# Visual data compression： beyond conventional approaches 

Thomas Maugey<br>thomas．maugey＠inria．fr

## 白的白

HDR defense，Rennes
June， $27^{\text {th }} 2022$

## Conventional compression pipeline



To simplify, the conventional compression pipeline is:
block subdivision $\rightarrow$ prediction $\rightarrow$ transform $\rightarrow$ quantization $\rightarrow$ entropy coding and targets $\min R+\lambda D$ where $R=\left|\mathbf{b}_{k}\right|$ and $D=\left\|\mathbf{x}_{k}-\tilde{\mathbf{x}}_{k}\right\|_{2}^{2}$

## Raising of new 3D image modalities

Omnidirectional images/videos


Light Field images/videos


Point Cloud / 3D Mesh


## Two peculiarities of 3D data (among others)

$\star$ Only a subpart of the visual data can be watched at a given time

$\star$ The pixels lie on non-euclidean domain

## Incompatibilities of conventional approaches



## Incompatibilities of conventional approaches



## Incompatibilities of conventional approaches



Coding steps incompatible with Random Access
Coding steps incompatible with Irregular Topologies

## Table of Contents

(1) Compression with random access
(2) Compression with Graph-based Transforms
(3) Perspectives

## Table of Contents

(1) Compression with random access
(2) Compression with Graph-based Transforms
(3) Perspectives

## Definition



The rate is split into two quantities:

- the storage rate $S$
- the transmission rate $R$ :

$$
R=\mathbb{E}_{V \sim p_{V}}[R(V)]
$$

## Common solution: data segmentation / tiling


e.g., [Zare16], [Rossi17], [Hosseini16]

## Common solution: data segmentation / tiling



## Common solution: data segmentation / tiling



[^0]
## Common solution: data segmentation / tiling



Do tile-based solutions minimize $R$ and $S$ ?

## Research achievements



## Research achievements



## Problem formulation



Navigation graph


## Problem formulation



Navigation graph


$$
S=\sum_{i=1}^{B}\left|\mathbf{b}_{i}\right| \text { and } R(\mathrm{v})=\sum_{i \in \mathcal{I}(\mathrm{v})}\left|\mathrm{b}_{i}\right|
$$

## Problem formulation



Navigation graph


$$
S=\sum_{i=1}^{B}\left|\mathbf{b}_{i}\right| \text { and } R(\mathrm{v})=\sum_{i \in \mathcal{I}(\mathrm{v})}\left|\mathbf{b}_{i}\right|
$$

What are the achievable $S$ and $R(\mathbf{v})$ ?

## Example of navigation graph



## Example of navigation graph



## Example of navigation graph



## Coding cost evaluation


(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation



Hypothesis 1
Sources are coded individually ( $\neq$ independently)


(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation



Hypothesis 2
When coding source $\mathbf{x}_{i}$, at least one neighbor
$\left(\mathbf{x}_{j_{1}}, \mathbf{x}_{j_{2}}, \mathbf{x}_{j_{3}}, \mathbf{x}_{j_{4}}\right)$ is available



## Coding cost evaluation



Hypothesis 3
When coding source $\mathbf{x}_{i}$, based on source $\mathbf{x}_{j}$ the rate is:

$$
h_{i \mid j}=H\left(X_{i} \mid X_{j}\right)
$$




## Coding cost evaluation



All Intra (AI)
The source $\mathbf{x}_{i}$ is coded independently

$$
\begin{aligned}
& S_{A I}=h_{i} \\
& R_{A I}=h_{i}
\end{aligned}
$$




## Coding cost evaluation



All Intra (AI)
The source $\mathbf{x}_{i}$ is coded independently

$$
\begin{aligned}
& S_{A I}=h_{i} \\
& R_{A I}=h_{i}
\end{aligned}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation



Multiple Prediction (MP) Each residual $\mathbf{x}_{i}-f\left(\mathbf{x}_{j}\right)$ is stored

$$
\begin{gathered}
S_{M P}=\sum_{j} h_{i \mid j} \\
R_{M P}=h_{i \mid j}
\end{gathered}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation



