Bimanual Haptic Interaction with Virtual Environments

Anthony Talvas
INSA, IRISA and Inria Rennes – Hybrid Team

Advisors: Maud Marchal
Anatole Lécuyer
Virtual Reality and Haptics

- **Virtual Reality** (VR): Immersion of a user in a Virtual Environment (VE)
- **Haptic sense**: Kinesthetic and tactile perceptions
- **Haptic devices**: Enhancing immersion in VR through tactile/force feedback

!Geomagic
Bimanual Haptics

- Haptic applications often one-handed
- Common use of two hands in daily life
- **Bimanual haptics:** Haptic interaction with VEs through both hands

[Ullrich and Kuhlen, 2012] [Faeth et al, 2008]
Challenges of Bimanual Haptics

Human aspects | Hardware | Software | Interaction

User

Haptic Interface

Interaction Techniques

Haptic Rendering

Virtual Environment
Objective

• **Objective:** Improving bimanual haptic interaction by enhancing:
 - Realism of interactions
 - Computational efficiency

• Three main axes:
 - Efficiency of soft hand models
 - Grasping with rigid models
 - Bimanual haptic interaction in VEs with rigid proxies
Related Work – Hardware

- Bimanual haptic devices
 - Single-point grounded
 - Single-point mobile
 - Multi-finger body-based
 - Multi-finger grounded

- Summary:
 - Mostly symmetrical devices
 - Limited workspaces (+ interface collision)
 - Wide range of degrees of freedom (DOF)

[Hulin et al., 2008] [Peer and Buss, 2008]
[Formaglio et al., 2006] [Walairacht et al., 2001]
Related Work – Physical Models

• Several hand representations:
 ▪ Point or rigid proxies
 [Zilles and Salisbury, 1995, Ruspini et al., 1997, Ortega et al., 2007]
 ▪ Rigid hand models
 [Borst and Indugula, 2005, Kry and Pai, 2006, Ott et al., 2007, Jacobs et al., 2012]
 ▪ Deformable hand models
 [Garre et al., 2011, Jacobs and Froehlich, 2011]

• Summary:
 ▪ Rigid models: Efficient, unrealistic contact, mostly unused for bimanual grasping
 ▪ Deformable models: More realistic contact, very high cost with two hands
Related Work – Contact Simulation

• Handling complex contact scenarios
 ▪ Contact reduction methods
 [Moravanszky and Terdiman, 2004, Kim et al., 2003]
 ▪ Separation of constraint sets
 [Miguel and Otaduy, 2011]
 ▪ Volume-based contact constraints
 [Allard et al., 2010]

• Summary:
 ▪ Rigid interaction: contact reduction well adapted
 ▪ Soft interaction: still many constraints to solve (e.g. friction)
Related Work – Grasping

- Grasping detection methods
 - Distribution of contacts between phalanges
 [Zachmann and Rettig, 2001, Moehring and Froehlich, 2005]
 - Relative position of contacts
 [Holz et al., 2008, Moehring and Froehlich, 2010]

- Grasping techniques
 - Controlling object motions with hand motions
 [Holz et al., 2008, Moehring and Froehlich, 2005, 2010]
 - “Soft finger” models for torsional friction
 [Barbagli et al., 2004, Ciocarlie et al., 2007]

- Summary:
 - Physically approximate methods
 - No techniques for bimanual grasping
Approach and Contributions

- Many contacts to solve with deformable hand models
 - Novel contact constraints for grasping
- Rigid models have unrealistic contact
 - Rendering of contact surfaces with rigid models
- Challenging exploration of VEs while grasping
 - Interaction techniques for bimanual haptics
- Realistic contact
- Efficient simulation
- Adapted hand models
- Stable grasping
- Exploration while grasping
- Navigation in large VEs
- Adapted hand models
- Stable grasping
Approach and Contributions

- Many contacts to solve with deformable hand models
 - Novel contact constraints for grasping

- Rigid models have unrealistic contact
 - Rendering of contact surfaces with rigid models

- Challenging exploration of VEs while grasping
 - Interaction techniques for bimanual haptics

- Realistic contact
- Efficient simulation

- Adapted hand models
- Stable grasping

- Navigation in large VEs
- Exploration while grasping
Objectives

- **Objective:** Improving contact resolution with deformable hand models
- **Approach:** Reducing the number of contact constraints to be solved
- **Requirements:** Retaining the benefits of a fine contact sampling:
 - Pressure distribution
 - Torsional friction
Deformable Hand Model

