
May 10, 2016

Intercepting Functions 
for Memoization

Arjun Suresh
Advisor: Erven Rohou

Co-Advisor: André Seznec

Inria, Rennes



Introduction

❖ We live in a performance hungry world

❖ Hardware clock frequency has reached its limit

❖ So, we should try to reduce the no. of cycles required
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Memoization
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Memoization

❖ Save the result of execution so that future executions 
may be avoided

❖ Hardware as well as Software approaches

❖ Instruction level -   DIV (x,y) 

❖ Basic block level -   { x = y*y/6.75;}

❖ Function level     -   sin(x)
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Function Memoization

int fun(int * p, float arg){ 
  ... 
  b = sin(arg);//arg = 6.7 
  ... 
} 

sin(arg)
Arg. Value Result

- - - - - 

6.7 0.40484992061
- - - - -

38 0.2963685787
- - - - -

“A	pure	function	always	returns	the	same	result	for	
the	same	input	set	and	does	not	modify	the	global	
state	of	the	program”

❖ Save the result of a function call

❖ When arguments repeat, function 
execution can be avoided

❖ But function needs to be pure
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Not all pure functions need to be memoized

❖ Long latency functions 

❖  to make memoization productive 

❖ can be statically determined in most cases

❖ Repeatability in arguments across calls 

❖  difficult to know before program run

❖ Critical ones

❖ memoized function must be called a lot of times 

❖  even otherwise we just lose an opportunity for benefit 
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Examples of memoizable Functions

Transcendental functions in libm

❖ Trigonometric Functions (sin,	cos,	tan)

❖ Bessel Functions (j0,	j1)

❖ Exponential Functions (exp,	pow,	log)
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Required Repetition Rate
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Required Repetition Rate
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Function Hit Time- th (ns) Overhead- tmo (ns) Avg. Time- Tf (ns) Repetition Needed- 
H (%)

exp

30 55

90 48

log 92 47

sin 110 41

cos 123 37

j0 395 13

j1 325 16

pow 190 27

2 GHz Intel Ivybridge



Profitability Curves
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gcc vs icc Intel Ivybridge vs ARM Cortex A9

More repetition needed for icc More repetition needed for ARM 
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Are arguments repeating?

Argument behaviour can be classified into three:

❖ There are only a few unique arguments

❖ A small memoization table is enough

❖ There are a large number of unique calls but arguments do have 
repetitions 

❖ Memoization benefit increases with size of memoization table

❖ Arguments are largely unique

❖ Memoization gives no benefit
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An Example of Argument Repetition 
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Case of j0() function in ATMI application

 Fully Associative Table 
Size %Capture

4k 8

16k 13

64k 28

256k 100

Cumulative call count with respect to no. 
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Memoization Table
❖ A direct-mapped hash-table for each memoized function

❖ Up to 64k entries tagged with arguments 

❖ Requires up to 1MB of physical memory per 
memoized function — 2 * 8 bytes * 64 k

13

Tag Value

arg sin(arg)

arg Index
Hash Memoization	Table



XOR Hashing
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63 32 31 0
- - - - - - - - - - 

31 16 15 0

- - - - - - - - - - 

15 8 7 0
- - - - - - - - - - 

• Is fast
• 6 SSE instructions
• Very reasonable collisions

• Mask higher order bits for 
smaller tables

• XOR arguments in case of 
multiple arguments

XOR

XOR



Our Memoization Approaches

We propose 3 different approaches for function 
memoization each with its own merits and demerits 

1. Load time Approach 

2. Compile time Approach

3. Compile time Approach Assuming Hardware 
Support
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Load-time Function Interception
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Load-time Approach

❖ LD_PRELOAD to intercept dynamic calls to shared library 
functions

❖ Memoization wrapper of function from preloaded library gets 
precedence to original ones and takes care of memoization

❖ No need of re-compilation or availability of source code

❖ Can be used even a naive user

❖ We illustrate the working for libm but same mechanism 
works for any dynamically linked library

17



Intercepting Calls to libm
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int	fun(){	
		...	
		b	=	sin(arg);	
<call	sin@plt>	
		...	
}

Stub	for	sin	
jmp	*(GOT	+	sin_offset)	

libm	
double	sin(double	arg)	{	
			...	
}

Global	Offset	
Table	
….	

sin	:	sin	in	libm	
….

double	sin(double	arg)	{	
		look	up	table	
		return	on	success	
		call	real	sin	
		update	table	
}

int	fun(){	
		...	
		b	=	sin(arg);	
<call	sin@plt>	
		...	
}

Stub	for	sin	
jmp	*(GOT	+	sin_offset)	

Global	Offset	
Table	
….	

sin	:	sin	in	
memlibm	

….

LDPRELOAD=“memlibm.so”



In case of slowdown?

