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[matrix]

Upgrade now to address E2EE vulnerabilities
in matrix-js-sdk, matrix-ios-sdk and matrix-
android-sdk2

28.09.2022 17:41 — Security — Matthew Hodgson, Denis Kasak, Matrix Cryptography Team, Matrix Security Team

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

‘ Protocol Create Add Remove Update Group | Update | Remove

end | Recv | Send | Reev | New Send Recv end Recv | Agreement | PPCS | PACS
Sender Keys [18] | N N 1 1 N - - - B No No No
Chained mKEMT | N 1 1 1 1 N 1 N 1 Yes Yes Yes
2-KEM Trees ™ N | log®) | log®) | log®N) | log®N) | _log®) | log®™) | log®™) | log(\) Yes Yes No
ART [7] N[ log(N) | Tog®™) | log(™) | Tog(N) - - Tlog(N) | log(™) Yes Yes No
TreeKEM T N[ log(™N) | log™) 1 1 Tog(N) 1 Tog(N) 1 Yes Yes No
TreeKEMp * N 1 1 1 1 log(N)..N 1 TogN)..N 1 Yes Yes No~
TreeKEMp.s * N [ 1 1 N | log™)..N 1 Tog(N). .N 1 Yes Yes Yes

A /
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A tour of MLS
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MLS decomposition

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging
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Disclaimer

The following explanations do the following assumption:

» there are 2" participants in the group.

In particular, no dynamic groups (i.e. no add / remove).

Why:
» avoid consuming too much brainpower budget :)
> still give the core ideas behind MLS

14



TreeDEM

Roughly similar to Signal's symetric ratchet / Sender Keys.

Skip it for time constraints, but | have backup slides if you are interested!
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TreeKEM, the initial idea (ART)

Idea: do a tree of Diffie-Hellman.
Invariant: private key of a node known exactly by its subtree.
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TreeKEM, toward the final design

Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.
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TreeKEM, toward the final design

Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

Send complexity: O(log(n)) asymetric operations
Receive complexity: only 1 asymetric operation!

17



TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?
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TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?

How does she makes sure who is in the group?
Can the attacker be in the group without her knowledge?
Is Bob really Bob, or is it the attacker somehow?

TreeSync solves these problems by authenticating TreeKEM's state.
In particular:

» authenticates all public keys, along with their recipients

» authenticates the roster, ensuring group membership agreement

Before the integration of TreeSync in MLS,
several man-in-the-middle-like attacks were found in MLS.
With TreeSync, this class of attacks are not possible anymore.
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TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.

T, =

sign(T;)
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TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.
Ty =

sign(Tz) sign(T,)

Now, Alice’s signature is unintelligible!
As a result, T, not authenticated by Alice anymore.
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TreeSync: attempt 2

When a participant update keys, it signs the every modified subtree.

sign(T,)
sign(T)
sign(T;)
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TreeSync: attempt 2

When a participant update keys, it signs the every modified subtree.

sign(7) sign(T.)
s!gn(TX) sign(T,)
sign(Tz) sign(T,/)

Invariant: every subtree is signed by one of the leaves under it.
Complexity: requires log(n) signatures in each leaf :(

20



TreeSync: final attempt

sign(pka, pha)
ph, = hash(pky, phx, Tg)
phy = hash(pk, ph;, Ty)
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TreeSync: final attempt

sign(pkayphy) - sign(pke:, pher)
pha = hash(pkx, phy, Tg) phe: = hash(pk,:, ph,, Tp)
phy: = hash(pk,:, ph,, Tx)

ph. = hash(pk, ph;, Ty)
Invariant: every subtree is linked by parent-hash to one of its leaves.
Complexity: requires only 1 signature in each leaf!



2" participants: what did we miss?

Blank leaves: for non-power-of-two number of participants

Blank nodes: remove participants and erase secrets they know

Unmerged leaves: add new participants efficiently

Filtered nodes: optimize away nodes that are redundant

22



Contributions on TreeSync
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Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging
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TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging
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Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.
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Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

CORRECTED

A2
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Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the

state of the tree after the UpdatePath has been applied.

As a result, [the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed

since that leaf was last changed in an UpdatePath.
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Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the
state of the tree after the UpdatePath has been applied.

the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed
since that leaf was last changed in an UpdatePath.

