguments across calls
« difficult to know before program run
+ (ritical ones
+ memoized function must be called a lot of times

» even otherwise we just lose an opportunity for benefit



Examples of memoizable Functions

Transcendental functions in libm

* Trigonometric Functions (sin, cos, tan)
+ Bessel Functions (70, j1)

+ Exponential Functions (exp, pow, log)



Required Repetition Rate




Required Repetition Rate

2 GHz Intel Ivybridge
m Hit Time- t (ns) | Overhead- tno (ns) | Avg. Time- Te(ns) | oPer o7 Needee

(o]

exp 90 48

log 92 47

sin 110 41

CoS 30 55 123 37

0 395 13

i1 325 16

pow 190 27

HXth+(1—H)(Tf—|-tmo) <Tf

tmo

— H >
Tf—l'tmo_th




Repetition needed (%)

Profitability Curves

1 T T T T T T T T
00 Profitability curve 100 Profitability curve Ivy Bridge
Intel GNU - Profitability curve Cortex-A9
g0l = ~ Intel = 80 | lvy Bridge =
GNU < | | |  Cortex-A9 e
: %’ : : : : : :
60 | 8 60|
c ‘
c |
T ! = v 2 40 .
2
3 (O] s s
0 | | | | | | | | 0 | | | | | ;
0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400
Avg. time (ns) Avg. time (ns)
gCC VS icC Intel Ivybridge vs ARM Cortex A9
More repetition needed for icc More repetition needed for ARM

10



Are arguments repeating?

Argument behaviour can be classified into three:
* There are only a few unique arguments
+ A small memoization table is enough

* There are a large number of unique calls but arguments do have
repetitions

+ Memoization benefit increases with size of memoization table
* Arguments are largely unique

* Memoization gives no benefit

11



An Example of Argument Repetition

Case of j0() function in ATMI application Cumulative callo count with respect to no.
of unique arguments
100 216 k

o 90}
Fully Associative Table ° s 80}
2 60}l
4k 8 T 50}
oo 40 |
16k 13 _,g a0l
S 20}
64k 28 3l

el 100 50k 50k 50k 50k 250k

No. of unique arguments

12



Memoization Table

* A direct-mapped hash-table for each memoized function
« Up to 64k entries tagged with arguments

* Requires up to IMB of physical memory per
memoized function — 2 * 8 bytes * 64 k

Memoization Table

—l Tag

eiieeineeed arg Sin(arg)

13



XOR Hashing

63 32 | 31 0
XOR
31 16 15 0
XOR
D Mask higher order bits for
o Is fast l smaller tables

* 6 SSE instructions
* Very reasonable collisions

15 8 | 7

14

XOR arguments in case of
multiple arguments




Our Memoization Approaches

We propose 3 different approaches for function
memoization each with its own merits and demerits

1. Load time Approach
2. Compile time Approach

3. Compile time Approach Assuming Hardware
Support

15



Load-time Function Interception

16



Load-time Approach

* LD_PRELOAD to intercept dynamic calls to shared library
functions

* Memoization wrapper of function from preloaded library gets

precedence to original ones and takes care of memoization

* No need of re-compilation or availability of source code

+ Can be used even a naive user

* We illustrate the working for libm but same mechanism
works for any dynamically linked library

17



Intercepting Calls to libm

Stub for sin int fun(){

' *(GOT + si ffset) =
Global Offset imp *( sin_offset)

Table b = sin(arg);
. <call sin@plt>

sin :sinin libm

|_DPRELOAD=”memIibm.so"

Stub for sin int fun(){
jmp *(GOT + sin_offset) =

}...

Global Offset

b = sin(arg);

Table double sin double <call sin@plt>
_ C look up table
sin > sinin return on success
memlibm call real sin }
update table
}
P

18




In case of slowdown?

