
Programming Multicore Challenges
François Bodin

Irisatech, May 19th, 2009

Introduction

Main stream applications will rely on new
multicore / manycore architectures
• It is about performance not parallelism

Various heterogeneous hardware
• General purpose cores
• Application specific cores – GPU

HPC and embedded applications are increasingly
sharing characteristics

Irisatech, May 19th 2009

Manycore Architectures

General purpose cores
• Share a main memory
• Core ISA provides fast SIMD

instructions

Streaming engines / DSP / FPGA
• Application specific architectures

(“narrow band”)
• Vector/SIMD
• Can be extremely fast

Hundreds of GigaOps
• But not easy to take advantage of
• One platform type cannot satisfy

everyone

Operation/Watt is the efficiency scale

Irisatech, May 19th 2009

Main
Memory

Application
data

General
Purpose
Processor
Cores

HWA

Application
data

Stream cores

Upload
remote
data

Download
remote data

Remote
Procedure call

Multiple Parallelism Levels

Amdahl’s law is forever, all levels of parallelism
need to be exploited
• Hybrid parallelism needed

Programming various hardware components of a
node cannot be done separately

Irisatech, May 19th 2009

core

shared memory

ne
tw

or
k

core

shared memorylocal memory

H
W

A
1

local memory

H
W

A
2

local memory

H
W

A
1

local memory

H
W

A
2

Threads
Message Passing

Stream programming

Programming Multicores/Manycores
Physical architecture oriented
• Shared memory architectures

OpenMP, CILK, TBB, automatic parallelization, vectorization…

• Distributed memory architectures
Message passing, PGAS (Partition Global Address Space), …

• Hardware accelerators, GPU
CUDA, OpenCL, Brook+, HMPP, …

Different styles
• Libraries

MPI, pthread, TBB, SSE intrinsic functions, …

• Directives
OpenMP, HMPP, …

• Language constructs
UPC, Cilk, Co-array Fortran, UPC, Fortress, Titanium, …

Irisatech, May 19th 2009

The Past of Parallel Computing,
the Future of Manycore?

The Past
• Scientific computing focused
• Microprocessor or vector based, homogeneous

architectures
• Trained programmers willing to pay effort for

performance
• Fixed execution environments

The Future
• New applications (multimedia, medical, …)
• Thousands of heterogeneous systems configurations
• Unfriendly execution environments

Irisatech, May 19th 2009

Multi (languages) programming

Happens when programmers needs to deal with
multiple programming language
• E.g. Fortran and Cuda, Java and OpenCL, …

Multiprogramming impacts on
• Programmer’s expertise
• Program maintenance and correctness
• Long term technology availability

Performance programming versus domain
specific programming
• Libraries, parallel components to be provided to divide

the issues
Irisatech, May 19th 2009

Can the Hardware be Hidden?

Programming style is usually hardware
independent but
• Programmers needs to take into account available

hardware resources

Quantitative decisions as important as parallel
programming
• Performance is about quantity
• Tuning is specific to a configuration

Runtime adaptation is a key feature
• Algorithm, implementation choice
• Programming/computing decision

Irisatech, May 19th 2009

Manycore = Numerous Configurations

Heterogeneity brings a lot of configurations
Proc. x Nb Cores x HWA x Mem. Sys.

=
1000s of configurations

Code optimization strategy may differ from one
configuration to another

Is it possible to make a single (a few) binary that
will run efficiency on a large set of

configurations?
Irisatech, May 19th 2009

Asymmetric Behavior Issue

Irisatech, May 19th 2009

Cannot assume that all cores with same ISA
provide equal performance
• Core frequency/voltage throttling can change

computing speed of some cores
e.g. Nehalem “turbo mode”

• Simple (in order) versus complex (out-of-order) cores
• Data locality effects
• …

How to deal with non homogeneous core
behavior?

Manycore =
Multiple μ-Architectures

Each μ-architecture requires different code
generation/optimization strategies
• Not one compiler in many cases

High performance variance between implementations
• ILP, GPCore/TLP, HWA

Dramatic effect of tuning
• Bad decisions have a strong effect on performance
• Efficiency is very input parameter dependent
• Data transfers for HWA add a lot of overheads

How to organize the compilation flow?