Multiple Prediction (MP) Each residual $\mathbf{x}_{i}-f\left(\mathbf{x}_{j}\right)$ is stored

$$
\begin{gathered}
S_{M P}=\sum_{j} h_{i \mid j} \\
R_{M P}=h_{i \mid j}
\end{gathered}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation

Compound (C) [Cheung11] A parity codeword able to decode any prediction

$$
\begin{aligned}
S_{C} & =\max _{j} h_{i \mid j} \\
R_{C} & =\max _{j} h_{i \mid j}
\end{aligned}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation

Compound (C) [Cheung11] A parity codeword able to decode any prediction

$$
\begin{aligned}
S_{C} & =\max _{j} h_{i \mid j} \\
R_{C} & =\max _{j} h_{i \mid j}
\end{aligned}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation



## Our result

We have proven that theoretically

$$
\begin{aligned}
& S^{*}=\max _{j} h_{i \mid j} \\
& R^{*}=h_{i \mid j}
\end{aligned}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation



## Our result

We have proven that theoretically

$$
\begin{aligned}
& S^{*}=\max _{j} h_{i \mid j} \\
& R^{*}=h_{i \mid j}
\end{aligned}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Coding cost evaluation



## Our result

We have proven that theoretically

$$
\begin{aligned}
& \qquad S^{*}=\max _{j} h_{i \mid j} \\
& R^{*}=h_{i \mid j} \\
& \text { Achievable in practice }
\end{aligned}
$$



(C28) Roumy and TM, 2015, (J19) Dupraz, TM, Roumy, Kieffer, 2019, (J22) TM, Roumy, Dupraz, Kieffer, 2020.

## Complete Coding Scheme


(J24) Mahmoudian Bidgoli, TM, Roumy 2020

# Coding Scheme: step by step 


(J24) Mahmoudian Bidgoli, TM, Roumy 2020

# Coding Scheme: step by step 


(J24) Mahmoudian Bidgoli, TM, Roumy 2020

# Coding Scheme: step by step 


(J24) Mahmoudian Bidgoli, TM, Roumy 2020

## Decoding order



## Decoding order



## Decoding order



Decoding order


# Coding Scheme: step by step 


(J24) Mahmoudian Bidgoli, TM, Roumy 2020

## At Encoder's side

8 possible intra predictions (e.g., those of VVC [Pfaff21]) have to be anticipated:


## Coding Scheme: step by step


(J24) Mahmoudian Bidgoli, TM, Roumy 2020

## Coding Scheme: step by step


(J24) Mahmoudian Bidgoli, TM, Roumy 2020

## Results



## Table of Contents

(1) Compression with random access
(2) Compression with Graph-based Transforms
(3) Perspectives

## Dealing with irregular topology



## Dealing with irregular topology



## Image on a graph

Graphs represent a pairwise relationship between the pixels.

$$
\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{W}), \text { where }
$$

- $\mathcal{V}$ are the nodes (indexed from 1 to $N$ )
- $\mathcal{E}$ are the edges
- $\mathcal{W}$ are the weights on the edges

An image on a graph: assign a color to each node


## Image on a graph

Graphs represent a pairwise relationship between the pixels.

$$
\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{W}), \text { where }
$$

- $\mathcal{V}$ are the nodes (indexed from 1 to $N$ )
- $\mathcal{E}$ are the edges
- $\mathcal{W}$ are the weights on the edges

An image on a graph: assign a color to each node $\longrightarrow$ a vector $z$


## Useful definitions

Adjacency matrix A:

$$
a_{i j}=\left\{\begin{array}{l}
1 \text { if } e_{i, j} \in \mathcal{E} \\
0 \text { otherwise }
\end{array}\right.
$$

## Degree matrix D:

$$
d_{i j}=\left\{\begin{array}{c}
\operatorname{degree}\left(v_{i}\right) \text { if } i=j \\
0 \text { otherwise }
\end{array}\right.
$$

