End-to-End Encrypted Group Chats with MLS:
Design, Implementation and Verification

£ MILS

Théophile Wallez, Inria Paris

TODO: insert here an easy to under-
stand yet impactful figure represent-
ing MLS (don't forget to fill this in
before the final presentation!)

Ve \—‘/

lrezia—

Disclaimer

This talk is about my research journey during my PhD, with two papers.

TreeSync:
Authenticated Group Management for
Messaging Layer Security

https://www.usenix.org/conference/usenixsecurity23/presentation/wallez
(USENIX Security '23, Internet defense prize and distinguished paper award!)

Comparse:
Provably Secure Formats
for Cryptographic Protocols

https://eprint.iacr.org/2023/1390
(ACM CCS 2023)

https://www.usenix.org/conference/usenixsecurity23/presentation/wallez
https://eprint.iacr.org/2023/1390

TreeSync:

Authenticated Group Management for
Messaging Layer Security

TODO: insert here an easy to under-

stand yet impactful figure represent-
ing MLS (don't forget to fill this in

before the final presentation!)

Théophile Wallez, Inria Paris
Jonathan Protzenko, Microsoft Research

Benjamin Beurdouche, Inria Paris, Mozilla =
Karthikeyan Bhargavan, Inria Paris, Cryspen @

What is Messaging Layer Security
(MLS)

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging
https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html
&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging
https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html
&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

time

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html

&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

|
Forward secrecy !

|
|
|
|
secure }
|
|

/_/H

[

compromise

time

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html

&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

|
Forward secrecy !

|
|
|
|
secure }
|
|

/_/H

T T time

compromise compromise

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html

€he New Hork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

|
Forward secrecy ! Post-compromise security

healing secure

_____________ ’ L i

T T time

Eve joins Eve leaves

|

|

|

| |

| |

| |

| |

secure } }
| |

| |

/_/H

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

State of the art, before MLS

State of the art, before MLS

State of the art, before MLS

%
gy
N devices

O(N?) Signal channels!
Slow for large N, e.g. N ~ 1000

State of the art, before MLS

Q000+

1 ET F

l

0
.5 % MLS
.0
g RFC 9420
N devices

O(N?) Signal channels!
Slow for large N, e.g. N ~ 1000

Design constraints:
Secure, efficient, asynchronous,
dynamic groups

A complex problem

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem

https://nebuchadnezzar-megolm.github.io/

[matrix] =

Upgrade now to address E2EE vulnerabilities
in matrix-js-sdk, matrix-ios-sdk and matrix-
android-sdk2

28.09.2022 17:41 — Security — Matthew Hodgson, Denis Kasak, Matrix Cryptography Team, Matrix Security Team

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem

https://nebuchadnezzar-megolm.github.io/

[matrix]

Upgrade now to address E2EE vulnerabilities
in matrix-js-sdk, matrix-ios-sdk and matrix-
android-sdk2

28.09.2022 17:41 — Security — Matthew Hodgson, Denis Kasak, Matrix Cryptography Team, Matrix Security Team

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

‘ Protocol Create Add Remove Update Group | Update | Remove

end | Recv | Send | Reev | New Send Recv end Recv | Agreement | PPCS | PACS
Sender Keys [18] | N N 1 1 N - - - B No No No
Chained mKEMT | N 1 1 1 1 N 1 N 1 Yes Yes Yes
2-KEM Trees ™ N | log®) | log®) | log®N) | log®N) | _log®) | log®™) | log®™) | log(\) Yes Yes No
ART [7] N[log(N) | Tog®™) | log(™) | Tog(N) - - Tlog(N) | log(™) Yes Yes No
TreeKEM T N[log(™N) | log™) 1 1 Tog(N) 1 Tog(N) 1 Yes Yes No
TreeKEMp * N 1 1 1 1 log(N)..N 1 TogN)..N 1 Yes Yes No~
TreeKEMp.s * N [1 1 N | log™)..N 1 Tog(N). .N 1 Yes Yes Yes