Irisatech, May 19th 2009

CAPS Compiler Flow
for Heterogeneous Targets

Dealing with
various ISAs

Not all code
generation can be
performed in the
same framework

Irisatech, May 19th 2009

HMPP annotated
application

HMPP
preprocessor

Generic host
compiler

template
generator

target
generator

Hardware vendor
compiler

main function

HMPP
codelet

Binary host
application

HMPP runtime

HMPP annotated
native codelet

Dynamic library
HMPP codelet

HMPP runtime
interface

Target codelet

Tuning Issue Example

Irisatech, May 19th 2009

#pragma

hmpp

astex_codelet__1 codelet

&
#pragma

hmpp

astex_codelet__1 , args[c].io=in &
#pragma

hmpp

astex_codelet__1 , args[v].io=inout

&
#pragma

hmpp

astex_codelet__1 , args[u].io=inout

&
#pragma

hmpp

astex_codelet__1 , target=

C

U

D

A &
#pragma

hmpp

astex_codelet__1 , version=1.4.0
void

astex_codelet__1(float

u[256][256][256], float

v[256][256][256], float

c[256][256][256],
const

int

K, const

float

x2){
astex_thread_begin:{
for (int

it= 0 ; it< K ; +

+it){
for (int

i2 = 1 ; i2 < 256 -

1 ; ++i2){
for (int

i3 = 1 ; i3 < 256 -

1 ; ++i3){
for (int

i1 = 1 ; i1 < 256 -

1 ; ++i1){
float

c

o

eff

= c[i3][i2][i1] * c[i3][i2][i1] * x2;
flo

at

s

u

m

= u[i3][i2][i1 + 1] + u[i3][i2][i1 -1];
su

m

+= u[i3][i2 + 1][i1] + u[i3][i2 -1][i1];
su

m

+= u[i3 + 1][i2][i1] + u[i3 -

1][i2][i1];
v[i3][i2][i1] = (2. -6. * coeff) * u[i3][i2][i1] + c

o

eff

* s

u

m

-

v[i3][i2][i1];
}
}
}
for (int

i2 = 1 ; i2 < 256 -

1 ; ++i2){
for (int

i3 = 1 ; i3 < 256 -

1 ; ++i3){
for (int

i1 = 1 ; i1 < 256 -

1 ; ++i1{

.
}astex_threa

d_e

n

d:;
}

Need interchange
If aims at NVIDIA GPU

Input Fortran Code Example 2

Irisatech, May 19th 2009

!$HMPP sgem

m3 codelet, tar

g

et

=

C

U

D

A, ar

g

s[v

o

ut].io=inout
SUBR

O

U

TINE sgem

m(

m,n,k2,alpha,vin1,vin2,beta,vout)
INTE

G

E

R, INTENT(IN) :: m,n,k2
REAL, INTENT(IN) :: alp

h

a,

b

et

a
REAL, INTENT(IN) :: vin

1(

n,

n), vin2(n,n)
REAL, INTENT(INOUT) :: vout(n,n)
REAL :: pro

d
INTE

G

E

R :: i,j,k
!$

H

M

P

P

C

G u

nr

oll(X), ja

m(2), norem

ainder
!$

H

M

P

P

C

G

 p

ar

allel
DO j=1,n
!$HMPPCG unroll(X), splitted, noremainder
!$HMPPCG parallel
DO i=1,n
prod

= 0.0
DO k=1,n
prod

= pro

d

+ vin1(i,k) * vin2(k,j)
ENDDO
vout(i,j) = al

p

h

a * prod

+ beta

* vout(i,j) ;
END DO

END DO
END SUBROUTINE sgemm

X>8 GPU compiler fails

X=8 200 Gigaflops

X=4 100 Gigaflops

Multicore Workload

Multiple applications sharing the hardware
• Multimedia, game, encryption, security, health, …

Unfriendly environment with many competitions
• Global resource allocation, no warranty on availability

• Must be taken into account when programming/compiling

Applications cannot always be recompiled
• Most applications are distributed as binaries

A binary will have to run on many platforms
• Forward scalability or “write once, run faster on new hardware”

• Loosing performance is not an option

Irisatech, May 19th 2009

Varying Available Resources

Available hardware resources are changing over
the execution time
• e.g. a HWA may not be available
• Data affinity must be respected

How to avoid that conflict resource usage will
not lead to global performance degradation?

