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Located Patch of an Image

e Considering a 2D image I: Q2 ¢ R? — R™ (n = 3, for color images).

e Animage patch P, is a discretized p x p neighborhood of I,
which can be ordered as a np*-dimensional vector :
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e We define a located patch as the (np? + 2)-D vector (z,y, \P(, )
(A > 0 balances importance of spatial/intensity features).




Space I' of Located Patches
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Space I' of Located Patches
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e The Euclidean distance between two points p,,p> € I' measures a
spatial & intensity dissimilarity between corresponding located patches :

d(p1,p2) = v/ (21 — 2)2 + (y1 — y2)% + \2SSD(Py, P2)

(SSD = Sum of Squared Differences)



Mapping an Image I on the Patch Space I @ :—";

o Wedefinel:T — R™+! g mapping of the image I on I :
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Mapping an Image I on the Patch Space I'

o WedefineI: I — R”p2+1, a mapping of theimageIon T :

(jD(Iw,y)’ 1) T p= (x’y’P(Iw,y))

Vpel, I =
P () 0 elsewhere

o The last value of I,y models the meaningfulness of a located patch p.
All patches coming from the original image I have the same unit weight.
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— Iis a patch-based representation of I in I, as an implicit surface.



Inverse Mapping to the Image Domain 2

e Question : Is it possible to retrieve I from I ?
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Inverse Mapping to the Image Domain Q v i

o Question : Is it possible to retrieve I fromI? YES !

= (1) Find the most significant patches p = (z,y, P) € I for each location (x,y) € Q2 :

~

I
Psz.g(x,y) = argmax__p,,? Inp2+1(:€, Y, q)
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Inverse Mapping to the Image Domain Q v i

= (2) Get the central pixel of these patches, and normalize it by its meaningfulness :

- I
V(z,y) €Q,  Iiey) = Ly 250 Poigte)

T, y) € i, i(zy) — j L
np2_|_1(aj7 Y, Psig(fﬂay))
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(Other solutions may be considered, for instance : averaging spatially-overlapping
meaningful patches).
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From Non-Local to Local processing h-;

e Mapping I in I" transforms a non-local processing problem into a local one.
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e Local or semi-local measures of I in I' (gradients,curvatures,...) will be related to
non-local features of the original image I (patch dissimilarity, variance,...).



Main Idea of this Talk
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= Apply local algorithms on I in order to build their patch-based counterparts.

= Find correspondences between non-local and local algorithms.



What Local Algorithms to Apply inIT" ?

= PDE’s and variational methods are good candidates.

- They are purely local or semi-local.

- They are adaptive to local image informations (non-linear).

- They are often expressed independently on the data dimension.

- They give interesting solutions for a wide range of different (local) problems.



What Local Algorithms to Apply inIT" ?

= PDE’s and variational methods are good candidates.

- They are purely local or semi-local.

- They are adaptive to local image informations (non-linear).

- They are often expressed independently on the data dimension.

- They give interesting solutions for a wide range of different (local) problems.

= |n this talk :

e Diffusion PDE’s for image denoising.

e PDE’s for image registration, coming from a variational formulation.
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Tikhonov Regularization in T’

o We minimize the classical Tikhonov regularization functional for Iin I :

B0 = [ 195 dp

= np2+1 T
where Vil = /S0 Vi1



Tikhonov Regularization in T’

o We minimize the classical Tikhonov regularization functional for Iin I :

B0 = [ 195 dp

= np2+1 T
where Vil = /S0 Vi1

e The Euler-Lagrange equations of E give the desired minimizing flow for I :

( i[t:O] _ inoisy
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=- Heat flow in the high-dimensional space of patches I'.



Solution to the Tikhonov Regularization in I' @ h.‘

e This high-dimensional heat flow has an explicit solution (at time ?) :

I =17%Y « G, with Vpel, Gyp) =

Patch-based representationT

Tikhonov
Regularization




Solution to the Tikhonov Regularization in I’

1 _
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Ilt] — proisy G, with VpeTl, Ga(p) =

o Simplification : As I"°s¥ vanishes almost everywhere (except on the original
located patches of I), the convolution simplifies to :

i[t] - / Lo nots G nois dp dq
(z.y,P) Q (P,an(Ip,q)y) J(p_m’q_y’ng,Q)y_P)

= Computing the solution does not require to build an explicit representation of the
patch-based representation I.
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Inverse mapping of the Tikhonov Regularization in I" h“.

e Finding the most significant patches in I' : the flow preserves the locations of the
local maxima. The inverse mapping of Il on 2 is then :

_ fQ I?Z;)a?;]%y w(aﬁ,y,p,q)dp dq
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Inverse mapping of the Tikhonov Regularization in I" h').

e Finding the most significant patches in I' : the flow preserves the locations of the
local maxima. The inverse mapping of Il on 2 is then :

novsy
\ o L JoYipq) Weyp.adPdg
(@y) €@ Tgy=""7 dp d
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=- Variant of the NL-means algorithm (Buades-Morel:05)
with an additional weight depending on the spatial distance between patches in ).

