
Analysis, Synthesis and Control
of Concurrent Systems

Benoît Caillaud

Rennes, 23 March 2011

Analysis, Synthesis and Control of Concurrent Systems

Introduction

Outline

1 Introduction

2 Synthesis of Communicating Systems through PN Synthesis
Petri net synthesis
Application

3 Correct-by-construction asynchronous implementation of
modular synchronous specifications

Introduction
Model and problem statement
Sufficient conditions

4 Interface Theories
Anatomy of an Interface Theory
Modal Interfaces

5 Current and future research directions

Analysis, Synthesis and Control of Concurrent Systems

Introduction

Context: Embedded Software Design

Analysis, Synthesis and Control of Concurrent Systems

Introduction

Context: OEM/Suppliers Tree
Example: Integrated navigation/air-data/attitude reference system

Safety critical: Loss of attitude reference in IMC leads to
unrecoverable aircraft attitude in less than 60s
Quite complex: ≈ 3000 requirements
Considerable effort: 200 in-house engineers and ≈ 10
subcontractors for software development and testing

Analysis, Synthesis and Control of Concurrent Systems

Introduction

Requirements: Structure, Nature

Structured into viewpoints: functional, performance,
resource consumption, reliability, ...
Oblivious to the implementation architecture:

High-level functional requirements, implementation
architecture often left to designers
Specification paradigm (automata, reactive synchronous,
sequence diagrams, ...) 6= Implementation paradigm
(distributed, asynchronous communication, ...)

What designers need:
Theory to bridge the gap between specification and
implementation paradigms
Correct-by-construction computer-assisted methods
requirements→ implementations
Scalable compositional reasoning methods to cope with
system complexity

Analysis, Synthesis and Control of Concurrent Systems

Introduction

Contributions detailed in this talk

1 Synthesis of asynchronous communicating systems: Petri
net synthesis, linear algebra

2 Synthesis of globally asynchronous, locally synchronous
systems (GALS) from synchronous specifications

3 Compositional reasoning and contract-based design with
modal interfaces

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Outline

1 Introduction

2 Synthesis of Communicating Systems through PN Synthesis
Petri net synthesis
Application

3 Correct-by-construction asynchronous implementation of
modular synchronous specifications

Introduction
Model and problem statement
Sufficient conditions

4 Interface Theories
Anatomy of an Interface Theory
Modal Interfaces

5 Current and future research directions

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Context: Computer Assisted Design of
Asynchronous Communicating Systems

Problem

Given a specification = behavior + architecture,
Construct a network of communicating automata realizing
the specification:

1 Matches the specified architecture
2 Branching bisimilar to the specified behavior

Approach

Pragmatic, semi-automated, yields efficient
communication policies, polynomial complexity
Correct by construction
Communication is hidden from the designer
Manual design steps: Checkable refinements of the
specification

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

PN synthesis in a nutshell

4

d

s r

0 2

1 3d a

s
a d

rs

Net synthesis problem

Given a finite transition system A, decide whether exists a net N
such that N∗ ' A.

Net = union of 1-place nets

State separation:

...

Event-state separation:

...

Solved in polynomial time (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

PN synthesis in a nutshell

4

d

s r

0 2

1 3d a

s
a

s

d

r

a•

•s

s• r•

•r
•d

d•

•a
m

Net = union of 1-place nets
Region = 1-place net satisfying:

m, •s, s•, . . . •d,d• ≥ 0
m ≥ •s
m + s• − •s ≥ •d
...
m + s• − •s + d• − •d ≥ •a
s• − •s + r• − •r = 0

State separation:

...

Event-state separation:

...

Solved in polynomial time (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

PN synthesis in a nutshell

s

4

d

r s
a

s

d

r
0 2

1 3d a
Net = union of 1-place nets
State separation: states 0 and 1

m, •s, s•, . . . •d,d• ≥ 0
m ≥ •s
m + s• − •s ≥ •d
...
m + s• − •s + d• − •d ≥ •a
s• − •s + r• − •r = 0
s• − •s 6= 0

...
Event-state separation:

...

Solved in polynomial time (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

PN synthesis in a nutshell

4

d

s r s
a

s

d

r
0 2

1 3d a
Net = union of 1-place nets
State separation: states 0 and 2

m, •s, s•, . . . •d,d• ≥ 0
m ≥ •s
m + s• − •s ≥ •d
...
m + s• − •s + d• − •d ≥ •a
s• − •s + r• − •r = 0
d• − •d 6= 0

...
Event-state separation:

...

