
Software Compartmentalization
and the Challenge of Interfaces
Pierre Olivier
pierre.olivier@manchester.ac.uk
www.pierreolivier.eu

mailto:pierre.olivier@manchester.ac.uk
http://www.pierreolivier.eu/

2

Memory Safety
● Most systems software are today written in memory-unsafe

languages
● C/C++
● This is for performance reasons

3

Memory Safety
● Most systems software are today written in memory-unsafe

languages
● C/C++
● This is for performance reasons

● Programming mistakes introduce bugs leading to memory
corruption/undefined behavior

4

Memory Safety
● Most systems software are today written in memory-unsafe

languages
● C/C++
● This is for performance reasons

● Programming mistakes introduce bugs leading to memory
corruption/undefined behavior

● Impact of such bugs in production goes much further than
crashes: security issues

● Bugs can be exploited by attackers to take over a system’s
execution flow, leak/tamper with critical data, escalate privileges,
etc.

5

Memory Safety
Still the Main Security Issue in Systems Software

6

Memory Safety
Still the Main Security Issue in Systems Software

7

Memory Safety
Still the Main Security Issue in Systems Software

8

Memory Safety
Possible Solutions

● Existing solutions are not perfect
● Using memory safe languages is either too slow or too restrictive for the

programmer

9

Memory Safety
Possible Solutions

● Existing solutions are not perfect
● Using memory safe languages is either too slow or too restrictive for the

programmer
● Formal verification techniques are either too restrictive or do not scale to

the large code bases of modern systems software

10

Memory Safety
Possible Solutions

● Existing solutions are not perfect
● Using memory safe languages is either too slow or too restrictive for the

programmer
● Formal verification techniques are either too restrictive or do not scale to

the large code bases of modern systems software
● C/C++ hardening techniques are not comprehensive/can be

bypassed/have an unacceptable performance impact
● etc.

11

Memory Safety
Possible Solutions

● Existing solutions are not perfect
● Using memory safe languages is either too slow or too restrictive for the

programmer
● Formal verification techniques are either too restrictive or do not scale to

the large code bases of modern systems software
● C/C++ hardening techniques are not comprehensive/can be

bypassed/have an unacceptable performance impact
● etc.

● So C/C++ remain popular, and memory corruption vulnerabilities
are not going away anytime soon

12 12

Software Compartmentalization

13

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

14

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

● Different from previous approaches: acknowledge there will be bugs and
exploits, try to limit their impact

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

15

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

● Different from previous approaches: acknowledge there will be bugs and
exploits, try to limit their impact

Crypto
Library

HTTP
Parser

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

16

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

● Different from previous approaches: acknowledge there will be bugs and
exploits, try to limit their impact

Crypto
Library

HTTP
Parser

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

17

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

● Different from previous approaches: acknowledge there will be bugs and
exploits, try to limit their impact

Crypto
Library

HTTP
Parser

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

18

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

● Different from previous approaches: acknowledge there will be bugs and
exploits, try to limit their impact

Crypto
Library

HTTP
Parser

Crypto
Library

HTTP
Parser

Compartmentalization

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

19

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

● Different from previous approaches: acknowledge there will be bugs and
exploits, try to limit their impact

Crypto
Library

HTTP
Parser

Crypto
Library

HTTP
Parser

Compartmentalization

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

20

Software Compartmentalization
Motivation & Presentation

● Software compartmentalization decompose software into lesser-
privileged components that only have access to what they need to
do their job

● Different from previous approaches: acknowledge there will be bugs and
exploits, try to limit their impact

Crypto
Library

HTTP
Parser

Crypto
Library

HTTP
Parser

Compartmentalization

Kilpatrick, Douglas. "Privman: A Library for Partitioning Applications." In USENIX Annual Technical Conference, FREENIX Track,
pp. 273-284. 2003.
Brumley, David, and Dawn Song. "Privtrans: Automatically partitioning programs for privilege separation." In USENIX Security Symposium,
vol. 57, no. 72. 2004.