= NL-means is an isotropic diffusion process in the space of patches I'.



Tikhonov Regularization in the Patch Space I’ @ h-;.
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(Useless) Results (Tikhonov Regularization in I')
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(Useless) Results (Tikhonov Regularization in I')

Tikhonov regularization in the image domain ¢

(= isotropic smoothing)



(Useless) Results (Tikhonov Regularization in I')

Tikhonov regularization in the 5 x 5 patch space I

(= Non Local-means algorithm)
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Behavior of Isotropic Diffusion in T @ 2=

e Isotropic diffusion in I' (NL-means) does not take care of the geometry of the patch
mapping I : The smoothing is done homogeneously in all directions.




What We Want to Do : Anisotropic Diffusion @ h“

e Anisotropic diffusion would adapt the smoothing kernel to the local geometry of
the patch mapping 1.

=- This anisotropic behavior can be described with diffusion tensors.
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Introducing Diffusion Tensors h"

e A second-order tensor is a symmetric and semi-positive definite p x p matrix.
(p Is the dimension of the considered space).

e It has p positive eigenvalues )\; and p orthogonal eigenvectors ul” :

T=>Y X\ ulilyli”



Introducing Diffusion Tensors ;-‘i mﬁﬁl

e A second-order tensor is a symmetric and semi-positive definite p x p matrix.
(p is the dimension of the considered space).

e It has p positive eigenvalues )\, and p orthogonal eigenvectors ul” :

2 x 2 Tensor (e.g. in Q) 3 x 3 Tensor (np? 4+ 2) x (np® + 2) Tensor

e Diffusion tensors describe how much pixel values locally diffuse along given
orthogonal orientations, i.e. the “geometry” of the performed smoothing.
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Diffusion Tensors in Anisotropic Diffusion PDE’s h'),

e A tensor field T can describe locally the amplitudes and the orientations of the
desired smoothing.

e The smoothing itself can be performed with the application of this diffusion PDE :

0l (p)
ot

B 32I<p>)
Z,j(p) o 83318333

= trace (T, Hp)) (H ;) is the Hessian matrix : H



Diffusion Tensors in Anisotropic Diffusion PDE’s @ h‘;

e A tensor field T can describe locally the amplitudes and the orientations of the
desired smoothing.

e The smoothing itself can be performed with the application of this diffusion PDE :
8](1,) . . : 82I( )
Y trace (T(p)H(p)) (H(p,) is the Hessian matrix : H; ;) = axiapxj

Isotropic tensor field in I' = Isotropic smoothing Anisotropic tensor field in I" =- Anisotropic smoothing

= How to design the tensor field T ? = from the structure tensor field J.



Structure Tensors in the Patch Space I

e The structure tensor field J, : Q — P(np? + 2) tells about local geometric features
(local contrast, structure orientation) of I :

np2—|—1

J,= > VIL,VI  where Vi,=VIxG,
1=1

= Very useful extension of the notion of “gradient” for multi-dimensional datasets.

(Silvano Di-Zenzo:86, Joachim Weickert:98) used it for 2D images.

= Here, we consider a np? x np? structure tensor !



Structure Tensors in the Patch Space I

e The structure tensor field J, : Q — P(np? + 2) tells about local geometric features
(local contrast, structure orientation) of I :

np2—|—1

J,= Y VI,VIL  where Vi,=VIxG,
1=1

e The diffusion tensor field T is then designed from J :

1
\/ 32 + trace(J ,(p))

Vp - F, f)(p) — (Id — ﬁ(p)ﬁa))

where 4, is the main eigenvector of J ).



Structure Tensors in the Patch Space T @ g o

e The diffusion tensor field T is then designed from J,, :
1
\/ 32 + trace(J,(p))

vpel, D = (Ta — ey

where 1, is the main eigenvector of J,,,,) (= normal vector to the patch-surface)




Approximation of the PDE solution @

e Problem : Obtaining the PDE solution requires several iterations.

e But, we cannot afford to store the entire patch space I' in computer memory
(dim(I')=365 for 11x11 color patches).



Approximation of the PDE solution

e Problem : Obtaining the solution requires several iterations.

e But, we cannot afford to store the entire patch space I' in computer memory
(dim(I')=365 for 11x11 color patches).

=- Solution of the PDE can be approximated by one iteration [Tschumperle-Deriche:03] :
D
1lt] ~ [t=0] ~ (P(z,y))
I(p(m,y)) ~ /(k Heo I(k,l) Gdt(p(a;,y)_Q(k,l)) drdy

— Solution approximation + inverse mapping on {2 can be expressed in the image
domain.