Laplacian matrix L:

$$
\mathbf{L}=\mathbf{D}-\mathbf{A}
$$

## Graph Fourier Transform

Compute the Laplacian matrix:

$$
\mathbf{L}=\mathbf{D}-\mathbf{A}
$$

Find the eigenvectors and the eigenvalues:

$$
\mathbf{L}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}
$$

Project the signal $z$ on the eigenvectors to get the transformed coefficients:

$$
\boldsymbol{\alpha}=\mathbf{U}^{\top} \mathbf{z}
$$

The inverse transform is:

$$
\mathbf{z}=\mathbf{U} \boldsymbol{\alpha}
$$

More details in e.g., [Shuman13] [Cheung18] [Hu21]

## Frequency in the graph



## Graph Transforms on the sphere



## Research achievements



## Research achievements



8 Mira Rizkallah (PhD)

## GFT complexity issue


(a) Full Laplacian

## GFT complexity issue



## Light-field super-ray

A graph applied on each super-ray (estimated e.g., with [Hog17]):


## Light-field super-ray

A graph applied on each super-ray (estimated e.g., with [Hog17]):


## Light-field super-ray

A graph applied on each super-ray (estimated e.g., with [Hog17]):


## GFT complexity issue



## GFT complexity issue



## Laplacian interpretation

$2^{\text {nd }}$ derivative, it says how much a $z_{i}$ value can be estimated by the linear combination of its neighbors:

$$
\mathbf{L z} \longrightarrow\left(\begin{array}{c}
\vdots \\
d_{i} z_{i}-\sum_{j \in \mathcal{N}(\mathrm{i})} w_{i, j} z_{j} \\
\vdots
\end{array}\right)
$$

## Laplacian interpretation

$2^{\text {nd }}$ derivative, it says how much a $z_{i}$ value can be estimated by the linear combination of its neighbors:

$$
\mathbf{L z} \longrightarrow\left(\begin{array}{c}
\vdots \\
d_{i} z_{i}-\sum_{j \in \mathcal{N}(\mathrm{i})} w_{i, j} z_{j} \\
\vdots
\end{array}\right)
$$

Total variation:

$$
\operatorname{TV}_{\mathbf{L}}\left(\mathbf{z}_{1}\right)=\mathbf{z}_{1}^{\top} \mathbf{L} \mathbf{z}_{1}=60
$$



## Link with compression

## Smooth signal $\longrightarrow$ compact energy




A small number of coefficients sufficient to describe the signal
$\longrightarrow$ Decrease the graph size

## Graph coarsening

In [Loukas 2019], a projection matrix P:

$$
\begin{gathered}
\mathbf{z}^{\prime}=\mathbf{P} \mathbf{z} \\
\mathbf{L}^{\prime}=\mathbf{P}^{\mp} \mathbf{L} \mathbf{P}^{+} \\
\tilde{\mathbf{z}}=\mathbf{P}^{+} \mathbf{z}^{\prime}
\end{gathered}
$$



Theoretical link between $\mathrm{TV}_{\mathbf{L}}(\mathbf{z})$ and $\|\mathbf{z}-\tilde{\mathbf{z}}\|_{2}^{2}$

## Application to Light Field compression



## Signal-oriented decision


(J28) Rizkallah, TM, Guillemot, 2019

## Results



## Table of Contents

(1) Compression with random access
(2) Compression with Graph-based Transforms
(3) Perspectives

## Interactive coding dissemination



## Multi-view $360^{\circ}$ view synthesis



## Learning on the Sphere



## Another conventional coding limitation



Compression gain limited by the fidelity criterion

## Coding for machine



## Data Repurposing



8 Anju Jose Tom (Postdoc), Tom Bachard (PhD), Tom Bordin (PhD)

## Data Repurposing

$\star$ Sampled data collection

$\star$ Generative compression: content regenerated from a digest [Agustsson19]


8 Anju Jose Tom (Postdoc), Tom Bachard (PhD), Tom Bordin (PhD)

## Main collaborators

Inria/Irisa

- Christine Guillemot
- Aline Roumy
- Laurent Guillo
- Olivier Le Meur (now InterDigital)