21

Software Compartmentalization
Scope

22

Software Compartmentalization
Scope

● Compartmentalization is not complete isolation: components are still
part of a single application/system and communicate

23

Software Compartmentalization
Scope

● Compartmentalization is not complete isolation: components are still
part of a single application/system and communicate

● Traditional examples: OS kernels, web browser, web servers, SSH
software

24

Software Compartmentalization
Scope

● Compartmentalization is not complete isolation: components are still
part of a single application/system and communicate

● Traditional examples: OS kernels, web browser, web servers, SSH
software

● We’ll also focus on compartmentalization applied to existing
software

25

Software Compartmentalization
Scope

● Compartmentalization is not complete isolation: components are still
part of a single application/system and communicate

● Traditional examples: OS kernels, web browser, web servers, SSH
software

● We’ll also focus on compartmentalization applied to existing
software

● Notice the disconnection with the traditional examples that were built
from scratch with (some degree of) compartmentalization in mind

● The idea is that we have a gigantic existing legacy codebase of unsafe
systems software that would benefit from that approach

26

Software Compartmentalization
Scope

Compartment 1
(crypto library)

Compartment 2
(HTTP parser)

Crypto keys Read access No access

HTTP request
data

No access Read access

Lampson’s
access control matrix

Lampson, Butler W. (1971). "Protection". Proceedings of
the 5th Princeton Conference on Information Sciences and
Systems. p. 437.

27

Software Compartmentalization
Scope

● Key idea: restrict control and data flow in the application so that
each compartment has the permissions it requires to do its job

● It’s an application of the principle of least privilege

Compartment 1
(crypto library)

Compartment 2
(HTTP parser)

Crypto keys Read access No access

HTTP request
data

No access Read access

Lampson’s
access control matrix

Lampson, Butler W. (1971). "Protection". Proceedings of
the 5th Princeton Conference on Information Sciences and
Systems. p. 437.

28

Software Compartmentalization
Trust Models

● 3 trust models:

29

Software Compartmentalization
Trust Models

● 3 trust models:
● Sandbox: part of the program is untrusted, isolated the (trusted) rest of

the program from it

Trusted

UntrustedSandbox

30

Software Compartmentalization
Trust Models

● 3 trust models:
● Sandbox: part of the program is untrusted, isolated the (trusted) rest of

the program from it
● Safebox: part of the program is security critical, isolated it from the

(untrusted) rest of the program

Trusted

UntrustedSandbox Safebox

31

Software Compartmentalization
Trust Models

● 3 trust models:
● Sandbox: part of the program is untrusted, isolated the (trusted) rest of

the program from it
● Safebox: part of the program is security critical, isolated it from the

(untrusted) rest of the program
● Mutual distrust: compartments distrust each others

● Stronger generalization of the other 2 models

Trusted

UntrustedSandbox Safebox Mutual
distrust

32

Software Compartmentalization
Trust Models

● 3 trust models:
● Sandbox: part of the program is untrusted, isolated the (trusted) rest of

the program from it
● Safebox: part of the program is security critical, isolated it from the

(untrusted) rest of the program
● Mutual distrust: compartments distrust each others

● Stronger generalization of the other 2 models
● All generalise to more than 2 compartments

Trusted

UntrustedSandbox Safebox Mutual
distrust

33

Software Compartmentalization
Security Properties

● 3 security properties considered:

34

Software Compartmentalization
Security Properties

● 3 security properties considered:
● Confidentiality: an attacker cannot read/leak

information from outside of a subverted compartment

35

Software Compartmentalization
Security Properties

● 3 security properties considered:
● Confidentiality: an attacker cannot read/leak

information from outside of a subverted compartment
● Integrity: an attacker cannot write/tamper with data

outside of a subverted compartment

36

Software Compartmentalization
Security Properties

● 3 security properties considered:
● Confidentiality: an attacker cannot read/leak

information from outside of a subverted compartment
● Integrity: an attacker cannot write/tamper with data

outside of a subverted compartment
● Availability: an attacker cannot disrupt (e.g. crash) code

running outside of a subverted compartment
● Very hard to achieve without complete redesing of

monolithic application, out of scope for most existing efforts

37

Software Compartmentalization
Illustrative Example

int global;

int library_function(int *parameter) {
 char *cryptokey = “private“;

 int ret = *parameter + global + 42;
 return ret;
}

int main() {
 int param = 100;
 global = 50;
 char *password = “secret“;