Solved in polynomial time (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

PN synthesis in a nutshell

s

4

d

sr

a

a

s

d

r
0 2

1 3d a
Net = union of 1-place nets
State separation: ...
Event-state separation: event a in state 2

m, •s, s•, . . . •d,d• ≥ 0
m ≥ •s
m + s• − •s ≥ •d
...
m + s• − •s + d• − •d ≥ •a
s• − •s + r• − •r = 0
m + d• − •d < •a

...
Solved in polynomial time (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

PN synthesis in a nutshell

s

4

d

r
a

sr
a

s

d

r
0 2

1 3d
Net = union of 1-place nets
State separation: ...
Event-state separation: event r in state 3

m, •s, s•, . . . •d,d• ≥ 0
m ≥ •s
m + s• − •s ≥ •d
...
m + s• − •s + d• − •d ≥ •a
s• − •s + r• − •r = 0
m + s• − •s + d• − •d < •r

...
Solved in polynomial time (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

PN synthesis in a nutshell

4

d

s r

0 2

1 3d a

s
a d

rs

Net = union of 1-place nets
State separation: ...
Event-state separation: ...
Solved in polynomial time (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

Distributable nets

Distributable net = Petri net +
architecture

Syntactic class of nets with no
distributed conflict
Admits trivial asynchronous
distributed implementations

Distributable net synthesis:
Add constraints of the form

•t = 0 for every non-local transition t

a d

rs

s

a d

r

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

Distributable nets

Distributable net = Petri net +
architecture

Syntactic class of nets with no
distributed conflict
Admits trivial asynchronous
distributed implementations

Distributable net synthesis:
Add constraints of the form

•t = 0 for every non-local transition t

a d

rs

s

a d

r

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Petri net synthesis

Distributable nets

Distributable net = Petri net +
architecture

Syntactic class of nets with no
distributed conflict
Admits trivial asynchronous
distributed implementations

Distributable net synthesis:
Add constraints of the form

•t = 0 for every non-local transition t

a d

rs

s

a d

r

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Application

Design Process Examplified

r

0 2

1 3 4

d

d a

s s

Specification = Behavior + Architecture

Separation failure state 2, event a
Refinement of event a into τ.a
Synthesized distributable net
Communication inserted in the net
Communicating automata

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Application

Design Process Examplified

r

a

a

0 2

1 3 4

d

d

s s

Specification = Behavior + Architecture
Separation failure state 2, event a

Refinement of event a into τ.a
Synthesized distributable net
Communication inserted in the net
Communicating automata

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Application

Design Process Examplified

τ

0 2

1 3 5

d

d

s sr

a
4

Specification = Behavior + Architecture
Separation failure state 2, event a
Refinement of event a into τ.a

Synthesized distributable net
Communication inserted in the net
Communicating automata

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Application

Design Process Examplified

r

d

a

s

τ

Specification = Behavior + Architecture
Separation failure state 2, event a
Refinement of event a into τ.a
Synthesized distributable net

Communication inserted in the net
Communicating automata

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Application

Design Process Examplified

d

τ

!2?2

!1?1a

s

r

?0!0

Specification = Behavior + Architecture
Separation failure state 2, event a
Refinement of event a into τ.a
Synthesized distributable net
Communication inserted in the net

Communicating automata

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Application

Design Process Examplified

0

!0

s

?1

1 a

4

1 4 6
!1

!2

r

!2

2

0

5

3

?0 ?0

d

d

d

2 3

?2

Specification = Behavior + Architecture
Separation failure state 2, event a
Refinement of event a into τ.a
Synthesized distributable net
Communication inserted in the net
Communicating automata

Analysis, Synthesis and Control of Concurrent Systems

Synthesis of Communicating Systems through PN Synthesis

Application

Conclusion

A Correct by Construction Semi-Automated Derivation of
Asynchronous Communicating Systems:

1 System specification: Automaton + architecture
2 Apply distributable PN synthesis and refine specification

until separation is achieved
3 Insert communication into distributable net
4 Compute communicating automata

Polynomial time algorithm (linear algebra)
SYNET tool: PN synthesis wrt. graph isomorphism, language
equality, distributable nets, ...
http://www.irisa.fr/s4/tools/synet/