## France

- Elsa Dupraz, IMT Atlantique, Brest
- Michel Kieffer, LSS, Paris-Saclay
- Frédéric Payan, I3S, Nice
- Marco Cagnazzo, Telecom Paris (now Univ Padua)
- Béatrice Pesquet-Popescu, Telecom Paris (now Thalès)


## Abroad

- Pascal Frossard, EPFL, Switzerland
- Gene Cheung, Univ. Toronto, Canada
- Antonio Ortega, USC, USA
- Laura Toni, UCL, UK
- Roberto Azevedo, Disney Research, Switzerland
- Nikolaos Thomos, University of Essex, UK
- Sebastian Knorr, Ernst Abbe Univ., Jena
- Charles Yaacoub, USEK, Lebanon


## Industry

- Joel Jung, OrangeLabs
- Félix Henry, OrangeLabs
- Méderic Blestel, Mediakind
- Michael Ropert, Mediakind


## Thank you

## Supervised research staff

PhD

- Mira Rizkallah (2016-2019), now Assistant Prof. at Centrale Nantes
- Navid Mahmoudian Bidgoli (2016-2019), now Inria Start-Up Studio (Anax)
- Patrick Garus (2019-now)
- Tom Bachard (2021-now)
- Rémi Piau (2021-now)
- Kai Gu (2021-now)
- Reda Kaafarani (2021-now)
- Tom Bordin (2022-now)


## Postdocs

- Xin Su (2015-2018), now Assistant Prof. at Wuhan Univ., China
- Mai Quyen Pham (2018-2019), now Assistant Prof. at IMT Atlantique
- Fatma Hawary (2019-2020), now researcher at Barco, Vancouver, Canada
- Anju Jose Tom (2020-now)


## Research engineers

- Cédric Le Cam (2016-2018)
- Antoine Crinière (2016-2018)
- Sébastien Bellenous (2020-now)


## References

[Agustsson19] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. V. Gool, "Generative adversarial networks for extreme learned image compression," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 221-231.
[Cheung11] G. Cheung, A. Ortega, and N. Cheung, "Interactive streaming of stored multiview video using redundant frame structures," IEEE Transactions on Image Processing, vol. 3, no. 3, pp. 744-761, Mar. 2011.
[Cheung18] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "Graph spectral image processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907-930, May 2018.
[Hog17] M. Hog, N. Sabater, and C. Guillemot, "Superrays for efficient light field processing," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1187-1199, Oct 2017.
[Hosseini16] M. Hosseini and V. Swaminathan, "Adaptive 360 vr video streaming: Divide and conquer," in 2016 IEEE International Symposium on Multimedia (ISM). IEEE, 2016, pp. 107-110.
[Hu21] W. Hu, J. Pang, X. Liu, D. Tian, C.-W. Lin, and A. Vetro, "Graph signal processing for geometric data and beyond: Theory and applications," IEEE Transactions on Multimedia, 2021.
[Loukas19] A. Loukas, "Graph reduction with spectral and cut guarantees." Journal of Machine Learning Research, vol. 20, no. 116, pp. 1-42, 2019.
[Pfaff21] J. Pfaff, A. Filippov, S. Liu, X. Zhao, J. Chen, S. De-Luxan-Hernandez, T. Wiegand, V. Rufitskiy, A. K. Ramasubramonian, and G. Van der Auwera, "Intra prediction and mode coding in vvc," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3834-3847, 2021.
[Rossi17] S. Rossi and L. Toni, "Navigation-aware adaptive streaming strategies for omnidirectional video," in 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2017, pp. 1-6.
[Shuman13] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, 2013.
[Zare16] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj, "Hevc-compliant tile-based streaming of panoramic video for virtual reality applications," in Proceedings of the 24th ACM international conference on Multimedia, 2016, pp. 601-605.


[^0]:    e.g., [Zare16], [Rossi17], [Hosseini16]