 /* … */

 int res = library_function(¶m);

 /* … */

 return 0;
}

38

Software Compartmentalization
Illustrative Example

int global;

int library_function(int *parameter) {
 char *cryptokey = “private“;

 int ret = *parameter + global + 42;
 return ret;
}

int main() {
 int param = 100;
 global = 50;
 char *password = “secret“;

 /* … */

 int res = library_function(¶m);

 /* … */

 return 0;
}

Policy: put library_function in a
compartment, and main in another

39

Software Compartmentalization
Illustrative Example

int global;

int library_function(int *parameter) {
 char *cryptokey = “private“;

 int ret = *parameter + global + 42;
 return ret;
}

int main() {
 int param = 100;
 global = 50;
 char *password = “secret“;

 /* … */

 int res = GATE(library_function, ¶m);

 /* … */

 return 0;
}

Policy: put library_function in a
compartment, and main in another

Compartmentalization:
● Add a gate performing security

domain switch (e.g. page table,
MPK, etc.)

● Identify shared data and allocate it
somewhere accessible from both
compartments

40

Software Compartmentalization
Illustrative Example

int global;

int library_function(int *parameter) {
 char *cryptokey = “private“;

 int ret = *parameter + global + 42;
 return ret;
}

int main() {
 int param = 100;
 global = 50;
 char *password = “secret“;

 /* … */

 int res = GATE(library_function, ¶m);

 /* … */

 return 0;
}

Policy: put library_function in a
compartment, and main in another

Compartmentalization:
● Add a gate performing security

domain switch (e.g. page table,
MPK, etc.)

● Identify shared data and allocate it
somewhere accessible from both
compartments

Many modern frameworks can help:
codejail, ERIM, Hodor, Donky, Ptrsplit, memsentry,
libmpk, Cali, CubicleOS, LibHermitMPK, FlexOS,
Polytope, etc.

41

Software Compartmentalization
Illustrative Example

● How does it work from the hardware point of view?

Memory
(code & data)Comp2 Comp1 All

Comps.

Current
context:
Comp1

CPU

42

Software Compartmentalization
Illustrative Example

● How does it work from the hardware point of view?

Memory
(code & data)Comp2 Comp1 All

Comps.

Current
context:
Comp1

CPU

Security domain switch comp2 comp1→

43

Software Compartmentalization
It’s in the Air!

44

How to Compartmentalize an App
● Compartmentalizing an existing monolithic application can be

abstracted into the following 3 sequential steps:

45

How to Compartmentalize an App
● Compartmentalizing an existing monolithic application can be

abstracted into the following 3 sequential steps:
1) Policy definition: how many compartments, what part of the app goes into

what compartment

46

How to Compartmentalize an App
● Compartmentalizing an existing monolithic application can be

abstracted into the following 3 sequential steps:
1) Policy definition: how many compartments, what part of the app goes into

what compartment
2) Shared/private data classification, interface sanitization: because the app

was not designed with compartmentalization in mind

47

How to Compartmentalize an App
● Compartmentalizing an existing monolithic application can be

abstracted into the following 3 sequential steps:
1) Policy definition: how many compartments, what part of the app goes into

what compartment
2) Shared/private data classification, interface sanitization: because the app

was not designed with compartmentalization in mind
3) Integrate an isolation mechanism and a compatible data sharing strategy

to enforce compartmentalization at runtime

48

How to Compartmentalize an App
● Compartmentalizing an existing monolithic application can be

abstracted into the following 3 sequential steps:
1) Policy definition: how many compartments, what part of the app goes into

what compartment
2) Shared/private data classification, interface sanitization: because the app

was not designed with compartmentalization in mind
3) Integrate an isolation mechanism and a compatible data sharing strategy

to enforce compartmentalization at runtime
Completely neglected in most major

compartmentalization efforts!

