

User Privacy in Collaborative Filtering Systems

Antoine Rault

Supervision by Anne-Marie Kermarrec and Davide Frey

Recommendation System (RS)

Automatically recommend items by learning users' interest

Successful Recommendation Systems

Netflix: 75% of views driven by recommendation

Successful Recommendation Systems

Amazon: +29% sales from recommendation

Successful Recommendation Systems

Facebook: News Feed is like a RS

Recommendation System = Privacy Threat

Recommendation System = Privacy Threat

Example: Netflix Prize De-anonymization

Recommendation System = Privacy Threat

Example: Netflix Prize De-anonymization

Lawsuit

Source of threat: data collection

Threat: "Big Brother"

Solution: Decentralization

Source of threat: data collection

Threat: "Big Brother"

Solution: Decentralization

Other sources of threats

Recommendation generation

Output of the RS

CF uses the preferences of users with similar interests in order to make recommendations

CF uses the preferences of users with similar interests in order to make recommendations

Variants of Collaborative Filtering (CF)

- ...
- User-based CF
- ...

User-based Collaborative Filtering

User-based Collaborative Filtering

1. Find most similar users (neighbors)

User-based Collaborative Filtering

- 1. Find most similar users (neighbors)
- 2. Take recommendations from neighbors' profile

Recommendation generation (Similarity computation)

Output of the RS (recommendations themselves)

Collaborative-filtering systems are an underestimated threat to user privacy

Collaborative-filtering systems are an underestimated threat to user privacy, and we propose privacy-preserving mechanisms for different stages of recommendation

Recommendation generation (Similarity computation)

Output of the RS (recommendations themselves)

Recommendation generation (Similarity computation)

Hide & Share Conceal users profile' content during similarity computation Output of the RS (recommendations themselves)

Recommendation generation (Similarity computation)

Hide & Share Conceal users profile' content during similarity computation Output of the RS (recommendations themselves)

Attack analysis & 2-step Prevent a type of privacy attack exploiting received recommendations

Contribution: Hide & Share

User-based CF for user U:

 Find U's K-Nearest-Neighbors (кNN) w/ similarity metric (e.g. cosine)

- Find U's K-Nearest-Neighbors (KNN) w/ similarity metric (e.g. cosine)
- 2. Gather candidate item set from neighbors' profile

- Find U's K-Nearest-Neighbors (KNN) w/ similarity metric (e.g. cosine)
- 2. Gather candidate item set from neighbors' profile
- 3. Rank candidate items with a predictor function

- Find U's K-Nearest-Neighbors (KNN) w/ similarity metric (e.g. cosine)
- 2. Gather candidate item set from neighbors' profile
- 3. Rank candidate items with a predictor function
- 4. Recommend to U the top-N items

- Find U's K-Nearest-Neighbors (KNN) w/ similarity metric (e.g. cosine)
- 2. Gather candidate item set from neighbors' profile
- 3. Rank candidate items with a predictor function
- 4. Recommend to U the top-N items

User-based CF for user U:

- Find U's K-Nearest-Neighbors (KNN) w/ similarity metric (e.g. cosine)
- 2. Gather candidate item set from neighbors' profile
- 3. Rank candidate items with a predictor function
- 4. Recommend to U the top-N items

Decentralized version

Step 1: similarity computation = profile exchange

User-based CF for user U:

- Find U's K-Nearest-Neighbors (KNN) w/ similarity metric (e.g. cosine)
- 2. Gather candidate item set from neighbors' profile
- 3. Rank candidate items with a predictor function
- 4. Recommend to U the top-N items

Decentralized version

Step 1: similarity computation = profile exchange

Privacy threat by "Little Brothers", malicious users

"Little Brothers" adversary

Goal: discover target user's profile by reconstruction attack

"Little Brothers" adversary

Goal: discover target user's profile by reconstruction attack

Capabilities

- Passive information gathering
- Limited active steps:
 - Eavesdrop
 - Bias randomness
 - Unlimited similarity computations
- No collusion, no Sybil attack

Goal

- Measure similarity
- Protect profiles

Goal

- Measure similarity
- Protect profiles

How?

Measure indirectly 2 users' similarity by comparing their respective similarities with random profiles

Hide & Share: Toy Example

Hide & Share: Toy Example

Hide & Share: Toy Example

Hide & Share: Toy Example

Hide & Share: Toy Example

Usual profile representation

List of < *itemID*, *rating* >

Usual profile representation

List of < itemID, rating >

Problem

Random profile (landmark) generation?

Usual profile representation

List of < itemID, rating >

Problem

Random profile (landmark) generation?

