
The VEREFOO Network Security
Automation Approach

Riccardo Sisto
Politecnico di Torino

SoSySec Presentation, January 19th, 2024, Rennes

¡ VEREFOO Context and Motivation

¡ The VEREFOO Approach
¡ Latest VEREFOO Developments

¡ Conclusions

2

Outline

VEREFOO Context and Motivation

3

¡ Traditionally, network security is configured manually with trial-and-error naive
approaches:
Ø first, administrators configure security according to their initial threat model;

Ø if later a cyber attack occurs, they simply modify the configuration that could not
prevent the attack, to avoid possible repetitions.

¡ Such an approach works only with small-sized networks, where everything is
almost static and under the direct control of a human user.

4

Network Security Configuration

Security Misconfiguration

6

In 2021 82% of breaches involved
human errors in security configuration.

Security Management in Virtualized Networks

In virtualized networks, security
management has become a daunting
task because of:
• increasing dynamism and agility;

• increasing network size;

• increasing heterogeneity.

Manual Security management does not work any more.

6

SDN, NFV, IaaS, IaC

Automation can help security management:
¡ avoid manual trial-and-error configuration;
¡ exploit the agility of network virtualization;
¡ leverage formal verification and optimization.

VEREFOO: Problem Statement

Manual management is error-prone, unoptimized, time consuming.

Main problem:

7

¡ Manage both Traditional and Virtual Networks
¡ support networks with different types of middleboxes (LB, NAT, etc.)
¡ support not only function chains but also network service graphs

¡ Full Automation
¡ administrator provides only network graph/conf and security requirements
¡ automatic network security design from scratch

¡ Formal Correctness Guarantee
¡ Optimization
¡ Vendor-Independence
¡ Scale to significant network size

VEREFOO: Wish List

8

VEREFOO: Policy-Based Security Management Workflow

9

A Policy-Based Workflow for Security Management

10

Policy
Specification

¡ A human user specifies the security requirements that must be
enforced in the computer network by means of policies.
Ø RFC-3198 definition: “a network security policy is a set of rules to

administer, manage, and control access to the network resource”.

¡ The security policies should be specified:
Ø with a user-friendly language, usable by an administrator with limited security skills;

Ø abstracting from the vendor-dependent characteristics of NSF implementations.

¡ Example:
Ø “All the traffic between the sub-networks of the IT and Business departments must

be encrypted when outside those sub-networks”

Policy Specification

11

A Policy-Based Workflow for Security Management

12

Policy
Specification

Security
Configuration

¡ Security configuration involves refining the policies into two elements:

1) service structure composition;

2) NSF configuration rules (expressed in medium-level language).

Security Configuration

13

A Policy-Based Workflow for Security Management

14

Policy
Specification

Security
Configuration

Security
Deployment

¡ The NSFs composing the security service are deployed in the network.

¡ The configuration produced in the previous stage is translated into low-level
languages and installed in the NSF instances.
Ø This step is a simple syntax change.

Security Deployment

15

A Policy-Based Workflow for Security Management

16

Policy
Specification

Security
Configuration

Security
Deployment

Security
Mitigation

¡ Monitoring agents (e.g., intrusion detection systems) analyze network traffic for
the identification of cyber-attacks.

¡ If an attack is identified, a mitigation process is triggered:
Ø new security policies may be defined to mitigate the unexpected attack;

Ø old security policies may have to be discarded;
Ø a new security configuration is computed from the updated policies and deployed.

Security Mitigation

17

¡ Monitoring agents (e.g., intrusion detection systems) analyze network traffic for
the identification of cyber-attacks.

¡ If an attack is identified, a mitigation process is triggered:
Ø new security policies may be defined to mitigate the unexpected attack;

Ø old security policies may have to be discarded;
Ø a new security configuration is computed from the updated policies and deployed.

Security Mitigation

18

Security mitigation closes the loop of the security management workflow.

