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Introduction

Audio in the real world

The audio modality is essential in daily situations: spoken communication,
TV, music, entertainment. . .

But audio scenes are often more complex than we would like!

Ex: TV series
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Audio in the real world

The audio modality is essential in daily situations: spoken communication,
TV, music, entertainment. . .

But audio scenes are often more complex than we would like!

Ex: TV series

Many sound sources: Speech, music, background noise.

Much information: Who is speaking? What is he saying?

Where is he? How stressed is he?

What’s the music style? The bombing rate?

What is happening? What’s gonna happen next?
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Introduction

General goal and stakes

We want to:

enhance the sound sources of interest

extract the corresponding information

Wide range of applications, including:

high-fidelity hearing aids and mobile communications,

voice applications, multimedia document indexing, music search,

3D audio rendering, repurposing, interactive applications. . .
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Audio source separation

Audio source separation: the basics

Additive mixing:

x(t) =
J∑

j=1

cj(t)
x(t): multichannel mixture
cj(t): jth spatial source image

(Not so) special case: point sources

cj(t) = aj ⋆ sj(t)
aj(τ): mixing filter
sj(t): jth source signal

Goal: estimate cj(t) given x(t).
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Audio source separation

Evolution of the research focus
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Audio source separation

Spatial and spectral cues (1)

Standard principle:

work in the time-frequency domain

x̃(n, f ) =
J∑

j=1

c̃j(n, f )
x̃(n, f ): vector of mixture TF coeff.
c̃j(n, f ): jth source spatial image TF coeff.

for point sources, replace convolution by narrowband multiplication

c̃j(n, f ) = ãj(f ) s̃j(n, f )

c̃j(n, f ): jth source spatial image TF coeff.
ãj(f ): mixing coefficients
s̃j(n, f ): jth source TF coeff.

. . .
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Audio source separation

Spatial and spectral cues (2)

Standard principle:

. . .

estimate ãj(f ) and s̃j(n, f ) by time-frequency clustering of spatial
cues [Zibulevsky, Rickard, Gribonval. . . ]
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exploit additional spectral cues to separate overlapping sources or
sources from the same direction [Benaroya, Virtanen, Vincent. . . ]

E. Vincent () HDR 23/11/2012 9 / 31



Audio source separation

Contributions and positioning

TF representation STFT
Adaptive

[Vincent et al., 2005]
Auditory-motivated

[PhD Duong]

Spatial model
Instantaneous

Anechoic

Convolutive

Wideband
[Kowalski et al., 2010]

Full-rank
[PhD Duong]

Spectral model
Binary

ℓ1 ℓp

[Vincent et al., 2007]

Multilevel NMF
[postdoc Ozerov]

Gaussian GMM
NMF

Estimation
Two-stage

Joint ML
Convex penalties

[PhD Ito, Benichoux]
MAP

[PhD Duong]

Consistent Wiener
[NTT patent]

Fast EM
[postdoc J. Thiemann]

Online EM
[postdoc L. Simon]

...
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Audio source separation

The rank-1 spatial model

Former state-of-the-art: narrowband approximation

c̃j(n, f ) = ãj(f ) s̃j(n, f )

c̃j(n, f ): jth source spatial image TF coeff.
ãj(f ): Fourier transform of aj(τ)
s̃j(n, f ): jth source TF coeff.

In the Gaussian (variance) modeling framework,

s̃j(n, f ) ∼ N (0, vj(n, f )) ⇒ cj(n, f ) ∼ N (0, vj(n, f )ãj(f )ãj(f )H)

This rank-1 model essentially represents the apparent spatial direction of
sound at frequency f .

Problem: reverberation induces echoes from all directions. The notion of
mixing filter aj(τ) does not even make sense for diffuse sources.
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Audio source separation

Proposed full-rank spatial model

Proposed model [PhD Duong]:

cj(n, f ) ∼ N (0, vj(n, f )Σj(f ))

with Σj(f ) full-rank spatial covariance matrix.

Represents both the spatial direction and the spatial width of the source.

Derived an expectation-maximization (EM) algorithm for ML estimation.