Solution: Compact profiles

- Compact profile = Bloom filter
- Containing only liked items

A & B first meeting

1. Setup a secure communication channel

- 1. Setup a secure communication channel
- 2. Common secret w/ bit-commitment scheme

$$A \stackrel{\text{seed} = \text{coin-flipping}()}{\bigstar} B$$

- 1. Setup a secure communication channel
- 2. Common secret w/ bit-commitment scheme
- 3. Derive L random profiles (landmarks) from the secret

- 1. Setup a secure communication channel
- 2. Common secret w/ bit-commitment scheme
- 3. Derive L random profiles (landmarks) from the secret
- 4. Similarity computation w/ the landmarks

- 1. Setup a secure communication channel
- 2. Common secret w/ bit-commitment scheme
- 3. Derive L random profiles (landmarks) from the secret
- 4. Similarity computation w/ the landmarks
- 5. Cosine similarity of "coordinates" vectors (aka landmark coordinates)

A & B first meeting

- 1. Setup a secure communication channel
- 2. Common secret w/ bit-commitment scheme
- 3. Derive L random profiles (landmarks) from the secret
- 4. Similarity computation w/ the landmarks
- 5. Cosine similarity of "coordinates" vectors (aka landmark coordinates)

When A & B meet again

- Reuse the communication channel and landmarks
- Only steps 4 & 5 remain to be done.

- 1. Recommendation quality
- 2. Privacy
- 3. Overhead

- MovieLens: movies recommendation datasets
- Jester: jokes recommendation dataset

	# users	# items	# ratings	rating range
ML-100k ¹	943	1,682	100,000	[15] (integers)
ML-1M ¹	6,040	3,900	1,000,000	[15] (integer)
Jester-1-1 ²	24,983	100	1,810,455	[—10, 10] (reals)

¹MovieLens: http://grouplens.org/datasets/movielens/ ²Jester: http://eigentaste.berkeley.edu/dataset/

1. Datasets split randomly

- 2. KNN graphs computation
- 3. Recommendations

Evaluation: Recommendation Quality Metrics

Precision & Recall

$$precision(user) = \frac{|good|}{|recommended|}$$
$$recall(user) = \frac{|good|}{|relevant|}$$

Evaluation: Recommendation Quality Metrics

Precision & Recall

Evaluation: Recommendation Quality

Higher Recall & Precision = better

Evaluation: Recommendation Quality

Higher Recall & Precision = better

H&S better than random despite similarity approximation

Evaluation: Neighborhood Quality

Normalized neighborhood quality

 $quality(user) = \frac{\overline{sim(user, neighborhood)}}{\overline{sim(user, idealNeighborhood)}}$

Evaluation: Neighborhood Quality

Normalized neighborhood quality

 $quality(user) = \frac{\overline{sim(user, neighborhood)}}{\overline{sim(user, idealNeighborhood)}}$

Higher Neighborhood quality = better

Evaluation: Neighborhood Quality

Normalized neighborhood quality

 $quality(user) = \frac{\overline{sim(user, neighborhood)}}{\overline{sim(user, idealNeighborhood)}}$

Higher Neighborhood quality = better

lower neighborhood quality \neq lower recommendation quality

Profile Reconstruction Attack

- 1. Infer target's compact profile from landmark coordinates
- 2. Deduce items forming the compact profile

Profile Reconstruction Attack

- 1. Infer target's compact profile from landmark coordinates
- 2. Deduce items forming the compact profile

Basic attack

- 1. Compact profile inference: use the most similar landmark as guessed compact profile
- 2. Items inference:
 - Adversary knows: items \leftrightarrow compact profile bits
 - Guesses all matching items

Evaluation: Privacy Metric

Set Score

Given a guessed set of items, how much a profile remains private?

- Profiles = sets of items
- G: guessed profile, P: actual profile
- Range:

Evaluation: Empirical Privacy

Higher Set Score & F1 Score = better

Randomization technique

Randomize a percentage of bits: $\frac{1}{2}$ chance of bit flip

Evaluation: Empirical Privacy

Higher Set Score & F1 Score = better

H&S: highest privacy & good recommendation quality

Upper-bound on leaked information

Knowing the landmarks and the associated coordinates, how much of the profile remains unknown

Upper-bound on leaked information

Knowing the landmarks and the associated coordinates, how much of the profile remains unknown