Data glove (or scripted animations)

Tracked data

Articulated rigid body hand

Reduced coordinates model

FEM-based soft phalanges

Visual model

Collision model

<table>
<thead>
<tr>
<th>Joint</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>thumb1X</td>
<td>0.1</td>
</tr>
<tr>
<td>thumb1Z</td>
<td>0.22</td>
</tr>
<tr>
<td>thumb2</td>
<td>0.34</td>
</tr>
<tr>
<td>thumb3</td>
<td>0.15</td>
</tr>
<tr>
<td>index1X</td>
<td>0.4</td>
</tr>
<tr>
<td>index1Z</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Joint</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>thumb1X</td>
<td>0.12</td>
</tr>
<tr>
<td>thumb1Z</td>
<td>0.25</td>
</tr>
<tr>
<td>thumb2</td>
<td>0.34</td>
</tr>
<tr>
<td>thumb3</td>
<td>0.14</td>
</tr>
<tr>
<td>index1X</td>
<td>0.35</td>
</tr>
<tr>
<td>index1Z</td>
<td>0</td>
</tr>
</tbody>
</table>

Unilateral spring

Unilateral mapping

Bilateral spring

Bilateral mapping
System for Bodies in Contact

• Dynamics of a discretized body in the simulation:

\[M \ddot{\mathbf{v}} = f(q, \mathbf{v}) + f_{\text{ex}} \]

Mass matrix \hspace{1cm} Velocities \hspace{1cm} Internal forces \hspace{1cm} External forces

• Implicit Euler integration:

\[
\left(M - h \frac{\partial f}{\partial \mathbf{v}} - h^2 \frac{\partial f}{\partial \mathbf{q}} \right) d\mathbf{v} = hf(q_0, \mathbf{v}_0) + h^2 \frac{\partial f}{\partial \mathbf{q}} \mathbf{v}_0 + hf_{\text{ex}}
\]

• Two bodies in contact:

\[
A_1 d\mathbf{v}_1 = \mathbf{b}_1 + h \mathbf{H}_1^T \lambda \\
A_2 d\mathbf{v}_2 = \mathbf{b}_2 + h \mathbf{H}_2^T \lambda
\]

Matrix of constraint directions \hspace{1cm} Vector of constraint forces
Volume-based Separation Constraints

- **Objective:**
 Building a single separation constraint

- **Principle:**
 Volume contact constraint per phalanx
 [Allard et al., 2010]

- **Implementation:**
 - Evaluation of areas S_i from the geometry
 - Penetrations $\delta_{n,i}^{\text{free}} \Rightarrow$ Volumes $V_i = S_i \delta_{n,i}^{\text{free}}$
 - Contact normals $n_i^T \Rightarrow$ Gradients $J_{V_i} = S_i n_i^T$
 - Volumes aggregated into a single constraint
Volume-based Separation Constraints

• For each contact point, contribution to the constraint matrix:

\[
\mathbb{H}_{n,i} = S_i n_i^T
\]

• Formulation of non-penetration law:

\[
\lambda_n \geq 0 \quad \sum J_{V_i} (q_0 + \Delta \dot{q}) \leq 0
\]

Constraint force repulsive or null
Penetration volume must not increase

• In position, removal of the penetration
Non-uniform Pressure Distribution

- **Objective:**
 Ensuring higher constraint forces for higher penetrations

- **Principle:**
 Weighting each contact contribution in the constraint matrix

\[\mathcal{H}_{n,i} = w_i S_i n_i^T \]

- **Implementation:**
 Weights proportional to penetration

\[w_i = \delta_{n,j}^{\text{free}} \left/ \left(\sum \delta_{n,j}^{\text{free}} / n_j \right) \right. \]
Aggregate Friction Constraints

- **Objective:**
 One set of constraints for friction

- **Principle:**
 2 tangential, 1 torsional [Contensou, 1963]

- **Implementation:**
 - Admissible values computed from Φ
 [Leine and Glocker, 2003]
 \[
 \Phi = \sum_i \frac{S_i}{S} \mu \lambda_n \|v_s\| \quad \text{with } v_s \text{ sliding velocity at contact points } i
 \]
 - Tangential/torsional sticking when friction forces/torques within values
Results - Use cases