Results on two-
channel mixtures
of three sources
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Audio source separation

Conventional NMF
Former state-of-the-art: nonnegative matrix factorization (NMF)

vj(n, f ) =
∑

k

wjk(f )hjk(n)

Problem: either too rigid (wjk(f ) fixed) or prone to overfitting (wjk(f )
adaptive).

E. Vincent () HDR 23/11/2012 13 / 31



Audio source separation

Proposed multilevel NMF (1) [Vincent 2007, postdoc Ozerov]
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Audio source separation

Proposed multilevel NMF (2)

Can handle new constraints: harmonicity, smooth envelope, attack type. . .

Derived a flexible EM algorithm for joint estimation of all layers, whether
fixed or adaptive ⇒ FASST Toolbox.

Results on two-
channel mixtures
of three or four
sources
(SiSEC 2010)

Spatial, spectral, and Average
temporal constraints SDR (dB)

rank spec temp 5 cm 1 m

1 2.2 2.5
2 2.0 3.0
1 X 2.2 2.8
2 X 2.3 3.2
1 X 2.4 2.6
2 X 2.1 2.9
1 X X 2.5 3.9
2 X X 2.3 5.0

Also best general algorithm for the separation of music recordings in
SiSEC 2011.
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Audio source separation

Evaluation: a transversal activity

Complete evaluation methodology for audio source separation:

formalization of audio source separation tasks [Vincent et al., 2007]

definition of objective/subjective evaluation criteria [postdoc Emiya]
⇒ BSS Eval & PEASS Toolboxes

computation of theoretical performance bounds [Vincent et al., 2007].

Co-founded two series of evaluation campaigns:

SASSEC/SiSEC (source separation): 119 entries since 2007

CHiME (noise-robust speech recognition): 13 in 2011, again in 2013

Impact:

helped the adoption of common problems, datasets and metrics,

helped focus on the remaining challenges: lack of spatial diversity,
reverberation, source movements, background noise.
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Audio source separation

Are we there yet?

mix vocals drums bass piano
(separation by FASST)
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(separation by FASST)

This level of quality is sufficient for many signal enhancement/remixing
applications.

Ongoing industrial transfer to Canon Inc., Audionamix SA and MAIA
SARL.

Is it sufficient for content description?

E. Vincent () HDR 23/11/2012 17 / 31



Audio content description

Part 1. Audio source separation

Part 2. Audio content description

Part 3. Research directions
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Audio content description

Audio content description: the basics

Audio content description techniques do not operate on the signals directly
but on derived features, e.g., Mel frequency cepstral coefficients (MFCCs).

Classification/transcription most often relies on probabilistic acoustic
models of the features, e.g., Gaussian mixture models (GMMs).
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Problem: matched training/test paradigm, works only for clean data.

How can we reduce the mismatch for noisy/mixture data?
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Audio content description

Conventional techniques for noise robustness

Feature compensation:
good separation but of-
ten increased mismatch
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Training data coverage:
better match but huge
training set needed
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Noise adaptive training
[Deng, 2000]: combines
both advantages, large
training set still needed
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Audio content description

Uncertainty propagation and decoding

Emerging paradigm: estimate and propagate confidence values represented
by Gaussian posterior distributions [Deng, Astudillo, Kolossa. . . ].
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Σ̄s ML or heuristic
Bayesian

[postdoc Adiloğlu]

(s, Σ̄s) → (y, Σ̄y)
Moment matching,

unscented transform. . .

Decoding
Uncertainty decoding,

modified imputation. . .

Training Clean data
Uncertainty training

[postdoc Ozerov]
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Audio content description

Bayesian uncertainty estimator (1)

Conventional ML uncertainty estimator:

p(s|x) = p(s|x, θ̂) with θ̂ = arg max p(x|θ)

Proposed Bayesian uncertainty estimator [postdoc Adiloğlu]:

p(s|x) =

∫
p(s, θ|x) dθ

s: target source STFT coeff.
x(t): mixture STFT coeff.
θ: separation model parameters

Derived a tractable variational Bayesian (VB) EM approximation.

Similar to conventional ML-EM, but update posterior parameter
distributions instead of parameter values.
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Audio content description

Bayesian uncertainty estimator (2)

Proposed a proof-of-concept noise-robust speaker identification benchmark
based on the CHiME domestic noise data.

Results:
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Audio content description

Uncertainty training (1)

Conventional training approaches:

training on clean data,

training on noisy data without uncertainty.