A Policy-Based Workflow for Security Management

19

Policy
Specification

Security
Configuration

Security
Deployment

Security
Mitigation

¡ In literature, there were several limitations preventing to satisfy our wish list:
¡ service composition and NSF configuration were rarely addressed together (e.g.,

Schnepf et al. and Basile et al. combine them, but only for simple function chains);
¡ most state-of-the-art methodologies did not pair automation with security

optimization and formal verification at the same time
¡ García-Alfaro et al. and Ocampo et al. address only networking optimization

¡ Adi et al. and Gember-Jacobson et al. address only formal verification

¡ scalability was limited to tens of NSFs

State of the Art of Automatic Security Configuration
before VEREFOO

20

The VEREFOO Approach

21

¡ The VEREFOO goal is to combine Security Automation, Formal Verification,
Optimization in a unified approach to simultaneously:

1. define the optimal allocation scheme for NSFs;
2. generate the optimal configuration of the allocated NSFs.

The New Approach: VEREFOO

Automation Formal Verification Optimization

Network Security

VErified REFinement
and Optimized Orchestration

22

The VEREFOO Approach

Input Output

Virtual Network Topology NSFs allocation scheme

Network Security Policies NSFs configurations

23

MaxSMT Problem Formulation

Partial weighted MaxSMT: an
optimization-enhanced version of the
Satisfiability Modulo Theories (SMT)
problem.

¡ Partial: there are hard constraints that
must be always satisfied and soft
constraints that should be satisfied as far
as possible.

¡ Weighted: find an assignment of the
variables that maximizes the total weight
of the satisfied soft clauses.

𝐻 = {𝑥! + 𝑥" > 5 ∧ 𝐴!, 𝑥! < 4 ∨ 𝑥" < 5 ∨ ¬𝐴"}

𝑆 = { 𝑥! > 1, 5 , ¬𝐴", 10 , 𝑥! + 𝑥" > 6, 8 }

𝑥! 𝑥" 𝐴! 𝐴" sum of weights

…

2
2
2

3
4
5

true false
true
true

true
false

15
13
23

24

MaxSMT Features

The MaxSMT formulation allows achieving:
¡ Automation: an automated solver searches for the solution.
¡ Formal correctness guarantee: MaxSMT guarantees “correctness by

construction”, provided the correctness conditions are expressed as hard
constraints;

¡ Optimization: soft constraints can express optimality objectives.

25

MaxSMT Features

The MaxSMT formulation allows achieving:
¡ Automation: an automated solver searches for the solution.
¡ Formal correctness guarantee: MaxSMT guarantees “correctness by

construction”, provided the correctness conditions are expressed as hard
constraints;

¡ Optimization: soft constraints can express optimality objectives.
How to use this approach for security configuration?
What about performance and scalability?

26

They can be achieved only by careful (lightweight) modeling!

VEREFOO Application to two NSFs

¡ The VEREFOO approach has been used for the automatic security configuration
of two NSFs that are frequently used in computer networks:

Packet filtering firewall Connectivity Policies

VPN Gateway Communication Protection Policies

27

VEREFOO Application to two NSFs

¡ The VEREFOO approach has been used for the automatic security configuration
of two NSFs that are frequently used in computer networks:

Packet filtering firewall Connectivity Policies

VPN Gateway Communication Protection Policies

28

¡ Packet classes (traffic) : predicates over IP 5-tuple fields

¡ Packet flows : 𝑓 = [𝑛?, 𝑡?,@, 𝑛@, 𝑡@,A, 𝑛A, … , 𝑛B, 𝑡B,C, 𝑛C]

¡ Network function behavior:
¡ forwarding : 𝒅𝒆𝒏𝒚𝒊(t)

¡ transformation : 𝓣𝒊(t)

¡ Packet filtering configuration decisions modeled as free variables
¡ Static computation of all (relevant) possible flows before using MaxSMT

29

Modeling Choices for Packet-filtering Firewall Configuration

Rennes Daniele Bringhenti

§ Each NSR 𝑟 ∈ 𝑅! is modeled as
𝑟 = (type, IPSrc, IPDst, pSrc, pDst, tProto)

§ The type of each NSR can be:
1) reachability, if the NSR requires that the

packets satisfying the conditions can reach
their destination;

2) isolation, if the NSR requires that the
packets satisfying the conditions must not
reach their destination.