When there are a large number of calls to a memoized function but arguments
to them are not repeating enough, memoization can cause slowdown

+ Turn-off memoization
* Same mechanism as turning-on
+ Modity GOT
* A helper thread monitors the argument behaviour

* Replaces the memoizedlibm entry with the libm entry in case of low
repetition

“ Application runs exactly as without memoization

19



Experimental Set-up

* 2 Application Sets
* SPEC benchmarks
* Selected Applications

* Intel Ivybridge and ARM
Cortex A9

* gcc as well as icc using Intel
Math

Intel Ivybridge
Processor Intel Core i7  ARM Cortex A9
2 GHz 1.2 GHz

3.11 3.11
. - -

20



Results - Intel lvybridge

SPEC Benchmarks

1.761.731.69
1.3

1.25
1.2
1.15

1.1

Speed Up

1.05

0.95

21



Results - Intel lvybridge

Selected Benchmarks

Speed Up

22



Results - ARM Cortex A9

SPEC and Selected Applications

1 1 2 3.13.02.9 :
3 3 3 3 : ‘ 64K m—
11+ B0 g 16k
A —
108+ BN s R o =
=
> 106 BN D | O T || R
© : : : : s :
3
& 104 NN S | [ R — S | .
72
102 S0 S . R | B
1 ; : : : :
0.98

23



Normalized Speed Up

1.05
1.04
1.03
1.02
1.01

0.99
0.98

Results -icc

Spec Benchmarks

24




Speed Up

1.2

1.15

1.1

1.05

0.95

0.9

Results -icc

Selected Applications

25




Free Result

“ bwaves of SPEC 2006 gave 1.76 times improvement on
runtime on Intel Ivybridge

+ 3.1 times on ARM

* pow implementation of libgcc has a performance bug

+ Happens for pow(m, n), where m is very close to 1 and n
is very close to 0.75

+ With icc/IntelMath the benefit drops to 3%

26



Result-Summary

SPEC benchmarks give 1-24% speedup on Intel Ivybridge

Drops to up to 10% on ARM Cortex A9

Other selected applications give 1-50% speed up on Intel Ivybridge
Drops to up to 14% on ARM Cortex A9

With icc, speed-ups drop to 1-15%

Again Selected Applications give more benefit compared to SPEC ones

27



Associatvity

* A 4 way associative hash-table

* 4 sets of 2 X 8 bytes (8 bytes each for a double-precision
argument and result) for each table entry

« Each table access requires exactly one cache-line fetch (64 bytes
on x86-64)

+ Allows for even larger size for memoization table without
much penalty of last level cache miss

* 2 way associative implementation for ARM due to 32 byte
cache line

28



Applying Associativity

Associativity on Intel Ivybridge

64k m——

: : : 64k,4-way
3o 8 O T T S— 2560k mmm—
- 256k,4-way mm—

ATMI

Speed Up
N

Fully Associative %Capture
Table Size

4k 8
16k 13
64k 28

29 256k 100



Applying Associativity

Associativity on ARM Cortex A9

3-5 i B
32k
32k,2-way
CJ)| MUUUE S WS WS NS S S 128k mmmm |

 128K,2-way m—

ATMI

Speed Up
N

0.5
%, B % %, T By %, % % %
o) %, (o (o) /)//n (&) C;g O&
G%@@ 7 %/) 9 7

Fully Associative % Capt
+ Associativity gave very good result 4k 8
» >64k without associativity gave slowdown on Intel 16k 13
64k 28

Ivybridge

30 256k 100



if-memo

“ Our memoization tool

* Takes care of function interception

* Maintains the memoization table, hashing and helper thread
monitoring

* Works for our selected transcendental functions and can be easily
extended for newer functions

31



Summary

Advantages:
« Simple to use —just set an environment variable

+ No need of source code

Disadvantage:

“ Works for only dynamically linked functions

32



Compile Time Function
Interception

33



Compile Time Approach

Advantages:
* More generic- can be applied to any memoizable function
* Facilitates inlining of memoization wrapper

* Allows to handle functions having pointers and global
variable usage

* Constants can be handled efficiently
Disadvantage:

“ Requires recompilation and hence the availability of user code

34



Profitability Curve

Repetition

Needed (%)

2 GHz Intel Ivybridge
Function Ali M | OVEH Avg. Time (ns)
exp 90
log 92
11 110
21 55
cos 123
jo 395
j1 325
pow 190

44

43

38

35

13
15

25

Repetition needed (%)

100

(0]
(@)

)
o

LN
o

N
o

* Inlining lowers the memoization threshold
e Smaller functions require lower repetition rates

35

Preload profitability curve -
Inline profitablility curve -

O 50 100 150 200 250 300 350 400
Avg. time (ns)

e — —



Implementation

# Use LLVM Compiler Infrastructure

* Memoization Pass to identity potential functions

* Re-use the memoization framework — extending
“if-memo” tool

36



Memoization Pass

# Is a transtorm pass at module level

* Checks each function to be memoizable — pure and
calling only pure functions — and generates the
corresponding information in a file