When there are a large number of calls to a memoized function but arguments 
to them are not repeating enough, memoization can cause slowdown

❖ Turn-off memoization

❖ Same mechanism as turning-on

❖ Modify GOT

❖ A helper thread monitors the argument behaviour

❖ Replaces the memoizedlibm entry with the libm entry in case of low 
repetition

❖ Application runs exactly as without memoization

19



Experimental Set-up

❖ 2 Application Sets
❖ SPEC benchmarks 
❖ Selected Applications

❖ Intel Ivybridge and ARM 
Cortex A9

❖ gcc as well as icc using Intel 
Math

20

Intel Ivybridge ARM Cortex A9

Processor Intel Core i7 ARM Cortex A9

L3 Cache 8 MB 1 MB

Clock Speed 2 GHz 1.2 GHz

RAM 8 GB 1 GB

Linux kernel 3.11 3.11

gcc version 4.8 4.7

icc version 9 —

optimisation flag -O3 -O2

libm version 2.2 2.2



Results - Intel Ivybridge
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Results - Intel Ivybridge
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Selected Benchmarks
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Results - ARM Cortex A9
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Results - icc 
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Spec Benchmarks
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Results - icc 
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Selected Applications

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

ATMI
population_dynamics

barsky
fmm

ocean_cp

water_spatial

Sp
ee

d 
U

p
64k
16k

4k



Free Result

❖ bwaves of SPEC 2006 gave 1.76 times improvement on 
runtime on Intel Ivybridge

❖ 3.1 times on ARM

❖ pow implementation of libgcc has a performance bug

❖ Happens for pow(m, n), where m is very close to 1 and n 
is very close to 0.75

❖ With icc/IntelMath the benefit drops to 3% 
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Result-Summary
❖ SPEC benchmarks give 1-24% speedup on Intel Ivybridge

❖ Drops to up to 10% on ARM Cortex A9

❖ Other selected applications give 1-50% speed up on Intel Ivybridge

❖ Drops to up to 14% on ARM Cortex A9

❖ With icc, speed-ups drop to 1-15%

❖ Again Selected Applications give more benefit compared to SPEC ones

27



Associativity
❖ A 4 way associative hash-table

❖ 4 sets of 2 X 8 bytes (8 bytes each for a double-precision 
argument and result) for each table entry

❖ Each table access requires exactly one cache-line fetch (64 bytes 
on x86-64)

❖ Allows for even larger size for memoization table without 
much penalty of last level cache miss

❖ 2 way associative implementation for ARM due to 32 byte 
cache line

28



Applying Associativity
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Associativity on Intel Ivybridge
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Applying Associativity
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Associativity on ARM Cortex A9

❖ Associativity gave very good result
❖ >64k without associativity gave slowdown on Intel 

Ivybridge
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if-memo

❖ Our memoization tool
❖ Takes care of function interception
❖ Maintains the memoization table, hashing and helper thread 

monitoring
❖ Works for our selected transcendental functions and can be easily 

extended for newer functions

31



Summary

Advantages:

❖ Simple to use – just set an environment variable

❖ No need of source code

Disadvantage:

❖ Works for only dynamically linked functions

32



Compile Time Function 
Interception
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Compile Time Approach
Advantages:

❖ More generic- can be applied to any memoizable function

❖ Facilitates inlining of memoization wrapper

❖ Allows to handle functions having pointers and global 
variable usage

❖ Constants can be handled efficiently

Disadvantage:

❖ Requires recompilation and hence the availability of user code

34



Profitability Curve
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Function Hit Time 
(ns)

Overhead 
(ns) Avg. Time (ns) Repetition 

Needed (%)

exp

21 55

90 44

log 92 43

11 110 38

cos 123 35

j0 395 13
j1 325 15

pow 190 25

• Inlining lowers the memoization threshold
• Smaller functions require lower repetition rates

2 GHz Intel Ivybridge
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Implementation

❖ Use LLVM Compiler Infrastructure

❖ Memoization Pass to identify potential functions

❖ Re-use the memoization framework — extending  
  “if-memo” tool
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Memoization Pass

❖ Is a transform pass at module level

❖ Checks each function to be memoizable — pure and 
calling only pure functions — and generates the 
corresponding information in a file

❖ This information — function name and prototype — is 
used at link time for generating and linking the 
memoization code

37



LLVM workflow for Memoization
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Function Prototypes
❖ We handle up to 2 

parameters for memoization 
excluding constants

❖ Requires a large number of 
function prototypes to be 
handled

❖ Sort the parameters based 
on their type to reduce the 
number of memoization 
function types

39



Pointers
Pointed value is the concern

❖ RD Only – Pointed value handled like a normal 
argument. Takes part in table indexing

❖ WR Only – Pointed value is not used for table 
indexing, but just to store the result in the 
memoization table

❖ RD/WR – Pointed value is used for table indexing 
and final value is stored in table

40



Constants

Example:

❖ foo (2,x) -> memoized_foo(x)

❖ Memoized_foo(x) calling foo(2,x) 

❖ Facilitated by passing a call string to the memoization 
wrapper

❖ Memoization becomes call site specific 

41



Experimental Set-up

❖ blackscholes from PARSEC and 
histo from Parboil suite are 
additional benchmarks