A /
~—— " "

Protocol Performance Security

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex RFC

Table of Contents

1. Introduction
er
Presentation Language
1.1. Optional Value
2.1.2. - gth Headers
rotocol Overview
Cryptographic State and Evolution
Example Protocol Execution
xternal Joins
elationships between Epochs
et Tree Concepts
atchet Tree Terminology
Ratchet Tree Nodes
MM
4.2. Views of a Ratchet Tre
Cryptographic Objects

Expiry and Revocation
Uniquely Tdentifying Clients
i

n
Encoding_and Decoding a Public Message
Encoding_and Decoding a Private Message

5.3.1. Content Encryption

5.3.2. Sender Data Encryption
atchet Tree Ope n

. Parent Node Contents

eaf Node Contents

eaf Node Validation

atchet Tree Evolution

Views of the Tree

aths
‘Adding oo Removing_Leaves

Tent Hashes
Using Parent Hashes
Verifying_Parent Hashes
chedule
Group Context
Tanscript Hash
xternal Initialization
re-Shared Keys
Exporters
esumption PSK
och Authenticators

ges
Keypackage Validation
11. Group Creation
11.1. Required Capab:
11.2. Reinitialization
11.3. Subgroup Branching

12. Group Evolution
12.1. Proposals
Add
pdate
enove

eInit
Externallnit
GroupContextExtensions

Proposal List Validation
pplying a Proposal List
Cor

m
Creating a Ccmmil
Processing a Commi

1 Adding oozt the Group

1, Extensibility

Additional Cipher Suites

Proposals

Credential Extensibility

Extensions

135
147 Sequencing of State Changes
15. Application Messages

9
estrictions
layed and R

rdered Application Messages

curity Considerati
. Tansport Security
onfidentiality of Group Secrets
onfidentiality of Sender Data
onfidentiality of Group Metadat:

GrowplD. Epoch, and Hessage requency

orward Secrecy and Post-Compromise Security
niqueness of Ratchet Tree Key Pairs
eyPackage Reuse

promise

uthentication Service Compromise

dditional Policy Enforcement

Toup Fragmentation by Malicious Insiders
ideration:

BNl

ipher Suites
ire Formats
xtension Types
roposal Types
Tedential Types
ignature Labels
11 Encryption Labels
. Exporter Labels
. pert _Pool
10. The "message/mis" Media Type

. nces
18.1. Normative References

18.2. Informative References

Protocol Origins of Example Trees
Evolution of Parent Hashes
Array-Based Trees

Link-Based Trees

Aithors” Addresses

[Page 164]

) 1,233 commits

19 00pen 582 Closed

Quick interlude: our contributions

Contributions TL:DR

10

Contributions TL:DR

10

Contributions TL:DR

10

Contribution: Methodology

L MLS

|

F* specification

11

Contribution: Methodology

L MLS

L 4

F* specification

¥
Functional
correctness
proofs
(e.g. invariants)

11

Contribution: Methodology

L MLS

Symbolic
implementation

|

Security proofs
(for TreeSync)

L 4

F* specification

¥
Functional
correctness
proofs
(e.g. invariants)

11

Contribution: Methodology

L MLS

L 4

F* specification

Symbolic Concrete

L 4

implementation Functional implementation

correctness
proofs

. e.g. invariants ..
Security proofs (e:g. invariants) Interoperability
(for TreeSync) tests

(4 implementations)

11

Contribution: Methodology

s L MILS

'¢" R
A}
\,,b' Y
L4 °
Ib'l D 3 “ o0
S X F* specifications 3 4
’
/ . =
+ Symbolic J ! Concrete
LI . . .
1 implementation Functional implementation
1
' correctness
' proofs
* . e.g. invariants ..
Security proofs (et) Interoperability
tests
4 implementations
p

(for TreeSync)

11

A tour of MLS

12

MLS decomposition

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

13

Disclaimer

The following explanations do the following assumption:

» there are 2" participants in the group.