Conditional entropy: H(W|V, M)

where

- W: Compact profile: $\vec{w} = \frac{\vec{c}}{||\vec{c}||}$, $\vec{w} \in \mathbb{R}^{n}_{[0,1]}$, uniformly distributed
- V: Landmark-based coordinates: $\vec{v} \in \mathbb{R}^{m}_{[0,1]}, \vec{v} = \vec{w}M$
- M: Landmarks: $M \in \mathbb{Z}_2^{n \times m}$, binomial distribution p = 0.05

Manipulating the formula: $H(W|V, M) = H(W) - \mathcal{L}$

 \mathcal{L} : Upper bound on recoverable information about \vec{w}

Manipulating the formula: $H(W|V, M) = H(W) - \mathcal{L}$

 \mathcal{L} : Upper bound on recoverable information about \vec{w} Numerical values

# landmarks	profile size	L	F1 score
m = 25	660	660	0.6690
m = 10	660	505	0.6602
<i>m</i> = 7	660	399	0.6567
m = 5	660	338	0.6480
<i>m</i> = 3	660	283	0.6360

Evaluation: Communication Overhead

Average communication overhead/round For 1 peer, over 50 rounds,

Lower Network consumption = better

Evaluation: Communication Overhead

Average communication overhead/round

For 1 peer, over 50 rounds, 1 round \simeq 30 sec. \rightarrow 20-25 kiB/s

Lower Network consumption = better

Evaluation: Communication Overhead

Average communication overhead/round

For 1 peer, over 50 rounds, 1 round \simeq 30 sec. \rightarrow 20-25 kiB/s

Lower Network consumption = better

H&S: reasonable bandwidth by today's standards

Evaluation: Storage & Computational Overhead

Average storage overhead

Lower Storage = better

Evaluation: Storage & Computational Overhead

Average storage overhead

Lower Storage = better

H&*S*: no profile caching \rightarrow lower storage requirement
Evaluation: Storage & Computational Overhead

Average storage overhead

Lower Storage = better

H&S: no profile caching \rightarrow lower storage requirement

Computational overhead/peer

Negligible from user's perspective (think HTTPS websites)

Contribution: Hide & Share

Conclusion

Conclusion

Good trade-off

- Reasonable recommendation performance
- Reversing H&S is not trivial (empirical privacy)
- Quantified max. information leak (formal privacy)

Other sources of threats

Recommendation generation (Similarity computation)

Hide & Share Conceal users profile' content during similarity computation Output of the RS (recommendations themselves)

Attack analysis & 2-step Prevent a type of privacy attack exploiting received recommendations

Contribution: Attack Analysis & 2–step

Attack on user privacy Using:

- The RS's output
- Auxiliary (a priori) information about target

Attack against user-based CF, proposed in [CKNFS11]¹ but not evaluated

¹"You Might Also Like:" Privacy Risks of Collaborative Filtering ; by Calandrino, Kilzer, Narayanan, Felten, Shmatikov ; in S&P 2011

Attack against user-based CF, proposed in [CKNFS11]¹ but not evaluated

Attack Rationale

If you know all but one of your neighbors' profile, unknown items recommended = remaining neighbor

¹"You Might Also Like:" Privacy Risks of Collaborative Filtering ; by Calandrino, Kilzer, Narayanan, Felten, Shmatikov ; in S&P 2011

Goal Discover items from the target's profile

Goal

Discover items from the target's profile

Capabilities

- Active attack
- Can create fake identities (Sybils)

Goal

Discover items from the target's profile

Capabilities

- Active attack
- Can create fake identities (Sybils)

Knowledge

- Value of к (of кNN)
- Auxiliary info. about target's profile (*i.e* subset of items)

Goal

Discover items from the target's profile

Capabilities

- Active attack
- Can create fake identities (Sybils)

Knowledge

- Value of к (of кNN)
- Auxiliary info. about target's profile (*i.e* subset of items)

Sources of Auxiliary Information

Public profile, item/product reviews, free in decentralized systems

1) Inject Sybils

• Create κ fake identities (Sybils) using Aux. Info.

1) Inject Sybils

- Create κ fake identities (Sybils) using Aux. Info.
- Success criterion: Sybil neighborhood is →

1) Inject Sybils

- Create κ fake identities (Sybils) using Aux. Info.
- Success criterion: Sybil neighborhood is →
- In [CKNFS11]: O(log n) aux. items = target singled out

1) Inject Sybils

- Create κ fake identities (Sybils) using Aux. Info.
- Success criterion: Sybil neighborhood is →
- In [CKNFS11]: O(log n) aux. items = target singled out

1) Inject Sybils

- Create κ fake identities (Sybils) using Aux. Info.
- Success criterion: Sybil neighborhood is →
- In [CKNFS11]: O(log n) aux. items = target singled out