49 49

Interface Security

50

Interface Security
Motivation

double data[DATA_SIZE];

/* … */

int library_function(int index, double object) {
 data[index] = object;

 /* … */
}

int main() {
 int index = get_index();
 double object = get_index();

 if (index < DATA_SIZE)
 library_function(index, object);

 /* … */
}

Policy: put library_function in a
compartment, and main in another

51

Interface Security
Motivation

double data[DATA_SIZE];

/* … */

int library_function(int index, double object) {
 data[index] = object;

 /* … */
}

int main() {
 int index = get_index();
 double object = get_index();

 if (index < DATA_SIZE)
 library_function(index, object);

 /* … */
}

Policy: put library_function in a
compartment, and main in another

Compartmentalization: put a gate at
the level of the call to
library_function
There is no shared data (data only
accessed from 1 compartment,
parameters passed by copy)

52

Interface Security
Motivation

double data[DATA_SIZE];

/* … */

int library_function(int index, double object) {
 data[index] = object;

 /* … */
}

int main() {
 int index = get_index();
 double object = get_index();

 if (index < DATA_SIZE)
 library_function(index, object);

 /* … */
}

Isolate library_function and main
in different compartment creates a
new internal trust boundary: the
interface between the two
compartments: here it is the call
to library_function

53

Interface Security
Motivation

double data[DATA_SIZE];

/* … */

int library_function(int index, double object) {
 data[index] = object;

 /* … */
}

int main() {
 int index = get_index();
 double object = get_index();

 if (index < DATA_SIZE)
 library_function(index, object);

 /* … */
}

Isolate library_function and main
in different compartment creates a
new internal trust boundary: the
interface between the two
compartments: here it is the call
to library_function
Assume main is malicious and
send corrupted values through this
interface

54

Interface Security
Motivation

double data[DATA_SIZE];

/* … */

int library_function(int index, double object) {
 data[index] = object;

 /* … */
}

int main() {
 int index = get_index();
 double object = get_index();

 if (index < DATA_SIZE)
 library_function(index, object);

 /* … */
}

Isolate library_function and main
in different compartment creates a
new internal trust boundary: the
interface between the two
compartments: here it is the call
to library_function
Assume main is malicious and
send corrupted values through this
interface
The lack of check in
library_function gives an
untrusted caller (e.g. main) an
arbitrary memory write primitive

55

Interface Security
Motivation

double data[DATA_SIZE];

/* … */

int library_function(int index, double object) {
 if (index >= DATA_SIZE || index < 0)
 return -1;
 data[index] = object;

 /* … */
}

int main() {
 int index = get_index();
 double object = get_index();

 if (index < DATA_SIZE)
 library_function(index, object);

 /* … */
}

Fix: have a check within the trusted
compartment

56

Compartment Interface Vulnerabilities (CIVs)
Definition

● CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

● Classes of CIVs:
Data Leakages Data Corruption Temporal Violations

57

Compartment Interface Vulnerabilities (CIVs)
Definition

● CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

● Classes of CIVs:

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages Data Corruption Temporal Violations

58

Compartment Interface Vulnerabilities (CIVs)
Definition

● CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

● Classes of CIVs:

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted
pointer

• Usage of corrupted
indexing information

• Usage of corrupted object

Data Corruption Temporal Violations

59

Compartment Interface Vulnerabilities (CIVs)
Definition

● CIVs = Vulnerabilities arising due to lack of or improper Control and
Data flow validation at compartment boundaries

● Classes of CIVs:

• Exposure of addresses

• Exposure of compartment-
confidential data

Data Leakages

• Dereference of corrupted
pointer

• Usage of corrupted
indexing information

• Usage of corrupted object

• Expectation of API usage
ordering

• Usage of corrupted
synchronization primitive

• Shared memory TOCTOU

Data Corruption Temporal Violations

60

Interface Security
Problem Statement

● The vast majority of modern compartmentalization framework
ignore the problem of interface safety!

61

Interface Security
Problem Statement

● The vast majority of modern compartmentalization framework
ignore the problem of interface safety!

● Is there any point in compartmentalising our applications with these
frameworks without considering interfaces? How bad is the problem
of CIVs?

● How many CIVs are there at legacy, unported APIs?
● Are all APIs similarly affected by CIVs? (e.g., library v.s. module APIs)
● How hard are these CIVs to address when compartmentalizing?
● How bad are they? i.e., if you don't fix them, what can attackers do?

