ry
CAPS

INnNnovative fools for @ New paradigm

Programming Manycore Emb
High Performance Applications

Embedded Software, December 16t", 2008

H =
Introduction

= High performance embedded applications rely on
new multicore architectures
o It is about performance not parallelism

= Various hardware
e General purpose multicores
» Application specific (DSP)/configurable processors

= Moore's law still applies
e Doubling number of cores every ~18 months
o Operation/Watt is the efficiency scale

= HPC and embedded applications are increasingly
sharing characteristics

ry’

CA PS Irisa, December 16th 2008

Overview

= Challenges

= Milepost project

= Manycore architectures

= The Multicore Association

= Conclusion

ry

CAPS

Irisa, December 16th 2008

= Compilers for embedded manycore architectures

Manycore Architectures

= General purpose cores p—
e Share a main memory

o Core ISA provides fast SIMD

instructions Upload

remote

HWA

data

= Streaming engines / DSP / FPGA

o Application specific architectures
(“narrow band")

e Vector/SIMD
e Can be extremely fast

Download
remote data

Application
data

Remote
Procedure call

= Hundreds of cumulated GigaOps

e But not easy to take advantage of

* One platform type cannot satisfy
everyone

= Tilera, TMS320TCI6488, Cell, ...

ry’

CAPS

Irisa, December 16th 2008

Stream cores

Multiple Parallelism Levels

Amdahl’s law is forever, all levels of parallelism

need to be exploited

Message Passing

Threads HMPP
m M
local memory shared memory shared memory local memory
A A || A A
E A 4 A 4 A 4 A 4 E
; | — | — ;
T core core T
-
T = T
A GC) A
A 4 u A 4
local memory local memory
~y
CA Ps Irisa, December 16th 2008 5

The Past of Parallel Computing,
the Future of Manycore?

= The Past
 Hundreds of parallel languages were proposed
 Scientific computing focused

e Microprocessor or vector based, homogeneous
architectures

e Trained programmers

= The Future

 New applications (multimedia, medical, ...)
* Thousands of heterogeneous systems configurations
 Asymmetry issue

r’

CA P s Irisa, December 16th 2008

The Challenges

= Programming
e Medium

= Resources management
e Medium

= Application deployment
e Hard

= Portable performance
o Extremely hard

r’

CA PS Irisa, December 16th 2008

application

What is Specific to Embedded App.?

= Co-design / co-configuration issues

= (Soft) Real time issues

= Need light weighted environments

= Short system lifetime

= Hardware may not exist

r’

CA Ps Irisa, December 16th 2008

Research Directions

= New Languages
e X10, Fortress, Chapel, PGAS languages, ...

Libraries
» Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, ...

= Compilers — Key for the short/mid term
» Classical compiler flow needs to be revisited
e Acknowledge lack of static performance model
» Adaptative code generation

Architectures

» Integration on the chip of the accelerators
= Fusion, ...

e Alleviate data transfers costs

'y 4
CA P S Irisa, December 16th 2008

H N
Compiler Focus

= Current compilers
» Have insufficient understanding about program input, architecture
» Have to deal with a very large optimization space
* General purpose tools

= Compilers are not good at
» Understanding whole programs
e Understanding performance
e Making decisions
= Finding global optimization strategies
= What code (suite of) transformations and when ?
= Compilers are good at
o Dealing with local compute intensive tasks
e Transforming, duplicating, specializing, generating codes

r’

CA PS Irisa, December 16th 2008 10

H N
Future of Compilers for Manycores

= What's new!

* More processing time can be spent on the code
generation and optimization processes

= Mix offline and online techniques
 Iterative compilation

Machine learning

Speculative techniques

Adaptation

* Runtime compilation and optimization

Better understanding of libraries

r’

CA Ps Irisa, December 16th 2008 11

H =
Iterative Compilation

= Use multiple compilations to select the best optimization strategy
according to feedbacks
« Static - Analysis of the output code according to a performance model
e Dynamic - Performance measurement

= Pros
» Explore the optimization space (for instance tiling block size)

o Usually find better results than human

« Cheap (when static) Applicatizn
source code

= Cons
e Expensive (when dynamic) i
o Complex compilation flow
= Some related works >
e Maqgao, CapsTuner, Milepost, ACME, l
Autotuner, ESTO, Atlas, FFTW,
‘ Execution \
7
CA Ps Irisa, December 16th 2008 12

Machine Learning

= Pros
o Efficient, compilers
easier to build

= Cons

e Qverfiting of
the training set

e Scope ?
Some related works

o GCC-ICI, Milepost, Meta Optimization, ...

ry’

CAPS

Buiules]
A

r

= Learn from previous compilations and executions
e Use static and dynamic features
» Avoid iterative compilation

MILEPOST GCC \ [ccc \
‘ ‘ Program, (with ICI and ML routines) c?:nn:::’l'alfi’:: Collective
IC Plugins
se Recording pas!
sequences [~
‘ Programy rogram fest