2) Guess Using Recommendations

• Sybil asks RS for recommendations

1) Inject Sybils

- Create κ fake identities (Sybils) using Aux. Info.
- Success criterion: Sybil neighborhood is →
- In [CKNFS11]: O(log n) aux. items = target singled out

2) Guess Using Recommendations

- Sybil asks RS for recommendations
- Sybil users pool their recommendations

1) Inject Sybils

- Create κ fake identities (Sybils) using Aux. Info.
- Success criterion: Sybil neighborhood is →
- In [CKNFS11]: O(log n) aux. items = target singled out

2) Guess Using Recommendations

- Sybil asks RS for recommendations
- Sybil users pool their recommendations
- If **success criterion** met: recommendations come from target's profile

Software

Apache Mahout's user-based collaborative filtering

³MovieTweetings: https://github.com/sidooms/MovieTweetings

Software

Apache Mahout's user-based collaborative filtering

Datasets

	# users	# items	# ratings	rating range
ML-100k	943	1,682	100,000	[15]
Jester-1-1	24,983	100	1,810,455	[-10,10]
MovieTweetings ³	24,921	15,142	212,835	[010]

³MovieTweetings: https://github.com/sidooms/MovieTweetings

Software

Apache Mahout's user-based collaborative filtering

Datasets

	# users	# items	# ratings	rating range
ML-100k	943	1,682	100,000	[15]
Jester-1-1	24,983	100	1,810,455	[-10,10]
MovieTweetings ³	24,921	15,142	212,835	[010]

Impact of similarity metrics

Attack depends on neighborhoods \rightarrow similarity metrics

³MovieTweetings: https://github.com/sidooms/MovieTweetings

Attack Evaluation: Similarity Metrics I

$$Cosine(A, N) = \frac{r_A \cdot r_N}{\|r_A\| \|r_N\|}$$
$$Jaccard(A, N) = \frac{|r_A \cap r_N|}{|r_A \cup r_N|}$$
$$Pearson(A, N) = \frac{cov(r_A, r_N)}{\sigma_A \times \sigma_N} = \frac{\sum\limits_{i \in I_{AN}} (r_{A,i} - \overline{r_A})(r_{N,i} - \overline{r_N})}{\sqrt{\sum\limits_{i \in I_{AN}} (r_{A,i} - \overline{r_A})^2 \sum\limits_{i \in I_{AN}} (r_{N,i} - \overline{r_N})^2}}$$
$$Cos-overlap(u, n) = \frac{u \cdot n}{\sqrt{\sum\limits_{i \in I_{un}} (u_i)^2} \times \sqrt{\sum\limits_{i \in I_{un}} (n_i)^2}}$$

Attack Evaluation: Similarity Metrics II

$$CosineAvg(u, n) = \frac{\sum_{i \in I_u \cup I_n} u_i \times n_i}{\|u\| \|n\|}$$
$$WUP-u(u, n) = \frac{\sum_{i \in I_{un}} u_i \times n_i}{\sqrt{\sum_{i \in I_{un}} (u_i)^2} \times \sqrt{\sum_{i \in I_n} (n_i)^2}}$$
$$WUP-n(u, n) = \frac{\sum_{i \in I_{un}} u_i \times n_i}{\sqrt{\sum_{i \in I_u} (u_i)^2} \times \sqrt{\sum_{i \in I_{un}} (n_i)^2}}$$

39

Attack Success

- Yield
 - Number of guesses
- Accuracy
 - Fraction of correct guesses
- Expected neighborhoods
 - $\cdot\,$ Out of the κ Sybils, how many meeting success criterion?

Attack Success

- Yield
 - Number of guesses
- Accuracy
 - Fraction of correct guesses
- Expected neighborhoods
 - $\cdot\,$ Out of the κ Sybils, how many meeting success criterion?

Criterion met

Attack Success

- Yield
 - Number of guesses
- Accuracy
 - Fraction of correct guesses
- Expected neighborhoods
 - $\cdot\,$ Out of the κ Sybils, how many meeting success criterion?