As a result,

Problem 1: Guarantees described in imprecise prose. @_

CORRECTED
Problem 2: Guarantees not actually met by parent hash!
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Contribution: Fixing a signature ambiguity attack

TreeSync

sig = sign(sk, serializeT1(msg1))

- J
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Contribution: Fixing a signature ambiguity attack

/ Same key \
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TreeSync TreeDEM
sig = sign(sk, serializeT1(msg1)) sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeT1(msg1)) verify(pk, sig, serializeT2(msg2))
L 4 J L A J

\ Different types -/

What if 3msg; msg,, serializer1(msg; ) = serialize2(msg,)?

Possible attack:
TreeDEM signature could be used to forge a signature in

TreeSync! CORRECTED

Attack found by doing proofs on a bit-precise specification,

thanks to executability and interoperability tests.
27
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Provably Secure Formats
for Cryptographic Protocols
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Security critical formats are omnipresent

Hich- (format) R: J
igh-level Binary R
protocol data data 1

Hash
HPKE
KDF
AEAD

Signature
MAC
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Security critical formats are omnipresent

Security properties we use
(ProVerif, Tamarin, pen & paper, ...)
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Security critical formats are omnipresent

Security properties we use
(ProVerif, Tamarin, pen & paper, ...)
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High-level  (format) p; J Ela:’sKhE ignature
igh-leve Binary R MAC
protocol data data KDF
AEAD
LR s Sl memmEEmmsee——- >
Format properties Cryptographic assumptions
(this work) (from the literature)
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Messages formats play a crucial role
in cryptographic protocols security.

We study their impact in two steps:
1. study properties of message formats

2. show how format properties compose with cryptographic
assumptions to obtain the security properties we use

Running example: signatures.
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Message formats properties

High-level
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Message formats properties
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Message formats properties across protocols

TreeSync my m2
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Message formats properties across protocols

verify v/
TreeSync & m m2
Bytes A\ b
TreeDEM  * mi my
sign

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.
The result: the meaning of b becomes self-contained.
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A rigorous approach to domain separation
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verify ; verify
EUF-CMA i Unforgeability
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Design discipline: Each signature key is used with a single format, and
Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.
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A rigorous approach to domain separation

Bytes 3 High-level
sign ‘ sign
g. format I,g
verify ; verify
EUF-CMA i Unforgeability

"edyction

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.
Note 2: similar design discipline for MAC, AEAD, KDF, ...



Final notes
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Proof effort

Component F*LoC Verification time
Library code 836 1min30s
TreeSync 1274 4min30s
TreeKEM 396 1Imin
TreeDEM 1384 2min45s
High level API 1024 1min30s
Library proofs 1170 1min4bs
TreeSync proofs 4018 13min30s
Tests 2782 2min4b5s
Total specification 4914 11minlbs
Total proofs 5188 15min15s

Roughly two man-years of work, because many by-products to work on:
» Develop the methodology to treat such large protocols
» How to obtain a bit-precise specification

» Developed a framework for verified message formatting,
both concrete and symbolic (Comparse, submitted at CCS 2023)

» A protocol during its standardization is a moving target
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Conclusion

Our contributions:

» formally specify MLS decomposed into three sub-protocols:
TreeSync, TreeKEM, and TreeDEM

> prove the security of TreeSync in the Dolev-Yao model
» do proofs on an executable, interoperable specification
» found design flaws and submitted fixes to the MLS Working Group

> (Comparse) shed light on the importance of formatting in
cryptographic protocols
Future work: security proofs for TreeKEM and TreeDEM ; prove efficient
implementations.
The MLS Working Group gladly welcomed these contributions, resulting
in a fruitful collaboration.

</> https://github.com/Inria-Prosecco/treesync
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TreeDEM
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TreeDEM. . . with a tree
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8 % N <,

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)
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Proof sketch of TreeSync

40



Security proof, step 1: invariants

We prove many invariants on TreeSync (the well-formedness checks):

» Leaf signatures are valid
» Every node is linked by parent-hash to a node under it
» Things with unmerged leaves
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Security proof, step 2: the parent-hash guarantee theorem

We define an equivalence relation on trees ~.

We prove the theorem:

Py P>

C1 =~ C2
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Security proof, step 2: the parent-hash guarantee theorem

We define an equivalence relation on trees ~.

We prove the theorem:

Py

12

P>
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Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

Ty
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Security proof, step 3: signature invariant
We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:
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Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.
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Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

T, ~ T!
T2 >~ TZI
Tl ~ Tll
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