Medium-level Connectivity NSRs

¡ The high-level Policies are translated into medium-level Network Security
Requirements (NSRs):

30

MaxSMT Problem Formulation

Soft Constraints

¡ forwarding behavior of the functions
¡ enforcement of the NSRs

MaxSMT Problem

Hard Constraints

¡ optimal firewall allocation scheme

¡ optimal firewall configuration rule set

31

§ From the hard and soft constraints, the
MaxSMT solver finds a solution with:

§ the minimum number of allocated firewalls
§ the minimum number of rules in each

allocated firewall

Outcome of VEREFOO

32

33

VEREFOO Implementation

Implementation:
¡ Java-based framework
¡ z3 as MaxSMT solver
¡ REST APIs and GUI for interaction
¡ GitHub repository: https://github.com/netgroup-polito/verefoo/

https://github.com/netgroup-polito/verefoo/

VEREFOO Evaluation (Firewalls)

34

VEREFOO Evaluation (VPN Gateways)

35

¡ VEREFOO has been integrated with Docker Compose:
Ø it is an automated deployment environment;

Ø it allows maximizing efficiency, minimizing resource
consumption for the NSF deployment, and keeping only
the minimal network functionalities;

Ø It supports three types of packet filtering firewalls
(iptables, BPF-based firewalls, Open vSwitch).

¡ The network topology output by VEREFOO is
automatically translated into a set of containers.

VEREFOO Integration with Docker Compose

36

¡ VEREFOO has been applied to IoT networks in two scenarios:

1) Demonstration in the EU CyberSec4Europe Project:
Ø application to a platform for urban management in a smart city;
Ø to solve the firewall configuration problem under complex

interactions between human users and heterogeneous services.

2) Integration with the ONOS Orchestrator:
Ø application to IoT-aware SDN networks;

Ø to solve SDN switch configuration problem while interacting with
probes that may detect cyber-attacks.

VEREFOO Applications in IoT Networks

37

Papers about the VEREFOO Approach

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Automated optimal firewall orchestration and configuration in
virtualized networks”, in IEEE/IFIP NOMS 2020, Budapest, Hungary, April 20-24, 2020.

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Towards a fully automated and optimized network security functions
orchestration”, in IEEE ICCCS 2019, Rome, Italy, October 10-12, 2019.

D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Short Paper: Automatic Configuration for an Optimal Channel Protection in
Virtualized Networks”, in CYSARM 2020, co-located with ACM CCS 2020, Orlando, United States, November 9-13, 2020.

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Automated firewall orchestration configuration in virtual networks”,
in IEEE Transactions on Dependable and Secure Computing, March 2023.

D. Bringhenti, G. Marchetto, R. Sisto, S.Spinoso, F. Valenza, and J. Yusupov, “Improving the formal verification of reachability policies in
virtualized networks”, in IEEE Transactions on Network and Service Management, March 2021.

38

D. Bringhenti, J. Yusupov, A.M. Zarca, F. Valenza, R.Sisto, J.B.Bernabe, and A.Skarmeta, “Autonomic, Verifiable and Optimized Policy-
based Security Enforcement for SDN-aware IoT networks”, in Computer Networks, Elsevier, August 2022.

D. Bringhenti, R. Sisto, and F. Valenza, “A novel abstraction for security configuration in virtual networks”, in Computer Networks,
Elsevier, June 2023.

Papers about the VEREFOO Approach

Latest VEREFOO Developments

39

¡ Research about the VEREFOO approach is still on-going.