Anisotropic Diffusion in the Patch Space I o h“} PIAS=
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Anisotropic Diffusion in the Patch Space (Results)
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Anisotropic Diffusion in the Patch Space (Results)
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Anisotropic diffusion in the 7 x 7 patch space I'



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in the image domain 2



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion in €2 Anisotropic diffusion in the patch space I



Anisotropic Diffusion in the Patch Space (Results)

Noisy color image



¥,
Anisotropic Diffusion in the Patch Space (Results) @ g
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Bilateral filtering

(=~ NL-Means with 1 x 1 patches)



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion PDE in the image domain €2



Anisotropic Diffusion in the Patch Space (Results)

Isotropic diffusion PDE in the 5 x 5 patch-space I'

(= NL-Means with 5 x 5 patches)



Anisotropic Diffusion in the Patch Space (Results)

Anisotropic diffusion PDE in the 5 x 5 patch-space I'



Anisotropic Diffusion in the Patch Space (Results) 0 :‘r‘ﬂ
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The image registration problem h-“

o Given two images I'* and 1’2, find the displacement field u : O — R? from I'! to I'2

o
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Source image I'1 Target image I'2 Estimated displacement u
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The image registration problem h-“

o Given two images I'* and I'2, find the displacement field u : O — R? from I’ to I%2
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Source image I'? Target image I'2 Estimated displacement u

e The Lukas-Kanade registration method is based on the minimization of :
B(w) = [ o [Fug |+ [Dppian | dp

¢ Intensity preservation :
The intensity dissimilarity between warped I'' and I*2 must be minimal.

12

t
Dp,q) = (I, o(q)

o)~ ) where I% =T1%xG@,



Transposition to the patch-space I'

e We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space I, instead of on the image domain 2

Patch-based representation 11 Patch-based representation 12
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Transposition to the patch-space I'

e We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space I', instead of on the image domain (2 :

D = (1" =
patch(p,q) it1 ft2
J(p’Pmaw(p)) a(q’Pma:v(q))

e i.e. Find the best 2D warp between patch representations It and I%2.

Patch-based representation 11 Patch-based representation 12

2D displacement field u




Transposition to the patch-space I'

e We propose to solve the Lukas-Kanade problem with a dissimilarity measure
defined in the patch space I', instead of on the image domain (2 :

Do = (i
pat h(p,Q) ( O'(p,PItl ) O'(q 7)1t2 ))

maz(p) " maz(q)

e i.e. Find the best 2D warp between patch representations It and I%2.

= Patch-preservation :
The patch dissimilarity between warped I'' and I*2 must be minimal.

= Bloc-matching-like dissimilarity measure + Smoothness constraints.
(Classical bloc-matching gives the global minimum when smoothness a = 0).



X, e
Minimizing PDE flow h-“

e The Euler-Lagrange equations give the minimizing flow for the patch-based Lukas-
Kanade functional :

= Local minimum of the functional.

e Resolution is done with a classical mulii-scale approach (coarse to fine).



Patch-based Lukas-Kanade (Results)
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Patch-based Lukas-Kanade (Results)

Target color image



Patch-based Lukas-Kanade (Results)

Estimated displacement

Result of the original
Lukas-Kanade algorithm
(smoothness o = 0.01)




Patch-based Lukas-Kanade (Results)

Estimated displacement Warped source

Result of the original
Lukas-Kanade algorithm
(smoothness o = 0.1)




Patch-based Lukas-Kanade (Results)

Estimated displacement

Result of the
bloc-matching algorithm
(7 x 7 patches)




Patch-based Lukas-Kanade (Results)
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Result of the 7 x 7 Patch-Based
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(smoothness a = 0)




Patch-based Lukas-Kanade (Results)

Estimated displacement

Result of the 7 x 7 Patch-Based
Lukas-Kanade algorithm
(smoothness o = 0.01)
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Conclusions

(1) We proposed a patch representation I of an image I in an Euclidean patch
space I' such that non-local operations become local ones.
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(1) We proposed a patch representation I of an image I in an Euclidean patch
space I' such that non-local operations become local ones.

(2) We show links between local algorithms in I' and non-local methods in €2 :

NL-means and Bilateral Filtering < Isotropic diffusion in I.
Bloc-Matching < Non-smooth Lukas-Kanade in I'.




Conclusions

(1) We proposed a patch representation I of an image I in an Euclidean patch
space I' such that non-local operations become local ones.

(2) We show links between local algorithms in I' and non-local methods in €2 :

NL-means and Bilateral Filtering < Isotropic diffusion in I.
Bloc-Matching < Non-smooth Lukas-Kanade inI.

e (3) We applied more complex local methods on I' to get more efficient non-local
methods in €.

Anisotropic NL-means and Bilateral Filtering
Lukas-Kanade in I" with smoothness constraint.




Perspectives

= More local methods to transpose to the patch-space I' !

e Texture-preserving inpainting (Perez-Criminisi) and Texture synthesis (Wei-Levoy)
< Transport equations in I" ?

e You are welcome to suggest other perspectives...



Questions ?

e Thanks for your patience !