62

ConfFuzz: Fuzzing for CIVs

Victim compartment
(e.g. main app code)

Malicious compartment
(e.g. compromised library)

ConfFuzz

● We built a fuzzer injecting
malformed data at possible
compartment interfaces
● E.g. library/main app. Code

63

ConfFuzz: Fuzzing for CIVs

Victim compartment
(e.g. main app code)

Malicious compartment
(e.g. compromised library)

ConfFuzz

● We built a fuzzer injecting
malformed data at possible
compartment interfaces
● E.g. library/main app. Code

● It runs on monolithic (non-
compartmentalized) software to
uncover a maximum of CIVs

64

ConfFuzz: Fuzzing for CIVs

Victim compartment
(e.g. main app code)

Malicious compartment
(e.g. compromised library)

ConfFuzz

● We built a fuzzer injecting
malformed data at possible
compartment interfaces
● E.g. library/main app. Code

● It runs on monolithic (non-
compartmentalized) software to
uncover a maximum of CIVs

● We apply it to many
compartmentalization scenarios
and study the bugs we uncover

65

ConfFuzz: Fuzzing for CIVs

Victim compartment
(e.g. main app code)

Malicious compartment
(e.g. compromised library)

Calls return values /
pointers parameters

Callbacks
parameters

Shared
memory

● ConfFuzz covers the entire
attack surface of a victim
compartment

● Can fuzz both ways:
● SandBox: malicious

compartment calls the
victim

● SafeBox: the victim calls the
malicious compartment

66

ConfFuzz: Fuzzing for CIVs

1) Choose an app

Methodology:

67

ConfFuzz: Fuzzing for CIVs

1) Choose an app
2) Choose a meaningful potential

compartmentalization interface

Methodology:

68

ConfFuzz: Fuzzing for CIVs

1) Choose an app
2) Choose a meaningful potential

compartmentalization interface
3) Run the application with Asan, hook

ConfFuzz to the interface
4) Stress the app, fuzz and gather as

many bugs as we can

Methodology:

ConfFuzz

wrk

69

ConfFuzz: Fuzzing for CIVs

1) Choose an app
2) Choose a meaningful potential

compartmentalization interface
3) Run the application with Asan, hook

ConfFuzz to the interface
4) Stress the app, fuzz and gather as

many bugs as we can
5) Rince and repeat

Methodology:

ConfFuzz

wrk

70 70 28 / 42

71 71

25 applications

36 APIs in total

29 / 42

72 72

 Module APIsLibrary APIs Internal APIs

25 applications

36 APIs in total

30 / 42

73 73

16 of which
taken from the
literature

25 applications

36 APIs in total

 Module APIsLibrary APIs Internal APIs

31 / 42

74 74

Found 629
unique
CIVs

 Module APIsLibrary APIs Internal APIs

25 applications

36 APIs in total

16 of which
taken from the
literature

32 / 42

75 75

5 security impact
types

Found 629
unique
CIVs

 Module APIsLibrary APIs Internal APIs

25 applications

36 APIs in total

16 of which
taken from the
literature

33 / 42

76 76

// CIV 1: option setting API leads to arbitrary R/W
ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op) {
 return ctx->options |= op;
}

// CIV 2: cross-API object SSL_CTX with function
// pointers leads to arbitrary execution
SSL *SSL_new(SSL_CTX *ctx) {
 /* ... */
 s->method = ctx->method;
 /* ... */
 if (!s->method->ssl_new(s)) // arbitrary execution
 goto err;
} /* ... */

Safeboxing libssl:
2 CIVs leading to arbitrary read, write, and execute impact. Both
functions are exposed to the application.

77 77

int sudo_passwd_verify(struct passwd *pw, char *pass,
 sudo_auth *auth, struct sudo_conv_callback *cb) {
 /* ... abbreviated ... */
 sav = pass[8]; // read CIV
 pass[8] = '\0'; // write CIV
} /* ... abbreviated ... */

Safeboxing sudo’s authentication API:
read & write CIV with
password < 8 characters

78 78

int sudo_passwd_verify(struct passwd *pw, char *pass,
 sudo_auth *auth, struct sudo_conv_callback *cb) {
 /* ... abbreviated ... */
 sav = pass[8]; // read CIV
 pass[8] = '\0'; // write CIV
} /* ... abbreviated ... */

Safeboxing sudo’s authentication API:
read & write CIV with
password < 8 characters