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Outline

1 Introduction

2 Synthesis of Communicating Systems through PN Synthesis
Petri net synthesis
Application

3 Correct-by-construction asynchronous implementation of
modular synchronous specifications

Introduction
Model and problem statement
Sufficient conditions

4 Interface Theories
Anatomy of an Interface Theory
Modal Interfaces

5 Current and future research directions

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Introduction

Synchrony, asynchrony, GALS

Synchronous specification
Global clock⇒ specification, verification
Popular, efficient tools for system design (digital circuits,
safety-critical systems)

Distributed implementation
Distributed software, complex digital circuits (SoC),
heterogenous systems
Loosely-connected components (asynchronous FIFOs...)

GALS architectures = good implementation model
Synchronous components, asynchronous communication
Problem: preserve the semantic coherency between a
synchronous specification and its GALS implementation

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Introduction

What we want

1 Take a modular synchronous
specification

2 Replace synchronous comm.
with asynchronous FIFOs and
wrappers

3 Preserve:
Functionality
Correctness (no “extra”
traces, no deadlocks)

Warning: Correctness of desyn-
chronization is undecidable (emp-
tyness of intersection of rational re-
lations)

IP1 IP2

clock

IP1 IP2

Delay-insensitive component

IP1

AFSM

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Introduction

What we want

1 Take a modular synchronous
specification

2 Replace synchronous comm.
with asynchronous FIFOs and
wrappers

3 Preserve:
Functionality
Correctness (no “extra”
traces, no deadlocks)

Warning: Correctness of desyn-
chronization is undecidable (emp-
tyness of intersection of rational re-
lations)

IP1 IP2

Delay-insensitive component

IP1

AFSM

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Introduction

What we want

1 Take a modular synchronous
specification

2 Replace synchronous comm.
with asynchronous FIFOs and
wrappers

3 Preserve:
Functionality
Correctness (no “extra”
traces, no deadlocks)

Warning: Correctness of desyn-
chronization is undecidable (emp-
tyness of intersection of rational re-
lations)

IP1 IP2

Delay-insensitive component

IP1

AFSM

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Introduction

What we want

1 Take a modular synchronous
specification

2 Replace synchronous comm.
with asynchronous FIFOs and
wrappers

3 Preserve:
Functionality
Correctness (no “extra”
traces, no deadlocks)

Warning: Correctness of desyn-
chronization is undecidable (emp-
tyness of intersection of rational re-
lations)

IP1 IP2

Delay-insensitive component

IP1

AFSM

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Introduction

1 Define a model and criteria ensuring that:
Creating delay-insensitive wrappers that preserve the
semantics is possible without adding new signals
Connecting through FIFOs the resulting components
produces a semantics-preserving, deadlock-free GALS
implementation

2 Possible approaches to enforce criteria:
Encode (part of) the “absent” events [Carloni et al.]
Add new signals
Decide that none is necessary due to environment
constraints

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

The Model: Basic definitions

• The basics: (incomplete) automata
 Σ = (S,s0,V, ),  SL(V)S, L(V)=

• Composition by synchronized product:

• Renaming operator:

• Labels

• Finite traces:





Vv

v)D(

0 1
A=1 B= D=

0

1

A=1 B= C=3 2

A=1 B=7 C=3

= 0,0
A=1 B= C=3 D=

1,2

Σ1[D/C] : 0 1
A=1 B= C=

A=1 B= C=3  A=1 C=3
A=1 C=3  A = 1 B=7 C=3

A=1 C=3 ; B=2 ; ;
A=1 C=3 – A=1 = C=3

A=1 C=3 ; B=2 ; ; ≺ A=1 C=3 ; B=2 ; ; A=2;

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

The Model: Basic Definitions

• Generalized concurrent transition systems(GCTS)
– Void transitions:
– Prefix closure:

• Example:

s s


s s’r

q  r
  s s’’q s’r-q

0 1A=1 B=7

3

2
A=1

B=7 A=1

B=7

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

The Model: I/O Transition Systems

• Point-to-point communication:
– Broad/Multicast can be simulated…
– Communication channels:

 c = (!c,?c) D!c=D?c =Dc

– Dissociate emission from reception!

