
Programming Manycore Embedded
High Performance Applications

Embedded Software, December 16th, 2008

Introduction
  High performance embedded applications rely on

new multicore architectures
•  It is about performance not parallelism

  Various hardware
•  General purpose multicores
•  Application specific (DSP)/configurable processors

  Moore’s law still applies
•  Doubling number of cores every ~18 months
•  Operation/Watt is the efficiency scale

  HPC and embedded applications are increasingly
sharing characteristics

Irisa, December 16th 2008
 2

Overview

  Manycore architectures

  Challenges

  Compilers for embedded manycore architectures

  Milepost project

  The Multicore Association

  Conclusion

Irisa, December 16th 2008 3

Manycore Architectures
  General purpose cores

•  Share a main memory
•  Core ISA provides fast SIMD

instructions

  Streaming engines / DSP / FPGA
•  Application specific architectures

(“narrow band”)
•  Vector/SIMD
•  Can be extremely fast

  Hundreds of cumulated GigaOps
•  But not easy to take advantage of
•  One platform type cannot satisfy

everyone

  Tilera, TMS320TCI6488, Cell, …

Irisa, December 16th 2008 4

Main
Memory

Application
data

General
Purpose
Processor
Cores

HWA

Application
data

Stream cores

Upload
remote
data

Download
remote data

Remote
Procedure call

CPU

Multiple Parallelism Levels

  Amdahl’s law is forever, all levels of parallelism
need to be exploited
•  Hybrid parallelism needed

Irisa, December 16th 2008
 5

core

shared memory

ne
tw

or
k

core

shared memory
local memory

HW
A1

local memory

HW
A2

local memory

HW
A1

local memory

HW
A2

Threads

Message Passing

HMPP

The Past of Parallel Computing,
the Future of Manycore?
  The Past

•  Hundreds of parallel languages were proposed
•  Scientific computing focused
•  Microprocessor or vector based, homogeneous

architectures
•  Trained programmers

  The Future
•  New applications (multimedia, medical, …)
•  Thousands of heterogeneous systems configurations
•  Asymmetry issue

Irisa, December 16th 2008 6

The Challenges

  Programming
•  Medium

  Resources management
•  Medium

  Application deployment
•  Hard

  Portable performance
•  Extremely hard

Irisa, December 16th 2008 7

What is Specific to Embedded App.?

  Co-design / co-configuration issues

  (Soft) Real time issues

  Need light weighted environments

  Short system lifetime

  Hardware may not exist

Irisa, December 16th 2008 8

Research Directions
  New Languages

•  X10, Fortress, Chapel, PGAS languages, …

  Libraries
•  Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, …

  Compilers – Key for the short/mid term
•  Classical compiler flow needs to be revisited
•  Acknowledge lack of static performance model
•  Adaptative code generation

  Architectures
•  Integration on the chip of the accelerators

  Fusion, …

•  Alleviate data transfers costs

Irisa, December 16th 2008 9

Compiler Focus

  Current compilers
•  Have insufficient understanding about program input, architecture
•  Have to deal with a very large optimization space
•  General purpose tools

  Compilers are not good at
•  Understanding whole programs
•  Understanding performance
•  Making decisions

  Finding global optimization strategies
  What code (suite of) transformations and when ?

  Compilers are good at
•  Dealing with local compute intensive tasks
•  Transforming, duplicating, specializing, generating codes

10
Irisa, December 16th 2008

Future of Compilers for Manycores

  What’s new!
•  More processing time can be spent on the code

generation and optimization processes

  Mix offline and online techniques
•  Iterative compilation
•  Machine learning
•  Speculative techniques
•  Adaptation
•  Runtime compilation and optimization
•  Better understanding of libraries

11
Irisa, December 16th 2008

Iterative Compilation
  Use multiple compilations to select the best optimization strategy

according to feedbacks
•  Static - Analysis of the output code according to a performance model
•  Dynamic - Performance measurement

  Pros
•  Explore the optimization space (for instance tiling block size)
•  Usually find better results than human
•  Cheap (when static)

  Cons
•  Expensive (when dynamic)
•  Complex compilation flow

  Some related works
•  Maqao, CapsTuner, Milepost, ACME,

Autotuner, ESTO, Atlas, FFTW, … …

Irisa, December 16th 2008
 12

Machine Learning
  Learn from previous compilations and executions

•  Use static and dynamic features
•  Avoid iterative compilation

  Pros
•  Efficient, compilers

easier to build

  Cons
•  Overfiting of

the training set
•  Scope ?