Both are biased: the amount of noise is underestimated or overestimated.

Proposed uncertainty training paradigm [postdoc Ozerov]:
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Audio content description

Uncertainty training (2)

Derived an EM algorithm that optimizes the uncertainty decoding
objective on noisy training data by alternatingly:

estimating 1st and 2nd order moments of the underlying clean data,

updating the model parameters given these moments.

% correct on the same robust speaker identification benchmark:

Enhanced Training Decoding Training condition
signal approach approach Clean Matched Unmatched Multi

No Conventional Conventional 65.17 71.81 69.34 84.09

Yes Conventional Conventional 55.22 82.11 80.91 90.12
Yes Conventional Uncertainty
Yes Uncertainty Uncertainty
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Audio content description

Uncertainty training (2)

Derived an EM algorithm that optimizes the uncertainty decoding
objective on noisy training data by alternatingly:

estimating 1st and 2nd order moments of the underlying clean data,

updating the model parameters given these moments.

% correct on the same robust speaker identification benchmark:

Enhanced Training Decoding Training condition
signal approach approach Clean Matched Unmatched Multi

No Conventional Conventional 65.17 71.81 69.34 84.09

Yes Conventional Conventional 55.22 82.11 80.91 90.12
Yes Conventional Uncertainty 75.51 78.60 77.58 85.02
Yes Uncertainty Uncertainty 75.51 82.87 81.52 91.13

Best results when using both uncertainty decoding and training. Works
even for unmatched training data!

Also applied to singer identification [Lagrange et al., 2012].
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Audio content description

Music language modeling: an exploratory study

Language modeling is needed to
bridge the semantic gap.

Except a few studies [Raphael,
Ryynänen, Mauch. . . ], this issue
has been overlooked in music.

Managed Inria EA VERSAMUS
project with U. Tokyo.

Roadmap
[Vincent, 2010]

Multiple dependencies
[postdoc Raczyński]

Semiotic structure
[Bimbot, PhD Sargent]

O

T1 T2 T3

S1 S2 S3 S4 S5 S6 S7

E1 E2 E3 E4 E5

A1 A2 A3

Overall features
O Tags

Temporal features
T1 Structure
T2 Meter
T3 Rhythm

Symbolic features
S1 Notated tempo
S2 Notated loudness
S3 Key/mode
S4 Harmony
S5 Instrumentation
S6 Lyrics
S7 Quantized notes

Expressive features
E1 Expressive tempo
E2 Expressive loudness
E3 Instrumental timbre
E4 Expressive notes
E5 Rendering

Acoustic features
A1 Tracks
A2 Mix
A3 Low-level features
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Research directions

Research directions in source separation
Audio source separation has become a mature topic which is now at the
stage of applied research and technology transfer.

Some remaining challenges:

Benefit from the advantages of both time-domain and Gaussian
models
⇒ unified framework accounting for phase in Gaussian models

Overcome local optima of the EM algorithms
⇒ advanced Bayesian inference (structured VB, ensemble models. . . )

Address automatic model selection
⇒ Bayesian model selection

Deploy real-world applications
⇒ exploit extra information, e.g., source repetitions [PhD Souviraà].
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Research directions

Research directions in content description

The uncertainty propagation paradigm is still emerging and lies at the
frontier of exploratory and applied research.

Some remaining challenges:

Obtain more accurate and robust uncertainty estimates
⇒ finer Bayesian approximations (structured VB. . . ) [PhD Tran]

Provide feedback from speech/speaker recognition to source
separation
⇒ constraining spectral envelopes in our flexible spectral model

Reduce the semantic gap in music processing
⇒ take the opportunity of the move to PAROLE to exploit and adapt
successful approaches in natural language processing [PhD Mesnil].
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Research directions

Conclusion

Mix of short-term and long-term research united by the use and
development of a Bayesian modeling and inference framework.

Application focus in PAROLE: speech enhancement and robust speech
recognition.

Many more potential applications, including:

high-fidelity hearing aids and mobile communications,

voice applications, multimedia document indexing, music search,

3D audio rendering, repurposing, interactive applications. . .

Ultimate vision: enhance, understand and interact with complex audio
data in a seamless fashion.
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Research directions
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