• Clocks: τ τ1… of domain Dclk ={T}
• I/O transition system:

– GCTS where all variables are channels or clocks
– Example:

0

τ1
3

2

1!A=1
!A=2

?R=3

τ1τ2
τ1 4

?B

?R=4

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

The Model: Synchronous Systems

• Synchronous system: Σ = (S,s0,V,τ,) I/O
transition system, one clock, and satisfying:

1. Clock transitions:

2. Stuttering invariance:

3. Synchrony hypothesis:
–

• Example:

s0 s0

r(τ)= T

τ

  r equals  over Vs s’r

s s’
τ

s’ τ 

s0 s1

r1 r2 sn

rn…

ri τ

  supp(ri) supp(rj) =  for all i  j

0
τ13

2
1!A

?B

?R

τ1
τ1

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

The model: Composition

• Synchronous 1-place FIFO:

• Synchronous composition (on clock τ) :

• Asynchronous FIFO:

• Asynchronous composition:

τ

!c=x ?c=x
SFIFO(c, τ): for all xDc

Σ1|Σ2 = Σ1[τ1/τ]  Σ2[τ2/τ]  SFIFO(c1, τ)  …  SFIFO(cn, τ)

Σ1||Σ2 = Σ1  Σ2  AFIFO(c1)  …  AFIFO(cn)

!c=xn+1 ?c=x1AFIFO(c):

for all x1,…,xn,xn+1 Dc

c0 cx c1

x1…xn x1…xn+1 x2…xn

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

The model: Composition

Σ1 Σ2 Σ1 Σ2
Σ1||Σ2

!A
!B

!C

τ

τ
?C

?B
?A

!A
?A

!C

x

τ1

τ1

τ1

τ2

τ2

!A
!B

!C?C

?B
?A

!A
?A

!C

Σ1|Σ2

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

Example

0

τ1
3

2
1!A

?B

?R

τ1

τ1 0
τ2

2 31?A !Bτ2

τ2 τ2

Σ1: Σ2:

τ

0,0 1,0 1,1

3,0 3,1 3,33,2

Σ1|Σ2 :
!A ?A

?R

?A

?R

τ

τ

!B

τ

!A ?Aa0

τ

!B ?Bb0

τ2

0,0 1,0 1,1

3,0 3,1 3,33,2

Σ1||Σ2 :
2,31,2 1,3!A ?A

?R

?A

?R

!B

τ2

τ2

?R ?R

!B ?B

τ1

τ2τ2τ1,τ2 ,τ1τ2

τ1,τ2 ,τ1τ2 τ1,τ2 ,τ1τ2

τ1,τ2 ,τ1τ2

 ε A

?A

!A

 ε B

?B

!B

τ

τ

τ1,τ2 ,τ1τ2

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

Example

0

τ1
3

2
1!A

?B

?R

τ1

τ1 0
τ2

2 31?A !Bτ2

τ2 τ2

Σ1: Σ2:

τ

0,0 1,0 1,1

3,0 3,1 3,33,2

Σ1|Σ2 :
!A ?A

?R

?A

?R

τ

τ

!B

τ2

0,0 1,0 1,1

3,0 3,1 3,33,2

Σ1||Σ2 :
2,31,2 1,3!A ?A

?R

?A

?R

!B

τ2

τ2

?R ?R

!B ?B

τ1

τ2τ2τ1,τ2 ,τ1τ2

τ1,τ2 ,τ1τ2 τ1,τ2 ,τ1τ2

τ1,τ2 ,τ1τ2

τ1,τ2 ,τ1τ2

4

τ1
?R

?B

4,3

4,3

τ
?B

?B

?R

τ1,τ2 ,τ1τ2

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Model and problem statement

Correctness

• Some notations:

• Formal correctness criterion
A = Σ1||…||Σn is correct w.r.t. S = Σ1|…|Σn if

for all s  RSS(Sync) and all ϕ  Traces A(s)
there exist α  Traces A(s) and β  Traces S(s)

such that ϕ ≼ α and α  β
●

• Intuition: every trace of Σ1||…||Σn can be completed
to one that is equivalent to a synchronous trace

!A=1 ;τ 1; ?A=1 ;τ 2; !C=3 ;  !A=1 ?A=1 ;τ 1τ 2; !C=3 ;τ 2;

!A=1 ;τ 1;τ 2; !C=3 ; ≼ !A=1 ?A=1 ;τ 1τ 2; !C=3 ;τ 2;