New program

1uswhojdag
2|28
1[4
a 8o
AR

Irisa, December 16th 2008

13

H N
Speculative Techniques

= Assumes “a priori” properties of the code to achieve
parallelization or optimization
» Code specialization
e Check at run-time if properties are true

. PrOS Application
o Allow better code optimizations source code

* Help avoiding inter-procedural analysis / \
= Cons Dynamic collect “

e Execution overheads

» QOverspecialization Compilation =
= Some related works assert property

. Parasol, VESPA, Nemalabs, ... Y\

e CAPS Codelet Finder standard tuned

o compilation compilation

CA Ps Irisa, December 16th 2008

H =
Adaptative Techniques

Adapt to execution context while running
e Measure performance and select implementation while running

the code
Execution
= Pros
] o Select /
 Take into account real efficiency
Implementation 1_
= Cons ‘

Implementation 2_|
Implementation 3_|

e Runtime or code overheads

o Multi-path code acceptance
Some related works

« Stapl, Unidap, tbb, ...

Implementation n-1]

Implementation n___|

ry’

CA Ps Irisa, December 16th 2002 15

H =
Runtime Optimization and Compilation

= Code generation/optimization according to execution
context
o Stream computing oriented, ...

= Pros

e (Can deal with non existing hardware when packaging the
application

e Accurate/exhaustive context information

= Cons
e High overhead
o Limited scope (especially pure runtime or binary level)
» Safety and debugging

Some related works
« RapidMind, Accelerator, (Dynamo,) ...

r’

CA PS Irisa, December 16th 2008 16

H =
Milepost Compiler

= Objective

* To develop compiler technology that can
automatically learn how to best optimise programs for
re-configurable heterogeneous embedded processors.

= Partners

» University of Edinburgh, ARC International Limited,
CAPS-Entreprise, IBM Israel - Science and
Technology, INRIA

http://www.milepost.eu/

r’

CA Ps Irisa, December 16th 2008 17

Milepost Overview - 1

Database filling with a training set

Benchmarks

Database
Arc board at Inria

Execution time)
Code size

>

—
—
°
(8]

Program features and compiler flags

CA Ps Irisa, December 16th 2008 18

Milepost Overview - 2

Building the Model

Database
at Inria Features
Execution time +
Compiler flags > Model Matlab > Milepost
— Program features Learning code GCC Model
- > '
Predicted

compiler flags

CA Ps Irisa, December 16th 2008 19

Milepost Overview - 3

Using the improved compiler

Arc board
ARC-GCC
" Execution
—

...................... times

;" Milepost /-)
; [GCC] g
Milepost
5 Model 5

CA Ps Irisa, December 16th 2008 20

Milepost Compiler Status

= Prototype is available

* Provide an average of 11% performance
improvement

= More details

e http://gcc-ici.sourceforge.net/papers/
fmtp2008.pdf

r’

CA Ps Irisa, December 16th 2008

21

Multicore Association (MCA)

= MCA is an open membership organization about
multicore technology

= Working groups
e Communications API
e Programming Practices
e Resource Management API

= Members

* CAPS entreprise, Codeplay, CriticalBlue, IMEC,
Freescale, Intel, TI, Tilera, Virtutech, Wind River, ...

http://www.multicore—-association.org/

ry’

CA Ps Irisa, December 16th 2008 22

Communications API (MCAPI)

= MCAPI is a message-passing API

Further abstraction (0S/middleware)

Interconnect topology

N
CA PS Irisa, December 16th 2008

23

H =
Resource Management API

= Defines an industry-standard API that specifies
essential application-level resource management

capabilities
‘ Task, ‘ Task; o W
Task,,
I OS A osB s |

ry’

CA PS Irisa, December 16th 2008 24

Programming Practices

= Objective

* To define industry-wide, best practices to leverage
existing code in multicore environments

= How today’s C/C++ code may be written to be
“multicore ready”

Software not functioning as
expected, inefficient A
scheduling, cache,
coherency issues, etc.

N K -

oo (% (58]

Architecture 1 Architecture 2 Architecture 3
o.g.smnd e.g. Programmer ..gm.
Managed Memory

ry 4
CA PS Irisa, December 16th 2008

o e
Conclusion

= Very exciting time for compilers!
* We need to understand how much CPU time should be used for discovering/
managing parallelism

= But should not be in charge of dealing with coarse/large grain parallelism
* Node/socket level issues only

= Next generation compilers should
» behave “linearly” (i.e. have less threshold effects)
o Detter interact with human
» exploit application specific knowledge
» generate very efficient sequential codes
» deal with heterogeneous instruction sets
o exploit stream/vector computing
» deal with memory and computing resources allocation
» deal with some fault issues

 interface programs with power management
ry

CA P S Irisa, December 16th 2008 26