Irisatech, May 19th 2009

Competition for Resources

Irisatech, May 19th 2009

AThread0 AThread1 AThread2

BThread0 BThread1

contention

ARPC0 ARPC1

BRPC0

Application A
Application B

OpenMP in Unfriendly Environment

OpenMP programs performance is strongly
degraded when sharing resources
• Example with NAS parallel benchmark, 2 cores, one

rogue application using one of the core
• Best loop scheduling strategy not identical on loaded

or unloaded machine

Irisatech, May 19th 2009

Peak Performance is Not the Goal

Maximizing the Return on Investment

Irisatech, May 19th 2009

Difficult Decisions Making with Alternative
Codes (Multiversioning)

Various implementations of routines are
available or can be generated for a given target
• CUBLAS, MKL, ATLAS, …
• SIMD instructions, GPcore, HWA, Hybrid

No strict performance order
• Each implementation has a different performance

profile
• Best choice depends on platform and runtime

parameters
Decision is a complex issue
• How to produce the decision?

Irisatech, May 19th 2009

Illustrating Example:
Dealing with Multiple BLAS Implementations

Runtime selection of DGEMM in
High Performance Linpack

• Intel(R) Xeon(R) E5420 @ 2.50GHz
• CUBLAS - Tesla C1060, Intel MKL

Three binaries of the application
Static linking with CUBLAS
Static linking with MKL
Library mix with selection of routine at runtime

Automatically generated using CAPS tooling

Three hardware resource configurations
GPU + 1, 2, and 4 cores used for MKL

Irisatech, May 19th 2009

Performance Using One Core

Performance in Gigaflops
4 problem sizes: 64, 500, 1200, 8000

Irisatech, May 19th 2009

Performance Using Two Cores

Irisatech, May 19th 2009

Performance Using Four Cores

Irisatech, May 19th 2009

The Challenges

Programming
• Medium

Resources management
• Medium

Application deployment
• Hard

Portable performance
• Extremely hard

Irisatech, May 19th 2009

Research Directions

New Languages
• X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, …

Libraries
• Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, …

Compilers
• Classical compiler flow needs to be revisited
• Acknowledge lack of static performance model
• Adaptative code generation

OS
• Virtualization/hypervisors

Architectures
• Integration on the chip of the accelerators

AMD Fusion, …

• Alleviate data transfers costs
PCI Gen 3x

Irisatech, May 19th 2009

Key for the
short/mid

term

Directives Based Parallel Programming

Directives
• Do not need a new programming language
• Already in state of the art (e.g. OpenMP)
• Keep incremental development possible
• Avoid exit cost

Does not address large scale parallelism
• But this is not (yet) the issue for multicore nodes

Path chosen by CAPS entreprise
• Heterogeneous Multicore Parallel Programming

Irisatech, May 19th 2009

Conclusion

Multicore ubiquity is going to have a large impact on
software industry
• New applications but many new issues

Will one parallel model fit all?
• Surely not but multi languages programming should be avoided

Toward Adaptative Parallel Programming
• Compiler alone cannot solve it
• Compiler must interact with the runtime environment
• Programming must help expressing global strategies / patterns
• Compiler as provider of basic implementations
• Offline-Online compilation has to be revisited

Irisatech, May 19th 2009

	Programming Multicore Challenges��François Bodin
	Introduction
	Manycore Architectures
	Multiple Parallelism Levels
	Programming Multicores/Manycores
	The Past of Parallel Computing, �the Future of Manycore?
	Multi (languages) programming
	Can the Hardware be Hidden?
	Manycore = Numerous Configurations
	Asymmetric Behavior Issue
	Manycore = �Multiple μ-Architectures
	CAPS Compiler Flow �for Heterogeneous Targets
	Tuning Issue Example
	Input Fortran Code Example 2
	Multicore Workload
	Varying Available Resources
	Competition for Resources
	OpenMP in Unfriendly Environment
	Peak Performance is Not the Goal
	Difficult Decisions Making with Alternative Codes (Multiversioning)
	Illustrating Example:�Dealing with Multiple BLAS Implementations
	Performance Using One Core
	Performance Using Two Cores
	Performance Using Four Cores
	The Challenges
	Research Directions
	Directives Based Parallel Programming
	Conclusion