# This information — function name and prototype — is
used at link time for generating and linking the
memoization code

37



[.I.VM workflow for Memoization

Source 1

g Memoization BERAVELE
Pass

>RV osl LLVM IR

Souice 2

Pass

Soulce n)

Memoization ERRAYA RIS
Pass
Memoization.c

+
S -

Memoization
Information

Use dragonegg to convert source code to
LLVM IR

Memoization code is generated by if-
memo tool and linked to the binary

llvm-link opt .y

(single (For inlining ¢ gcct:

LLVM IR memoizatio genetale
Memoization file) n code) final exe

LLVM IR

38




Function Prototypes

* We handle up to 2

parameters fOr memOizatiOn Generalized Function Prototypes
excluding constants i - int,int
ff — float , float
dd — double, double
# Requires a large number of (i _ flost, float, float
. ddd - dO}lblc: douPlc, double
function prototypes to be I .
viijj — void, int, int, int*, int=x
handled vfg“ — void, float , float=
vigg — void, float, floatx, float=
vifgg — vo?d, float , float , float=*, float=x
# Sort the parameters based Ve  void, double, doubles, doubles
. vddee — void, double, double, doublex, doublex
on their type to reduce the

number of memoization
function types

39



Pointers

Pointed value is the concern

# RD Only — Pointed value handled like a normal
argument. Takes part in table indexing

* WR Only - Pointed value is not used for table
indexing, but just to store the result in the
memoization table

+ RD/WR - Pointed value is used for table indexing
and final value is stored in table

40



Constants

Example:
* foo (2,x) -> memoized_foo(x)
* Memoized_foo(x) calling foo(2,x)

+ Facilitated by passing a call string to the memoization
wrapper

* Memoization becomes call site specific

41



Experimental Set-up

* blackscholes from PARSEC and

histo from Parboil suite are
additional benchmarks

* Experiments run on Intel

Ivybridge

42

Processor
L3 Cache

Clock Speed

Linux Version

llvm version

optimisation flag

Intel Core i7
8 MB

2.3 GHz

8 GB

3.19

3.7

-O3



Results: Compile time vs Preload

SPEC benchmarks

1.3

1.25
12
1.15 F

Speed Up

11}
1.05 |

0.95

43



Results: Compile time vs Preload

Selected Applications

1.3 : :
| g g g 3 Compile I
125 M R —_— _—_— ~ preload ==
D B | B e
2 115 = | e B R B .
§®) 3 3 : : : : 3
$
g 11 - - B B R R .
@
105 - M Mo e
0.95

% O %, %, % %
L@® (o) S A Qf@ 7
)
gz

4



Results

* Most benchmarks gave better runtime compared to
LD_PRELOAD approach

“ Performance improvement for histo and blackscholes

where memoized functions were user defined (statically

linked)

45



Increase in Code Size

1.4 =
~ sizeChange
L R
* Inlining memorisation § s
© | | | | | | | | | | | | |
- =12 e
wrapper increases the g '
. o 1.2
code size g 115
_“N-’ 1.1 |
* Code size increase can g 105
° Q 1 - Co o Co o Co o o o C 7
atfect run time S S T N T O e _
ol
6/) é‘lx % %’f Oop GQ(/ S5 R dp//)) é<9/~ 6’6‘/ 6{9 @9}' OO@ ¢
© QL@@ %?'(‘ Y % % 2, K2 Q{:"o ®<@ (92
O)é O@/b 60/ 'Oc?/c.
% ) S

46



Summary

“ Compile Time approach enables more functions to be
memoized

* Increases the efficiency of memoization

“ Code size is increased but not much performance degradation

Can we further increase performance benefit?

47



Hardware Memoization

48



Hardware Support

+ Makes memoization more efficient

+ Reduces overhead by faster indexing
+ Faster table look-up

+ Enables parallel look-up /execution and hence almost no overhead of look-up
failure

+ Associativity becomes more practical

+ Smaller memoization table size

+ Centralised table

# Introduces branch mis-prediction penalty in case of a miss prediction in table
look-up

49



Profitability Curve

Miss-
Hit Time | prediction | Avg. Time- Tt
Penalty -
tpen(ns)

Repetition
Needed - H 100

Function

Software ‘profita‘bility curve
 Hardware profitablility curve -

e L L s

(%)

9
© 1 1 1 1 1 1 1 1
) 1 1 1 1 1 1 1 1
D 60 - """"""""' I - B
og 22 2 :
<
sin 110 2 z A0 e
(0] : ; ; ; : : : i
% 1 1 1 1 1 1 1 1
coSs 2 20 123 2 o o0 -\ ,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,, ,,,,,
jo 395 1
0 i i i \ 1 —0— - —
i1 305 1 0 50 100 150 200 250 300 350 400
Avg. time (ns)
pow 190 1 T — .