In particular, no dynamic groups (i.e. no add / remove).

Why:
» avoid consuming too much brainpower budget :)
> still give the core ideas behind MLS

14

TreeDEM

Roughly similar to Signal's symetric ratchet / Sender Keys.

Skip it for time constraints, but | have backup slides if you are interested!

15

TreeKEM, the initial idea (ART)

Idea: do a tree of Diffie-Hellman.
Invariant: private key of a node known exactly by its subtree.

16

TreeKEM, the initial idea (ART)

Idea: do a tree of Diffie-Hellman.
Invariant: private key of a node known exactly by its subtree.

16

TreeKEM, the initial idea (ART)

Idea: do a tree of Diffie-Hellman.
Invariant: private key of a node known exactly by its subtree.

Send complexity: O(log(n)) asymetric operations
Receive complexity: O(log(n)) asymetric operations

16

TreeKEM, toward the final design

Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

17

TreeKEM, toward the final design

Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

p2
/59\%
Phs p1
sk
&

Po Pka
Skd

17

TreeKEM, toward the final design

Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

17

TreeKEM, toward the final design

Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

17

TreeKEM, toward the final design

Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

Send complexity: O(log(n)) asymetric operations
Receive complexity: only 1 asymetric operation!

17

TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?

18

TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?

How does she makes sure who is in the group?
Can the attacker be in the group without her knowledge?
Is Bob really Bob, or is it the attacker somehow?

18

TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?

How does she makes sure who is in the group?
Can the attacker be in the group without her knowledge?
Is Bob really Bob, or is it the attacker somehow?

TreeSync solves these problems by authenticating TreeKEM's state.
In particular:

» authenticates all public keys, along with their recipients

» authenticates the roster, ensuring group membership agreement

Before the integration of TreeSync in MLS,
several man-in-the-middle-like attacks were found in MLS.
With TreeSync, this class of attacks are not possible anymore.

18

TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.

T, =

sign(T;)

19

TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.

Tz’ =

sign(Tz) sign(T,)

19

TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.
Ty =

sign(Tz) sign(T,)

Now, Alice’s signature is unintelligible!
As a result, T, not authenticated by Alice anymore.

19

TreeSync: attempt 2

When a participant update keys, it signs the every modified subtree.

sign(T,)
sign(T)
sign(T;)

20

TreeSync: attempt 2

When a participant update keys, it signs the every modified subtree.

sign(Ta) sign(T.)
sign(Tx) sign(T,)
sign(Tz) sign(T,/)

20

TreeSync: attempt 2

When a participant update keys, it signs the every modified subtree.

sign(7) sign(T.)
s!gn(TX) sign(T,)
sign(Tz) sign(T,/)

Invariant: every subtree is signed by one of the leaves under it.
Complexity: requires log(n) signatures in each leaf :(

20

TreeSync: final attempt

sign(pka, pha)
ph, = hash(pky, phx, Tg)
phy = hash(pk, ph;, Ty)

21

TreeSync: final attempt

sign(pka, pha)
ph, = hash(pky, phx, Tg)
phy = hash(pk, ph;, Ty)

21

TreeSync: final attempt

sign(pka, pha)
ph, = hash(pky, phx, Tg)
phy = hash(pk, ph;, Ty)

21

TreeSync: final attempt

sign(pkayphy) - sign(pke:, pher)
pha = hash(pkx, phy, Tg) phe: = hash(pk,:, ph,, Tp)
phy: = hash(pk,:, ph,, Tx)

ph. = hash(pk, ph;, Ty)
Invariant: every subtree is linked by parent-hash to one of its leaves.
Complexity: requires only 1 signature in each leaf!

2" participants: what did we miss?

Blank leaves: for non-power-of-two number of participants

Blank nodes: remove participants and erase secrets they know

Unmerged leaves: add new participants efficiently

Filtered nodes: optimize away nodes that are redundant

22

Contributions on TreeSync

23

Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

24

Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

24

Contribution: Modularizing MLS

CORRECTED

XS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

24

Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.