  Some related works
•  GCC-ICI, Milepost, Meta Optimization, …

Irisa, December 16th 2008
 13

Speculative Techniques
  Assumes “a priori” properties of the code to achieve

parallelization or optimization
•  Code specialization
•  Check at run-time if properties are true

  Pros
•  Allow better code optimizations
•  Help avoiding inter-procedural analysis

  Cons
•  Execution overheads
•  Overspecialization

  Some related works
•  Parasol, VESPA, Nemalabs, …
•  CAPS Codelet Finder

Irisa, December 16th 2008
 14

Adaptative Techniques

  Adapt to execution context while running
•  Measure performance and select implementation while running

the code

  Pros
•  Take into account real efficiency

  Cons
•  Runtime or code overheads
•  Multi-path code acceptance

  Some related works
•  Stapl, Unidap, tbb, …

Irisa, December 16th 2008
 15

Runtime Optimization and Compilation

  Code generation/optimization according to execution
context
•  Stream computing oriented, …

  Pros
•  Can deal with non existing hardware when packaging the

application
•  Accurate/exhaustive context information

  Cons
•  High overhead
•  Limited scope (especially pure runtime or binary level)
•  Safety and debugging

  Some related works
•  RapidMind, Accelerator, (Dynamo,) …

Irisa, December 16th 2008
 16

Milepost Compiler
  Objective

•  To develop compiler technology that can
automatically learn how to best optimise programs for
re-configurable heterogeneous embedded processors.

  Partners
•  University of Edinburgh, ARC International Limited,

CAPS-Entreprise, IBM Israel - Science and
Technology, INRIA

http://www.milepost.eu/

Irisa, December 16th 2008 17

Milepost Overview - 1

  Database filling with a training set

Irisa, December 16th 2008 18

Milepost Overview - 2

  Building the Model

Irisa, December 16th 2008 19

Milepost Overview - 3

  Using the improved compiler

Irisa, December 16th 2008 20

Milepost Compiler Status

  Prototype is available
•  Provide an average of 11% performance

improvement

  More details
•  http://gcc-ici.sourceforge.net/papers/
fmtp2008.pdf

Irisa, December 16th 2008 21

Multicore Association (MCA)

  MCA is an open membership organization about
multicore technology

  Working groups
•  Communications API
•  Programming Practices
•  Resource Management API

  Members
•  CAPS entreprise, Codeplay, CriticalBlue, IMEC,

Freescale, Intel, TI, Tilera, Virtutech, Wind River, …

http://www.multicore-association.org/

Irisa, December 16th 2008
 22

Communications API (MCAPI)

  MCAPI is a message-passing API

Irisa, December 16th 2008
 23

Resource Management API

  Defines an industry-standard API that specifies
essential application-level resource management
capabilities

Irisa, December 16th 2008
 24

Programming Practices

  Objective
•  To define industry-wide, best practices to leverage

existing code in multicore environments

  How today’s C/C++ code may be written to be
“multicore ready”

Irisa, December 16th 2008
 25

Conclusion
  Very exciting time for compilers!

•  We need to understand how much CPU time should be used for discovering/
managing parallelism

  But should not be in charge of dealing with coarse/large grain parallelism
•  Node/socket level issues only

  Next generation compilers should
•  behave “linearly” (i.e. have less threshold effects)
•  better interact with human
•  exploit application specific knowledge
•  generate very efficient sequential codes
•  deal with heterogeneous instruction sets
•  exploit stream/vector computing
•  deal with memory and computing resources allocation
•  deal with some fault issues
•  interface programs with power management

Irisa, December 16th 2008
 26