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Weak endochrony

• Compositional delay-insensitivity criterion (signal
absence information is not needed)

• Axioms (part 1):
A1: Determinism
A2: In every state, non-clock transitions sharing no

common variable are independent

?A !B

!A=1

!A=2

?B

?R ?B

?R
?B?R

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Weak endochrony

• Axioms (continued):
A1: Determinism
A2: In every state, non-clock transitions sharing no

common variable are independent
A3: Non-contradictory reactions can be united

A4: Choice does not change with time

?B

?R

τ

τ

?B

?R ?B

?R

τ

τ

?R

?B

τ

τ

τ 

s0 sn…
r1 rn

?V=x

V supp(ri)

 s0
sn ?V=y

?V=ys0
sn ?V=x

?B,?R

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Example

0

τ1

3

2
1!A

?B

?R

τ1

τ1Σ1:

0

3’

2’
1!A

?D=0

?D=1

τ1Σ1’:

τ1

3

2
τ1

?B

?R

0

τ1
3

2
1!A

?B

?R

τ1

τ1Σ3: 4
?R

?B

τ1

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Example

0

3’

2’
1!A

?D=0

?D=1

τ1Σ1’:

τ1

3

2
τ1

?B

?R

0

τ1
3

2
1!A

?B

?R

τ1

τ1Σ3: 4
?R

?B

τ1

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Example

0

3’

2’
1!A

?D=0

?D=1

τ1Σ1’:

τ1

3

2
τ1

?B

?R

0

τ1
3

2
1!A

?B

?R

τ1

τ1Σ3: 4
?R

?B

τ1

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Non blocking

• Semantics preservation
Σ1,…,Σn weak endochronous and non blocking

imply

Σ1 || … || Σn is a correct desynchronization of Σ1 | … | Σn

0

3’

2’
1!A

?D=0

?D=1

τ1Σ1’:

τ1

3

2
τ1

?B

?R
0

2

1?A
!B

τ2

τ2

Σ4:
3

τ2
!Y

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Non blocking

• Semantics preservation
Σ1,…,Σn weak endochronous and non blocking

imply

Σ1 || … || Σn is a correct desynchronization of Σ1 | … | Σn

0

3’

2’
1!A

?D=0

?D=1

τ1Σ1’:

τ1

3

2
τ1

?B

?R
0

2’

1?A

!B

τ2Σ4’:
3’ !Y

2
τ2

3

τ2

!D=0

!D=1

Analysis, Synthesis and Control of Concurrent Systems

Correct-by-construction asynchronous implementation of modular synchronous specifications

Sufficient conditions

Conclusion

Decidable sufficient conditions for correct GALS
implementation of synchronous specifications
Improves previous work by taking causality into account
Related and open problems:

Make synchronous automata weak endochronous.
Optimality issues.
Heuristics for synchronous programming languages and
specifications. Scaling issues (large specifications). [Potop et
al.][Ouy et al.]

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Outline

1 Introduction

2 Synthesis of Communicating Systems through PN Synthesis
Petri net synthesis
Application

3 Correct-by-construction asynchronous implementation of
modular synchronous specifications

Introduction
Model and problem statement
Sufficient conditions

4 Interface Theories
Anatomy of an Interface Theory
Modal Interfaces

5 Current and future research directions

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Interface Theories:

An interface allows to represent the behavior of a family of
components at design level
Allows independent reasoning
Supports component-based design of large systems
Reduces complexity of the design
Existing Theories: Interface Automata...

Contributions: Modal Interfaces [...,ACSD’09, Emsoft’09, Fund.
Infor. 2011], Constraint Markov Chains [QEST’10]

But ... What is an interface theory?

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Interface Theories:

An interface allows to represent the behavior of a family of
components at design level
Allows independent reasoning
Supports component-based design of large systems
Reduces complexity of the design
Existing Theories: Interface Automata...

Contributions: Modal Interfaces [...,ACSD’09, Emsoft’09, Fund.
Infor. 2011], Constraint Markov Chains [QEST’10]

But ... What is an interface theory?

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Interface Theories:

An interface allows to represent the behavior of a family of
components at design level
Allows independent reasoning
Supports component-based design of large systems
Reduces complexity of the design
Existing Theories: Interface Automata...