By the way, the password comes from
the command line CVE-2022-43995

79 79

80

Takeways
● CIVs are widespread and compartmentalization without securing

interfaces is mostly meaningless

81

Takeways
● CIVs are widespread and compartmentalization without securing

interfaces is mostly meaningless
● Clear disparities among APIs

● There are large and almost totally CIV-free APIs
● There are small and fully vulnerable APIs
● No correlation between API size and CIV count
● Some API design patterns (e.g. modules) are highly vulnerable because of a

large amount of state exposure

82

Takeways
● CIVs are widespread and compartmentalization without securing

interfaces is mostly meaningless
● Clear disparities among APIs

● There are large and almost totally CIV-free APIs
● There are small and fully vulnerable APIs
● No correlation between API size and CIV count
● Some API design patterns (e.g. modules) are highly vulnerable because of a

large amount of state exposure
● CIVs are high-impact

● 75% of scenarios have at least 1 write vulnerability
● 70% of R/W and 50% of execute vulnerabilities are arbitrary

83

Takeways
● CIVs are widespread and compartmentalization without securing interfaces is

mostly meaningless
● Clear disparities among APIs

● There are large and almost totally CIV-free APIs
● There are small and fully vulnerable APIs
● No correlation between API size and CIV count
● Some API design patterns (e.g. modules) are highly vulnerable because of a large amount of

state exposure
● CIVs are high-impact

● 75% of scenarios have at least 1 write vulnerability
● 70% of R/W and 50% of execute vulnerabilities are arbitrary

● Fixing CIVs goes beyond writing simple checks
● Requires API redesign in many cases, hard to automate

84 84

The Path Forward

85

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?

86

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?
● Existing successful approaches running in production have been designed

from scratch with compartmentalization in mind

87

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?
● Existing successful approaches running in production have been designed

from scratch with compartmentalization in mind
● Engineering effort required to compartmentalize a monolithic application

is high

88

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?
● Existing successful approaches running in production have been designed

from scratch with compartmentalization in mind
● Engineering effort required to compartmentalize a monolithic application

is high
● Performance overhead brought by that practice is high

89

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?
● Existing successful approaches running in production have been designed

from scratch with compartmentalization in mind
● Engineering effort required to compartmentalize a monolithic application

is high
● Performance overhead brought by that practice is high
● Security benefits are hard to quantify, difficult to compare approaches

90

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?
● Existing successful approaches running in production have been designed

from scratch with compartmentalization in mind
● Engineering effort required to compartmentalize a monolithic application

is high
● Performance overhead brought by that practice is high
● Security benefits are hard to quantify, difficult to compare approaches
● Lack of visibility on the cost and benefits pre-compartmentalization

91

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?
● Existing successful approaches running in production have been designed

from scratch with compartmentalization in mind
● Engineering effort required to compartmentalize a monolithic application

is high
● Performance overhead brought by that practice is high
● Security benefits are hard to quantify, difficult to compare approaches
● Lack of visibility on the cost and benefits pre-compartmentalization
● Existing efforts lack flexibility

92

Outstanding Challenges
● As of today, why did compartmentalization failed to establish itself

as a standard engineering practice?
● Existing successful approaches running in production have been designed

from scratch with compartmentalization in mind
● Engineering effort required to compartmentalize a monolithic application

is high
● Performance overhead brought by that practice is high
● Security benefits are hard to quantify, difficult to compare approaches
● Lack of visibility on the cost and benefits pre-compartmentalization
● Existing efforts lack flexibility
● Availability is generally scoped out

93

Research Needed!

94

Research Needed!
● Need approaches focusing on retrofiting compartmentalization in

legacy monolithic applications (including OS kernels)

95

Research Needed!
● Need approaches focusing on retrofiting compartmentalization in

legacy monolithic applications (including OS kernels)
● Need more automation

96

Research Needed!
● Need approaches focusing on retrofiting compartmentalization in

legacy monolithic applications (including OS kernels)
● Need more automation

● But unlikely that everything can be automated (interface safety/redesign)

97

Research Needed!
● Need approaches focusing on retrofiting compartmentalization in

legacy monolithic applications (including OS kernels)
● Need more automation

● But unlikely that everything can be automated (interface safety/redesign)
● Need efficient isolation and sharing mechanisms (e.g. CHERI1)

1Watson, Robert NM, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave et al. "CHERI: A hybrid
capability-system architecture for scalable software compartmentalization." In 2015 IEEE Symposium on Security and Privacy, pp. 20-37. IEEE, 2015.