H Xty + (1= H)(Tf) + tpen < T

Average mis-

prediction penalty




New Instructions

* MSCALL — does indexing and table look-up
+ MSUPDATE — updates the memoization table

+ Both have different variants for each function prototype
being handled

* These two instructions are doing the same function as
done by “if-memo” tool but in hardware

51



Working

* Same scheme as for compile time approach in
identifying memoizable functions

“ Instead of calling memoization wrapper, MSCALL and

MSUPDATE instructions are inserted at each call site of
a memoizable function by the compiler

* Low latency functions also become memoizable now -

example sgrt

52



Hit is
Miss is predicted predicted

Conditional call to
actual function
MSCALL >
> MSUPDATE -
<

MSCALL and HIT predicted

MSUPDATE are Inc RET address < and

adjacent instructions RETURN Ll 2l

MSCALL does 1

memoization table On look-up success,

look-up MSCALL returns Pipeline Flush

g incrementing the return /
S| address to skip MSUPDATE

On look-up failure, an Hardware Memo Table 0
actual function call takes Tag Value

1 .
place Hit v

e Returns to , -
Miss
MSUPDATE
 Memoization table
gets updated
JMP <func> [« MM

1

53

Pipeline Flush




Hardware Memoization Table

+ Centralised
+ Assoclative

“ Pseudo-LRU policy using 3 LRU bits for replacement

1112 |8 | 64 [ ___ 64 | ____ 64 _____ 64

V [ ASID | FID Arg1 Arg2 Res1 | |1 Res2

1112 |8 | &4 | ___ 64 | ___. 64__ 64

V | ASID | FID Arg1 Arg2 Rest | | Res2

3t [ 12 |8 | 64 | ___ 64 ___ | ____ 64 | ___. 64 .
V| ASID |FID | Arg1 Arg2 Res1 Res2

O - - 64 | 64 | 64 | .. 64 ____
V| ASID |FID | Arg1 Arg2 Res1 Res2

54



Evaluation

* Applications are run with hardware memoization table
being implemented in software

+ Hit rates and function run times are measured

* Hardware runtime estimated using the found hit rates
and the run times assuming 4 clock cycle table look-up
time

* No extra overhead in case of table look-up failure

+ Table look-up prediction failure causes a pipeline flush

55



Hardware Time Estimation

Application runtime with hardware memoization is calculated as

th'me — Etime + Z hwtimei + Pbm
1=1

Etime - application execution time excluding the memoizable functions
hWiime; - estimated hardware runtime for function i

Py; - average branch mis-prediction penalty for function i

Branch mis-prediction is measured using a single counter
software predictor (4 bits and 16 states) and given a 20 cycle
penalty on mis-prediction

56



Result: Memoization with Hardware Support

SPEC benchmarks

Speed Up

57



Result: Memoization with Hardware Support

Selected Applications

1-8 : : B
~ software
1.6 F B e - — g - hardware D -

Speed Up

58



Results

* Most benchmarks have a much better speed-up
compared to compile time approach

* Some benchmarks — ocean_cp, bwaves, ATMI — have a
lower speed-up mainly due to increased collision in the
memoization table (table being smaller in hardware)

* Very high speed-up for equake as the memoized
functions were small and highly critical

59



Conclusion

“ At present Memoization gives speed up even in software
* Arguments do repeat a lot in real applications

* A simple LD_PRELOAD technique is good for memoizing
dynamically linked functions

* Compile time approach allows memoization of user defined
functions and lowers the threshold of memoization by inlining

* Hardware support can further increase the memoization
efficiency

60



Further Extensions

+ Hardware Memoization with a back-up software
memoization

+ Pre-filling memoization table
« Similar to pre-fetching

+ Requires a helper thread to be made using just enough
code to generate the argument to function

» Requires proper synchronisation with main thread

« Applicability to approximation domains

61



Thank You

7

=
® |

62