25

Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

25

Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

CORRECTED

A2

25

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the

state of the tree after the UpdatePath has been applied.

As a result, [the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed

since that leaf was last changed in an UpdatePath.

26

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the

state of the tree after the UpdatePath has been applied.

As a result, [the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed

since that leaf was last changed in an UpdatePath.

Problem 1: Guarantees described in imprecise prose.

26

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the
state of the tree after the UpdatePath has been applied.

the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed
since that leaf was last changed in an UpdatePath.

As a result,

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

26

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the
state of the tree after the UpdatePath has been applied.

the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed
since that leaf was last changed in an UpdatePath.

As a result,

Problem 1: Guarantees described in imprecise prose. @_

CORRECTED
Problem 2: Guarantees not actually met by parent hash!

26

Contribution: Fixing a signature ambiguity attack

TreeSync

sig = sign(sk, serializeT1(msg1))

- J

27

Contribution: Fixing a signature ambiguity attack

TreeSync

sig = sign(sk, serializeT1(msg1))

- J

27

Contribution: Fixing a signature ambiguity attack

(7

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msgy))

- J

27

Contribution: Fixing a signature ambiguity attack

(7

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msgy))
= J

TreeDEM

sig = sign(sk, serializeT2(msgy))

verify(pk, sig, serializeto(msgz))
= J

27

Contribution: Fixing a signature ambiguity attack

/ Same key \

~

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msgy))

= J

Ve

TreeDEM

sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeto(msgz))

= J

27

Contribution: Fixing a signature ambiguity attack

/ Same key \

s 7 s 7
TreeSync TreeDEM
sig = sign(sk, serializeT1(msg1)) sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeT1(msgy)) verify(pk, sig, serializeto(msgz))
L 4 J L A J

\ Different types —/

27

Ve

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msgy))
L 4 J

Contribution: Fixing a signature ambiguity attack

/ Same key \
7 (

~

TreeDEM

sig = sign(sk, serializeT2(msgy))

verify(pk, sig, serializeto(msgz))
L A J

\ Different types —/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?

Contribution: Fixing a signature ambiguity attack

/ Same key \
7 (

(7

TreeSync TreeDEM
sig = sign(sk, serializeT1(msg1)) sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeT1(msg1)) verify(pk, sig, serializeT2(msg2))
L 4 J L A J

\ Different types —/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?

Possible attack:
TreeDEM signature could be used to forge a signature in
TreeSync!

Contribution: Fixing a signature ambiguity attack

/ Same key \
7 (

(7

TreeSync TreeDEM
sig = sign(sk, serializeT1(msg1)) sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeT1(msg1)) verify(pk, sig, serializeT2(msg2))
L 4 J L A J

\ Different types -/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?

Possible attack:
TreeDEM signature could be used to forge a signature in

TreeSync! CORRECTED

27

Contribution: Fixing a signature ambiguity attack

/ Same key \
7 (

(7
TreeSync TreeDEM
sig = sign(sk, serializeT1(msg1)) sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeT1(msg1)) verify(pk, sig, serializeT2(msg2))
L 4 J L A J

\ Different types -/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?

Possible attack:
TreeDEM signature could be used to forge a signature in

TreeSync! CORRECTED

Attack found by doing proofs on a bit-precise specification,

thanks to executability and interoperability tests.
27

Comparse:

Provably Secure Formats
for Cryptographic Protocols

SIGN =rerrrrrrerrnneaen > Verify v
my A ma
%} b (ﬁ
France\
Théophile Wallez, Inria Paris o
Jonathan Protzenko, Microsoft Research 2
Karthikeyan Bhargavan, Inria Paris, Cryspen &ZW

28

Security critical formats are omnipresent

Hich- (format) R: J
igh-level Binary R
protocol data data 1

Hash
HPKE
KDF
AEAD

Signature
MAC

29

Security critical formats are omnipresent

Hash .
High-level (format) Bina HPKE - Enature
& —— Plnary > MAC
protocol data data KDF
AEAD
g >

Cryptographic assumptions
(from the literature)

29

Security critical formats are omnipresent

Security properties we use
(ProVerif, Tamarin, pen & paper, ...)