• Grasping a cube from the edges
• Full grasp of a rigid ball
• Spinning a pencil
• Real time interaction with a soft ball using a data glove
• Bimanual dumbbell lifting
Results - Performance

• Implementation: SOFA framework [Faure et al., 2012]

• With 176 contacts:
 ▪ Constraints / 10
 ▪ Constraint solving time / 4
 ▪ Simulation time - 60%

• In bimanual scenario:
 ▪ Constraint solving time / 2
 ▪ Simulation time - 26%

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Phalanges</th>
<th>Contacts</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Point</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aggr.</td>
</tr>
<tr>
<td>Rigid ball</td>
<td>15</td>
<td>27</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>176</td>
<td>528</td>
</tr>
<tr>
<td>Dumbbell</td>
<td>30</td>
<td>86</td>
<td>251</td>
</tr>
<tr>
<td>Pen spinning</td>
<td>3</td>
<td>13</td>
<td>37</td>
</tr>
<tr>
<td>Edge grasping</td>
<td>2</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Constraint solving (ms)</th>
<th>Total time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Point</td>
<td>Aggr.</td>
</tr>
<tr>
<td>Rigid ball</td>
<td>24,73</td>
<td>9,44</td>
</tr>
<tr>
<td>Dumbbell</td>
<td>223,69</td>
<td>54,75</td>
</tr>
<tr>
<td>Pen spinning</td>
<td>4,2</td>
<td>2,32</td>
</tr>
<tr>
<td>Edge grasping</td>
<td>9,64</td>
<td>2,23</td>
</tr>
<tr>
<td></td>
<td>23,01</td>
<td>3,45</td>
</tr>
</tbody>
</table>
Conclusion

• Novel constraint formulation for soft finger contact **minimizes the number of constraints** per phalanx

• Weighting method to **retain pressure distribution** over the surface

• Coulomb-Contensou friction law to maintain **torsional friction without additional constraints**

• **Real time grasping of objects** with deformable hand models
Approach and Contributions

- Realistic contact
- Efficient simulation

- Many contacts to solve with deformable hand models

- Novel contact constraints for grasping

- Rigid models have unrealistic contact

- Rendering of contact surfaces with rigid models

- Challenging exploration of VEs while grasping

- Interaction techniques for bimanual haptics

- Adapted hand models
- Stable grasping

- Navigation in large VEs
- Exploration while grasping
Approach and Contributions

- Many contacts to solve with deformable hand models
 - Novel contact constraints for grasping

- Rigid models have unrealistic contact
 - Rendering of contact surfaces with rigid models

- Challenging exploration of VEs while grasping
 - Interaction techniques for bimanual haptics

- Realistic contact
 - Efficient simulation

- Adapted hand models
 - Stable grasping

- Navigation in large VEs
 - Exploration while grasping
Objectives

• **Objective:** More efficient contact compared to:
 - Rigid interaction:
 + Fast computation
 - No surface
 - Soft body interaction:
 + Finger deformation
 - Slow soft body computation

• **Approach:** Heuristic method to render contact surfaces
God-finger Method

• Propagation of a contact surface from an initial contact point

• Two main steps:
 ▪ Generation of a fingerprint
 ▪ Fitting of the surface on the object geometry

• Contact surface described by *sub-god-objects*
Fingerprint Generation

- **Objective:**
 Guide for the propagation

- **Principle:**
 Generation of *radial vectors* from the initial contact

- **Implementation:**
 - With multiple contacts, generation from the centroid
 - Radial tree for uniform distribution
 - Elliptic surface for 6DOF interfaces
Local Geometry Scan

- **Objective:**
 Propagating on the surface

- **Principle:**
 Scan of the local geometry following the *radial vectors*

- **Implementation:**
 - The scan stops with:
 - Length of the radial vector
 - Sharp edges
 - Normals exceeding friction cone
 - For rough surfaces, keep scanning after sharp edges
Results

• Implementation: Havok Physics

• Simulation rate: 1000 Hz

• Unimanual manipulation
 ▪ Better control of rolling
 ▪ Possibility of lifting objects

• Bimanual manipulation
 ▪ Better control around the grasping axis
Conclusion

- **God-finger** method: rendering of finger pad-like contact surfaces from point or rigid contacts
- **Stabilization of contact and bimanual grasps** with better constraining of the rotation of virtual objects
- **Low cost** allowing for haptic rates
Approach and Contributions