Criterion met

Criterion not met

Attack Success Evaluation I

Sybils ask 5 recommendations each

Lower Yield = better privacy

Attack Success Evaluation I

Sybils ask 5 recommendations each

Lower Yield = better privacy

2 behaviors: Cos-overlap and the other metrics

Attack Success Evaluation II

Lower Accuracy = better privacy

Attack Success Evaluation II

Lower Accuracy = better privacy

Only Cos-overlap resists the attack w/ many auxiliary items

Attack Success Evaluation III

Lower Expected neighborhoods = better privacy

Attack Success Evaluation III

Lower Expected neighborhoods = better privacy

Coarse similarity by Cos-overlap defeats the attack

Similarity Metrics Evaluation: Recommendation Quality

Root Mean Square Error
$$RMSE(A) = \sqrt{\frac{\sum_{i=1}^{n} (pred_{A,i} - r_{A,i})^2}{n}}$$

Similarity Metrics Evaluation: Recommendation Quality

Root Mean Square Error $RMSE(A) = \sqrt{\frac{\sum_{i=1}^{n} (pred_{A,i} - r_{A,i})^2}{r}}$

Lower RMSE = better recommendations

Similarity Metrics Evaluation: Recommendation Quality

Root Mean Square Error $RMSE(A) = \sqrt{\frac{\sum_{i=1}^{n} (pred_{A,i} - r_{A,i})^2}{r_{A,i}}}$

Lower RMSE = better recommendations

Correlation of recommendation guality & attack resilience
Understanding Cos-overlap's Resiliency

Lower Expected neighborhoods = better privacy

Nb Perfectly Similar Counterparts

Perfecty Similar Counterpert (PSC): Users 100% similar to target

Understanding Cos-overlap's Resiliency

Lower Expected neighborhoods = better privacy

Nb Perfectly Similar Counterparts

1+ PSCs prevent Sybil from having an expected neighborhood

The attack fails when the target has PSCs

The attack fails when the target has PSCs

Counter-measure Idea

Combine:

- *Cos-overlap*'s coarse similarity approximation (creating PSCs)
- good recommendation quality

1. Make similar enough users indistinguishable from each other

- 1. Make similar enough users indistinguishable from each other
 - Users with $Cosine \ge th$, similarity capped th

- 1. Make similar enough users indistinguishable from each other
 - Users with $Cosine \ge th$, similarity capped th
- 2. Select among them the most useful ones for recommendation

- 1. Make similar enough users indistinguishable from each other
 - Users with $Cosine \ge th$, similarity capped th
- 2. Select among them the most useful ones for recommendation
 - Similarity bonus depending on the number of "new" items

2-step Overview

- 1. Make similar enough users indistinguishable from each other
 - Users with $Cosine \ge th$, similarity capped th
- 2. Select among them the most useful ones for recommendation
 - Similarity bonus depending on the number of "new" items
 - Users with *i* "new" items get a similarity bonus of 1 *th*

Attack Success Evaluation with 2-step I

Lower Accuracy = better privacy

Attack Success Evaluation with 2-step I

Lower Accuracy = better privacy

2-step: good attack resiliency, esp. with low th

Attack Success Evaluation with 2-step II

Lower Expected neighborhoods = better privacy

Attack Success Evaluation with 2-step II

Lower Expected neighborhoods = better privacy

2-step: Expected neighborhoods rarely obtained

Recommendation Quality of 2-step

Lower *RMSE* = better recommendations

Recommendation Quality of 2-step

Lower *RMSE* = better recommendations

2-step: Recommendation quality close to Cosine's

Contribution: Attack Analysis & 2–step

Conclusion

We addressed a privacy threat via recommendations

We addressed a privacy threat via recommendations
Sybil Attack Study

- \cdot Generally effective attack w/o PSCs
- Higher than expected required level of auxiliary knowledge

We addressed a privacy threat via recommendations
Sybil Attack Study

- Generally effective attack w/o PSCs
- Higher than expected required level of auxiliary knowledge

Counter-measure: 2-step

Promising preliminary evaluation:

- Good attack resiliency (better than Cos-overlap's)
- Good recommendation quality (close to Cosine's)

Conclusion

Conclusion

Summary

- Recommendation = useful but need more privacy
- Addressed 2 types of threat:
 - During recommendation generation
 - From recommendations themselves

Conclusion

Summary

- Recommendation = useful but need more privacy
- Addressed 2 types of threat:
 - During recommendation generation
 - From recommendations themselves

Contributions

- Privacy during similarity computation, *Hide & Share*
- Twofold contribution:
 - Evaluation of a Sybil attack on user privacy
 - Privacy-preserving counter-measure, 2-step

Hide & Share

- Stronger adversary (e.g. collusion)
- Privacy-preservation after KNN computation

Hide & Share

- Stronger adversary (e.g. collusion)
- Privacy-preservation after KNN computation

2–step

- Knowledge of *k* for the adversary
- Test on a real-world RS
- Further evaluation of 2–*step* in progress

- Privacy impact heuristics in RSs
- Do-Not-Track-like mechanisms for RSs
- Study more attacks to raise awareness about privacy threats of RSs
- User data monetization

Thank You