R R LCE L R PP PP >
High-level (format) p; J Ela:’sKhE ignature
1gh-leve s Binary R MAC
protocol data data KDF
AEAD
{mmmmmmmmmeeeeeeeaeaee—a- >

Cryptographic assumptions
(from the literature)

29

Security critical formats are omnipresent

Security properties we use
(ProVerif, Tamarin, pen & paper, ...)

€= e eme e e e s s essssssssssssssssssssse—e- 4
High-level (format) p; J Ela:’sKhE ignature
igh-leve Binary R MAC
protocol data data KDF
AEAD
LR s Sl memmEEmmsee——- >
Format properties Cryptographic assumptions
(this work) (from the literature)

29

Messages formats play a crucial role
in cryptographic protocols security.

We study their impact in two steps:
1. study properties of message formats

2. show how format properties compose with cryptographic
assumptions to obtain the security properties we use

Running example: signatures.

30

Message formats properties

High-level

31

Message formats properties

High-level my m>

31

Message formats properties

31

Message formats properties

Non-ambiguity

31

Message formats properties

Non-ambiguity

Message formats properties

Non-ambiguity

by A b
Sign «eeseess > verify X

31

Message formats properties

Non-ambiguity Representation unicity
Sign «--es-- » verify v/
High-level m A m m
Bytes b by AN b,
Sign «eeseess > verify X

31

Message formats properties across protocols

TreeSync my m2

32

Message formats properties across protocols

TreeSync my my
Bytes b
TreeDEM mi m2

32

Message formats properties across protocols

verify v/
TreeSync & m m2
Bytes A\ b
TreeDEM * mi my

Message formats properties across protocols

verify v/
TreeSync & m m2
Bytes A\ b
TreeDEM * mi my
sign

The problem: the meaning of b depends on the sub-protocol.

Message formats properties across protocols

verify v/
TreeSync & m m2
Bytes A\ b
TreeDEM * mi my
sign

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.

32

Message formats properties across protocols

verify v/
TreeSync & m m2
Bytes A\ b
TreeDEM * mi my
sign

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.
The result: the meaning of b becomes self-contained.

32

A rigorous approach to domain separation

Bytes High-level

verify

sign 1
EUF-CMA 1

33

A rigorous approach to domain separation

Bytes 3 High-level
s. |) s_
|ng1 format I,gn
verify ; > verify
EUF-CMA i Unforgeability

33

A rigorous approach to domain separation

Bytes 3 High-level
sign ‘ sign
g. format I,g
verify ; verify
EUF-CMA i Unforgeability

"edyction

33

A rigorous approach to domain separation

Bytes 3 High-level
|g. format I,g
verify ; verify
EUF-CMA i Unforgeability
"edyction

Reduction if: this format is self-contained and non-ambiguous.

33

A rigorous approach to domain separation

Bytes 3 High-level
|g. format I,g
verify ; verify
EUF-CMA i Unforgeability
"edyction

Design discipline: Each signature key is used with a single format, and
Reduction if: this format is self-contained and non-ambiguous.

33

A rigorous approach to domain separation

Bytes 3 High-level
|g. format I,g
verify ; verify
EUF-CMA i Unforgeability
"edyction

Design discipline: Each signature key is used with a single format, and
Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

33

A rigorous approach to domain separation

Bytes 3 High-level
sign ‘ sign
g. format I,g
verify ; verify
EUF-CMA i Unforgeability

"edyction

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.
Note 2: similar design discipline for MAC, AEAD, KDF, ...