- Many contacts to solve with deformable hand models
 - Novel contact constraints for grasping
- Rigid models have unrealistic contact
 - Rendering of contact surfaces with rigid models
- Challenging exploration of VEs while grasping
 - Interaction techniques for bimanual haptics

- Realistic contact
- Efficient simulation
- Adapted hand models
- Stable grasping
- Navigation in large VEs
- Exploration while grasping
Approach and Contributions

- Many contacts to solve with deformable hand models
 - Novel contact constraints for grasping

- Rigid models have unrealistic contact
 - Rendering of contact surfaces with rigid models

- Challenging exploration of VEs while grasping
 - Interaction techniques for bimanual haptics
Objectives

• Solving main issues with bimanual haptic interaction using single-point devices
 ▪ Exploration of VEs with limited workspaces
 ▪ Handling of virtual objects with simple rigid proxies
 ▪ Simultaneous exploration and manipulation
Double Bubble

- **Objective:**
 Exploration of VEs with two haptic devices

- **Principle:**
 Position/rate control scheme for each bubble

 [Dominjon et al., 2005]

- **Implementation:**
 - Non-spherical workspaces
 - Invisible plane to keep the hands from crossing
Viewport Adaptation

- **Objective:**
 Keeping the proxies in the field of view

- **Principle:**
 Viewpoint adaptation

- **Implementation:**
 - Translation: adaptation to the *bubble* positions and widths
 - Rotation: Separation plane as a “revolving door”
Joint Control

- **Objective:**
 Facilitating grasping with *bubbles*

- **Principle:**
 - Same bubble size
 - Same rate control velocities

- **Implementation:**
 - Intersection of *bubbles*
 - Average of velocities
Grasping Detection

• **Objective:**
 Detect grasping attempts

• **Principle:**
 Detection based on:
 - Forces applied on the object
 - Relative position of the hands

• **Implementation:**
 - Force threshold on contacts
 - Ray casts between both hands with a tolerance
Magnetic Pinch

• **Objective:** Providing assistance to the user when grasping objects

• **Principle:** Visual and haptic effect of “magnetism” between hands and object

• **Implementation:**
 - Springs: softer, 3DOF
 - Constraints: harder, 6DOF
Evaluation

• Task: picking and carrying

• 4 conditions:
 ▪ Control: *clutching* technique
 ▪ Exploration: *double bubble*
 ▪ Manipulation: *magnetic pinch*
 ▪ All proposed techniques

• 13 participants

• 4 conditions × 4 targets × 11 trials = 176 trials

• Collected data:
 Completion times, number of drops, subjective questionnaire
Results

- Friedman test: significant effect of the techniques
- Completion times:
 - Manipulation-only improve over control and exploration-only
 - Further improvement with all techniques
- Object drops:
 - Improvement with both manipulation conditions
Subjective Questionnaire

• The conditions with manipulation techniques were overall better appreciated by the participants

• The addition of the magnetic effect did not lead to significant changes in the Realism criterion
Conclusion

• **Double bubble** with viewport adaptation: **smooth bimanual exploration** of VEs

• **Joint control**: easier grasping with the **double bubble**

• **Magnetic pinch**: assistance to the user when **manipulating objects**

• User experiment on carrying task: **faster completion, less drops, better user appreciation**
Conclusion

• Objective: Improving interaction in VEs using two haptic devices

• Three main contributions:
 ▪ Aggregate constraint method for improving contact resolution with deformable hands
 ▪ Heuristic method for rendering of finger pad contact surfaces with point and rigid proxies
 ▪ Novel interaction techniques for bimanual exploration in VEs and haptic manipulation with single-point haptic devices
Perspectives

• Contact constraint formulation for soft hand grasping
 ▪ Improving the hand model with the palm and non-linear deformation
 ▪ Comparison against other contact reduction methods

• Rendering of finger pad contact surfaces
 ▪ Generation of arbitrary-shaped surfaces (e.g. palm)
 ▪ More realistic visual feedback (visual finger deformation, etc.)

• Interaction techniques for bimanual haptics
 ▪ Adaptation for immersive interaction and multiple objects
 ▪ Further evaluations on different tasks and between the variants

• Applications: virtual assembly, surgical training, rehabilitation
Publications

• **Journal papers**

• **Book chapters**

• **International conferences**

• **National conferences**
Thank you for your attention

Bimanual Haptic Interaction with Virtual Environments