98

Research Needed!
● Need approaches focusing on retrofiting compartmentalization in

legacy monolithic applications (including OS kernels)
● Need more automation

● But unlikely that everything can be automated (interface safety/redesign)
● Need efficient isolation and sharing mechanisms (e.g. CHERI1)
● Need metrics to validate, evaluate, quantify and compare

approaches (e.g. policies)

1Watson, Robert NM, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave et al. "CHERI: A hybrid
capability-system architecture for scalable software compartmentalization." In 2015 IEEE Symposium on Security and Privacy, pp. 20-37. IEEE, 2015.

99

Research Needed!
● Need approaches focusing on retrofiting compartmentalization in

legacy monolithic applications (including OS kernels)
● Need more automation

● But unlikely that everything can be automated (interface safety/redesign)
● Need efficient isolation and sharing mechanisms (e.g. CHERI1)
● Need metrics to validate, evaluate, quantify and compare

approaches (e.g. policies)
● Need tools to estimate costs & benefits pre-compartmentalization

1Watson, Robert NM, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave et al. "CHERI: A hybrid
capability-system architecture for scalable software compartmentalization." In 2015 IEEE Symposium on Security and Privacy, pp. 20-37. IEEE, 2015.

100

Research Needed!
● Need approaches focusing on retrofiting compartmentalization in legacy

monolithic applications (including OS kernels)
● Need more automation

● But unlikely that everything can be automated (interface safety/redesign)
● Need efficient isolation and sharing mechanisms (e.g. CHERI1)
● Need metrics to validate, evaluate, quantify and compare approaches (e.g.

policies)
● Need tools to estimate costs & benefits pre-compartmentalization
● Need more focus on flexibility2 and availability

1Watson, Robert NM, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave et al. "CHERI: A hybrid
capability-system architecture for scalable software compartmentalization." In 2015 IEEE Symposium on Security and Privacy, pp. 20-37. IEEE, 2015.
2Lefeuvre, Hugo, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Lucian Teodorescu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier.
"FlexOS: towards flexible OS isolation." In Proceedings of the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 467-482. 2022.

101 101

Links & credits

102

Availability & Credits
Everything is Open!

● ConfFuzz NDSS'23 Paper:
https://arxiv.org/pdf/2212.12904.pdf

● Project website:
https://conffuzz.github.io

● Main author: Hugo Lefeuvre
https://research.manchester.ac.uk/en
/persons/hugo.lefeuvre

https://arxiv.org/pdf/2212.12904.pdf
https://conffuzz.github.io/
https://research.manchester.ac.uk/en/persons/hugo.lefeuvre
https://research.manchester.ac.uk/en/persons/hugo.lefeuvre

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 5
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 6 (7)
	Slide: 6 (8)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13
	Slide: 14
	Slide: 15
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 16 (3)
	Slide: 16 (4)
	Slide: 17
	Slide: 18
	Slide: 19
	Slide: 20
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 23 (4)
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 25 (3)
	Slide: 26
	Slide: 27 (1)
	Slide: 27 (2)
	Slide: 27 (3)
	Slide: 27 (4)
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33
	Slide: 34
	Slide: 35 (1)
	Slide: 35 (2)
	Slide: 36
	Slide: 37 (1)
	Slide: 37 (2)
	Slide: 37 (3)
	Slide: 37 (4)
	Slide: 38
	Slide: 39 (1)
	Slide: 39 (2)
	Slide: 39 (3)
	Slide: 39 (4)
	Slide: 39 (5)
	Slide: 39 (6)
	Slide: 39 (7)
	Slide: 39 (8)
	Slide: 40 (1)
	Slide: 40 (2)
	Slide: 40 (3)
	Slide: 40 (4)
	Slide: 40 (5)
	Slide: 40 (6)
	Slide: 40 (7)
	Slide: 40 (8)
	Slide: 41
	Slide: 42