Final notes

34

Proof effort

Component F*LoC Verification time
Library code 836 1min30s
TreeSync 1274 4min30s
TreeKEM 396 1Imin
TreeDEM 1384 2min45s
High level API 1024 1min30s
Library proofs 1170 1min4bs
TreeSync proofs 4018 13min30s
Tests 2782 2min4b5s
Total specification 4914 11minlbs
Total proofs 5188 15min15s

Roughly two man-years of work, because many by-products to work on:
» Develop the methodology to treat such large protocols
» How to obtain a bit-precise specification

» Developed a framework for verified message formatting,
both concrete and symbolic (Comparse, submitted at CCS 2023)

» A protocol during its standardization is a moving target

35

Conclusion

Our contributions:

» formally specify MLS decomposed into three sub-protocols:
TreeSync, TreeKEM, and TreeDEM

> prove the security of TreeSync in the Dolev-Yao model
» do proofs on an executable, interoperable specification
» found design flaws and submitted fixes to the MLS Working Group

> (Comparse) shed light on the importance of formatting in
cryptographic protocols
Future work: security proofs for TreeKEM and TreeDEM ; prove efficient
implementations.
The MLS Working Group gladly welcomed these contributions, resulting
in a fruitful collaboration.

</> https://github.com/Inria-Prosecco/treesync

8 theophile.wallez@inria.fr ARTIFACT ARTIFACT ARTIFACT

EVALUATED | EVALUATED | EVALUATED
@ httpS://WWW.tWal.Org/ susenix fusenlx yusenix
W Otwallez ’

AVAILABLE REPRODUCED FUNCTIONAL

36

https://github.com/Inria-Prosecco/treesync
mailto:theophile.wallez@inria.fr
https://www.twal.org/
https://twitter.com/twallez

TreeDEM

37

TreeDEM

do

&/

HA) S

|

(4)%, .

f/
b

ao

38

TreeDEM

r

(°9)H

(Te)H

H

()

Y0
Q? L
G G
T
o)

0
=

(%

(D)H

(&}

G

38

TreeDEM

r

(°9)H

()
(Te) (%)Y

az

H

()

RO g
ag e

0
=

(%

(D)H

(&}

G

38

TreeDEM

VH

’H\
«U/
Ge

38

TreeDEM

H

’H\
«U/
Ge

C

O el

38

TreeDEM. . . with a tree

A <
N &
X y
&/ \& S/ \%
o ko Y 4
ao bg Co do

39

.with a tree

TreeDEM. .

/\/ ¢/¢J

(),

0 %9

(x);

do

Co

bo

ao

39

.with a tree

TreeDEM. .

39

TreeDEM. . . with a tree

r

OO %
QY "~
X
&/ \& S/ \%
8 % N <,

Root key to participant key (worst case): O(log(n))

TreeDEM. . . with a tree

r

OO %
QY "~
X
&/ \& S/ \%
8 % N <,

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

39

TreeDEM. . . with a tree

r

OO %
QY "~
X
&/ \& S/ \%
8 % N <,

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)

39

Proof sketch of TreeSync

40

Security proof, step 1: invariants

We prove many invariants on TreeSync (the well-formedness checks):

» Leaf signatures are valid
» Every node is linked by parent-hash to a node under it
» Things with unmerged leaves

41

Security proof, step 2: the parent-hash guarantee theorem

We define an equivalence relation on trees ~.

We prove the theorem:

Py P>

C1 =~ C2

42

Security proof, step 2: the parent-hash guarantee theorem

We define an equivalence relation on trees ~.

We prove the theorem:

Py

12

P>

42

Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

Ty

43

Security proof, step 3: signature invariant
We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

Th T,
T, T;
Tl ~ Tll

43

Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

Th T,
T2 >~ TZI
Tl ~ Tll

43

Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

T, ~ T!
T2 >~ TZI
Tl ~ Tll

43

	What is Messaging Layer Security (MLS)
	Quick interlude: our contributions
	A tour of MLS
	Contributions on TreeSync
	Comparse, Provably Secure Formats for Cryptographic Protocols
	Final notes
	TreeDEM
	Proof sketch of TreeSync