❖ Experiments run on Intel 
Ivybridge

42

Processor Intel Core i7

L3 Cache 8 MB

Clock Speed 2.3 GHz

RAM 8 GB

Linux Version 3.19

llvm version 3.7

optimisation flag -O3



Results: Compile time vs Preload
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SPEC	benchmarks
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Results: Compile time vs Preload
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Selected	Applications
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Results

❖ Most benchmarks gave better runtime compared to 
LD_PRELOAD approach

❖ Performance improvement for histo and blackscholes 
where memoized functions were user defined (statically 
linked)

45



Increase in Code Size

❖ Inlining memorisation 
wrapper increases the 
code size

❖ Code size increase can 
affect run time 
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Summary
❖ Compile Time approach enables more functions to be 

memoized

❖ Increases the efficiency of memoization

❖ Code size is increased but not much performance degradation

47

Can we further increase performance benefit?



Hardware Memoization
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Hardware Support
❖ Makes memoization more efficient

❖ Reduces overhead by faster indexing

❖ Faster table look-up

❖ Enables parallel look-up/execution and hence almost no overhead of look-up 
failure

❖ Associativity becomes more practical

❖ Smaller memoization table size

❖ Centralised table

❖ Introduces branch mis-prediction penalty in case of a miss prediction in table 
look-up
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Profitability Curve
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New Instructions

❖ MSCALL – does indexing and table look-up

❖ MSUPDATE – updates the memoization table

❖ Both have different variants for each function prototype 
being handled

❖ These two instructions are doing the same function as 
done by “if-memo” tool but in hardware
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Working

❖ Same scheme as for compile time approach in 
identifying memoizable functions

❖ Instead of calling memoization wrapper, MSCALL and 
MSUPDATE instructions are inserted at each call site of 
a memoizable function by the compiler

❖ Low latency functions also become memoizable now - 
example sqrt
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Inc	RET	address	
RETURN

Hit	in	Table

Miss	in	Table

Conditional	call	to		
actual	function

Tag Value

Hardware	Memo	Table

…	
MSCALL	

MSUPDATE	
...

HM

MM

HH

MH

Pipeline	Flush

JMP	<func>

Pipeline	Flush

Hit
Miss

Hit	is	
predictedMiss	is	predicted

MSCALL and 
MSUPDATE are 
adjacent instructions
MSCALL does 
memoization table 
look-up

On look-up success, 
MSCALL returns 
incrementing the return 
address to skip MSUPDATE

On look-up failure, an 
actual function call takes 
place

• Returns to 
MSUPDATE

• Memoization table 
gets updated
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and  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Hardware Memoization Table
❖ Centralised

❖ Associative

❖ Pseudo-LRU policy using 3 LRU bits for replacement
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Evaluation
❖ Applications are run with hardware memoization table 

being implemented in software

❖ Hit rates and function run times are measured 

❖ Hardware runtime estimated using the found hit rates 
and the run times assuming 4 clock cycle table look-up 
time

❖ No extra overhead in case of table look-up failure

❖ Table look-up prediction failure causes a pipeline flush
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Hardware Time Estimation
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Application runtime with hardware memoization is calculated as

Htime = Etime +

nX

i=1

hwtimei + Pbi ,

where Etime is the application execution time excluding the memoizable func-

tions, hwtimei is the estimated hardware runtime and Pbi is the average branch

miss prediction penalty for the ith memoized function per function call

Branch  mis-prediction  is  measured  using  a  single  counter 
software predictor  (4  bits  and 16 states)  and given a  20  cycle 
penalty on mis-prediction 

Etime - application execution time excluding the memoizable functions  
hwtimei - estimated hardware runtime for function i 
Pbi - average branch mis-prediction penalty for function i 



Result:  Memoization with Hardware Support
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Result:  Memoization with Hardware Support

58

 0.8

 1

 1.2

 1.4

 1.6

 1.8

ATMI
population-dynamics

barsky
histo

blackscholes

fmm
ocean_cp

water_spatial

Sp
ee

d 
U

p

software
hardware

Selected Applications



Results

❖ Most benchmarks have a much better speed-up 
compared to compile time approach

❖ Some benchmarks — ocean_cp, bwaves, ATMI — have a 
lower speed-up mainly due to increased collision in the 
memoization table (table being smaller in hardware)

❖ Very high speed-up for equake as the memoized 
functions were small and highly critical
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Conclusion

❖ At present Memoization gives speed up even in software 

❖ Arguments do repeat a lot in real applications

❖ A simple LD_PRELOAD technique is good for memoizing 
dynamically linked functions

❖ Compile time approach allows memoization of user defined 
functions and lowers the threshold of memoization by inlining

❖ Hardware support can further increase the memoization 
efficiency
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Further Extensions
❖ Hardware Memoization with a back-up software 

memoization

❖ Pre-filling memoization table

❖ Similar to pre-fetching

❖ Requires a helper thread to be made using just enough 
code to generate the argument to function

❖ Requires proper synchronisation with main thread

❖ Applicability to approximation domains 
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Thank You
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