¡ Main research directions:
1) Improve performance and scalability

¡ use of atomic flows instead of maximal flows for the MaxSMT problem formulation;

¡ optimization of re-configuration;

¡ investigation of heuristic approaches.

2) Extend coverage
¡ stateful NSF configuration;

40

Latest VEREFOO Developments

¡ Maximal Flows : minimize the number of flows (by aggregating together all flows that
behave in the same way when crossing the network)

¡ Atomic Flows : use flows corresponding to disjoint atomic traffic components (leveraging
the theory of atomic predicates by Woo and Lam)

¡ Maximal Flows: few flows but with complex predicate representation
¡ Atomic Flows: many flows but with simple predicate representation

41

Atomic Flows versus Maximal Flows

¡ Atomic Flows computation is slower than Maximal Flows computation (and
generates more flows)

¡ But with Atomic Flows the MaxSMT problem complexity decreases
¡ the overall computation time decreases
¡ => better scalability

42

Comparison between Atomic and Maximal Flows

43

Optimization of Reconfiguration

¡ The original VEREFOO algorithm is not optimized for NSF reconfiguration.
¡ When policies are updated (e.g. because of attack detection), VEREFOO can only

recompute the configuration of the whole network from scratch, even if the change is
just limited to a small portion.

¡ => reconfiguration from scratch may require excessive time, causing a high window of
exposure.

44

The REACT-VEREFOO Idea

Fast and efficient reconfiguration approach for distributed firewalls, with the goals of:
• achieving a new formally assured configuration within a short computation time
• satisfying a new set of Network Security Requirements (NSRs)

Main changes to the original VEREFOO:
1) Modification of the inputs
2) Algorithm to select the minimum network area that must be reconfigured,
3) Update of the MaxSMT soft constraints to minimize the changes in the

configuration and achieve better performance.

REACT-VEREFOO

F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “Automatic and optimized firewall reconfiguration”, accepted for
publication in NOMS 2024 - 37th IEEE/IFIP Network Operations and Management Symposium.

45

REACT-VEREFOO: Preliminary Performance Evaluation

46

REACT-VEREFOO Preliminary Optimization Evaluation

The sub-optimality of some results is due to two factors:
§ the reduction of the solution space for the solver;
§ the soft constraints force the preference of reusing old configuration elements even if a

completely new configuration would result in a slightly better solution.

¡ The original VEREFOO algorithm can scale to medium-sized networks…
…but not to large networks

¡ We defined an alternative heuristic strategy:
¡ formulated as a variant of the knapsack problem

¡ scales to much larger problems (100x)

¡ still providing correctness guarantees (to be proved)

47

Investigation of Heuristic Approaches
(Preliminary Results)

¡ In the original VEREFOO version, only stateless functions are modeled.
¡ However, the most commonly used firewall products (e.g., iptables, ipfw, Open

vSwitch, pfsense, nft) are stateful.
¡ For example, iptables can be configured to save a local state when a packet of a

certain type is received, and to accept packets related to an established/related
communication for which there is such state:
¡ iptables -A INPUT -p tcp –dport 22 -m conntrack --ctstate NEW -j ACCEPT

¡ iptables -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

48

Stateful Functions

¡ We proposed the VEREFOO approach to achieve automation, formal
correctness guarantee and optimization to solve the NSF allocation and
configuration problem in service graphs.

¡ A main challenge has been the definition of formal models that are sufficiently
detailed, but lightweight enough to make the automatic resolution algorithm
usable in practice (extending the state if the art significantly).

¡ Latest enhancements have made the approach even more scalable.

Conclusions

49

Riccardo Sisto,
Daniele Bringhenti, Fulvio Valenza

riccardo.sisto@polito.it
daniele.bringhenti@polito.it, fulvio.valenza@polito.it

VEREFOO GitHub Repository:
https://github.com/netgroup-polito/verefoo

Demo:

mailto:riccardo.sisto@polito.it
mailto:daniele.bringhenti@polito.it
https://github.com/netgroup-polito/verefoo