Contributions: Modal Interfaces [...,ACSD’09, Emsoft’09, Fund.
Infor. 2011], Constraint Markov Chains [QEST’10]

But ... What is an interface theory?

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Systems and Specifications:
Implementation/Refinement Relations

Implementations

Specifications

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Systems and Specifications:
Implementation/Refinement Relations

Specifications

Implementations

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Systems and Specifications:
Implementation/Refinement Relations

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Systems and Specifications:
Implementation/Refinement Relations

S ≤ T iff ∀M, M |= S ⇒ M |= T

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Composition Operators
Conjunction

M |= S ∧ T iff M |= S and M |= T

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Composition Operators
Product

S

T

S ⊗ T

S ⊗ T = min{X | M |= S and N |= T implies M × N |= X}

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Composition Operators
Quotient

S/T
T

S

Quotient S/T = max{X | X ⊗ T ≤ S} is the adjoint of product

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Anatomy of an Interface Theory

Summary

Implementations M, parallel composition ×
Specifications S, satisfaction relation M |= S
Product
S ⊗ T = min{X | M |= S and N |= T implies M × N |= X}

Combine specifications related to distinct components
Build architectures

Conjunction M |= S ∧ T iff M |= S and M |= T
Combine aspects/viewpoints related to the same
component

Quotient S/T = max{X | X ⊗ T ≤ S}
Component reuse
Incremental design
Assume/Guarantee Reasoning C = (A,G) = (G ⊗ A)/A

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Modal Specifications

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Implementation and Refinement

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Implementation and Refinement

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Reduction

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Reduction

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Product

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Conjunction

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Quotient

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Inputs and Outputs: Compatibility

Compatibility

Two interfaces are compatible if there exists an environment
where they can avoid illegal states (i.e., states where one may
want to produce an output that may not accepted as input by
the other).

Composition S1||S2 is obtained as follows:
1 compute S1 ⊗ S2 and identify illegal states I

a!c? a?

S2 : {a?,b?,c?}

a! b!

S1 : {a!,b!}

c?

S1 ⊗ S2 : {a!,b!,c?}

2 compute exception states X = pre!(I)
3 replace transitions to X by transitions to the universal state >

c?

[S1||S2]0 : {a!,b!,c?}

c? a!

[S1||S2]1 : {a!,b!,c?}

A

Analysis, Synthesis and Control of Concurrent Systems

Interface Theories

Modal Interfaces

Conclusion

Interface Theory:
Implementations M, parallel composition ×
Specifications S, satisfaction relation M |= S
Product
S ⊗ T = min{X | M |= S and N |= T implies M × N |= X}

Combine specifications related to distinct components
Build architectures

Conjunction M |= S ∧ T iff M |= S and M |= T
Combine aspects/viewpoints related to the same
component

Quotient S/T = max{X | X ⊗ T ≤ S}
Component reuse
Incremental design
Assume/Guarantee Reasoning C = (A,G) = (G ⊗ A)/A

Contributions: Modal Interfaces [ACSD’09, Emsoft’09,
Fund. Infor. 2011], Constraint Markov Chains [QEST’10]
Open issues: Quotient of stochastic interfaces

Analysis, Synthesis and Control of Concurrent Systems

Current and future research directions

Outline

1 Introduction

2 Synthesis of Communicating Systems through PN Synthesis
Petri net synthesis
Application

3 Correct-by-construction asynchronous implementation of
modular synchronous specifications

Introduction
Model and problem statement
Sufficient conditions

4 Interface Theories
Anatomy of an Interface Theory
Modal Interfaces

5 Current and future research directions

Analysis, Synthesis and Control of Concurrent Systems

Current and future research directions

Extending modal interfaces

Extending modal interfaces to data (synchronous
semantics)
Handling numerical constraints (not just finite datatypes)
InterSMV: MTBDD based implementation
Bridging the gap between natural language requirements
and modal interfaces.
Adapting interfaces to other types of systems: services,
systems of systems, ...

Analysis, Synthesis and Control of Concurrent Systems

Current and future research directions

InterSMV

	Introduction
	Synthesis of Communicating Systems through PN Synthesis
	Petri net synthesis
	Application

	Correct-by-construction asynchronous implementation of modular synchronous specifications
	Introduction
	Model and problem statement
	Sufficient conditions

	Interface Theories
	Anatomy of an Interface Theory
	Modal Interfaces

	Current and future research directions

