Visual data compression: beyond conventional approaches

Thomas Maugey thomas.maugey@inria.fr

HDR defense, Rennes June, $27^{\rm th}$ 2022

To simplify, the conventional compression pipeline is:

block subdivision \rightarrow prediction \rightarrow transform \rightarrow quantization \rightarrow entropy coding

and targets $\min R + \lambda D$ where $R = |\mathbf{b}_k|$ and $D = ||\mathbf{x}_k - \tilde{\mathbf{x}}_k||_2^2$

Raising of new 3D image modalities

Omnidirectional images/videos

Light Field images/videos

Point Cloud / 3D Mesh

Two peculiarities of 3D data (among others)

 \bigstar Only a subpart of the visual data can be watched at a given time

★ The pixels lie on non-euclidean domain

Incompatibilities of conventional approaches

Incompatibilities of conventional approaches

Coding steps incompatible with Random Access

Incompatibilities of conventional approaches

Table of Contents

1 Compression with random access

2 Compression with Graph-based Transforms

③ Perspectives

Table of Contents

1 Compression with random access

2 Compression with Graph-based Transforms

B Perspectives

Decoder	Requested Data
USER	

The rate is split into two quantities:

- the **storage** rate S
- the transmission rate R:

$$R = \mathbb{E}_{V \sim p_V}[R(V)]$$

Do tile-based solutions minimize \boldsymbol{R} and \boldsymbol{S} ?

e.g., [Zare16], [Rossi17], [Hosseini16]

Research achievements

Research achievements

Problem formulation

$$S = \sum_{i=1}^{B} |\mathbf{b}_i|$$
 and $R(\mathbf{v}) = \sum_{i \in \mathcal{I}(\mathbf{v})} |\mathbf{b}_i|$

Problem formulation

$$S = \sum_{i=1}^{B} |\mathbf{b}_i|$$
 and $R(\mathbf{v}) = \sum_{i \in \mathcal{I}(\mathbf{v})} |\mathbf{b}_i|$

What are the achievable S and $R(\mathbf{v})$?

Example of navigation graph

Example of navigation graph

Example of navigation graph

Complete Coding Scheme

At Encoder's side

8 possible intra predictions (e.g., those of VVC [Pfaff21]) have to be anticipated:

Results

Table of Contents

() Compression with random access

2 Compression with Graph-based Transforms

B Perspectives

Dealing with irregular topology

Dealing with irregular topology

Image on a graph

Graphs represent a pairwise relationship between the pixels.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W}),$ where

- \mathcal{V} are the nodes (indexed from 1 to N)
- ${\ensuremath{\,^{\bullet}}}\ {\ensuremath{\mathcal{E}}}\ {\ensuremath{\mathsf{are}}}\ {\ensuremath{\mathsf{the}}}\ {\ensuremath{\mathsf{edges}}\ {\ensuremath{\mathsf{deges}}\ }\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ }\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ }\ensuremath{\mathsf{deges}\ }\ensuremath{\mathsf{degs}\ }\ensuremath{\mathsf{deges}\ }\ensuremath{\mathsf{degs}\ }\ensuremath{\ensuremath{\mathsfdegs}\ }\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \$
- $\mathcal W$ are the weights on the edges

An image on a graph: assign a color to each node

Image on a graph

Graphs represent a pairwise relationship between the pixels.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W}),$ where

- \mathcal{V} are the nodes (indexed from 1 to N)
- ${\ensuremath{\,^{\bullet}}}\ {\ensuremath{\mathcal{E}}}\ {\ensuremath{\mathsf{are}}}\ {\ensuremath{\mathsf{the}}}\ {\ensuremath{\mathsf{edges}}\ {\ensuremath{\mathsf{deges}}\ }\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ }\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ {\ensuremath{\mathsf{deges}}\ }\ensuremath{\mathsf{deges}\ }\ensuremath{\mathsf{degs}\ }\ensuremath{\mathsf{deges}\ }\ensuremath{\mathsf{degs}\ }\ensuremath{\ensuremath{\mathsfdegs}\ }\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \\ensuremath{\mathsfdegs}\ \ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \ensuremath{\ensuremath{\mathsfdegs}\ \$
- $\mathcal W$ are the weights on the edges

An image on a graph: assign a color to each node \longrightarrow a vector z

Useful definitions

Adjacency matrix A:

$$a_{ij} = \begin{cases} 1 \text{ if } e_{i,j} \in \mathcal{E} \\ 0 \text{ otherwise} \end{cases}$$

Degree matrix D:

$$d_{ij} = \begin{cases} \text{ degree}(v_i) \text{ if } i = j \\ 0 \text{ otherwise} \end{cases}$$

Laplacian matrix L:

$$L = D - A$$

Graph Fourier Transform

Compute the Laplacian matrix:

$$L = D - A$$

Find the eigenvectors and the eigenvalues:

$$\mathbf{L} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$$

Project the signal z on the eigenvectors to get the transformed coefficients:

$$\boldsymbol{\alpha} = \mathbf{U}^{\top} \mathbf{z}$$

The inverse transform is:

$$z = U\alpha$$

More details in e.g., [Shuman13] [Cheung18] [Hu21]

Frequency in the graph

Graph Transforms on the sphere

Research achievements How to reduce GFT complexity? **Graph reduction** - graph coarsening optimal graph reduction (J28)

GFT complexity issue

GFT complexity issue

Light-field super-ray

A graph applied on each super-ray (estimated *e.g.*, with [Hog17]):

Light-field super-ray

A graph applied on each super-ray (estimated *e.g.*, with [Hog17]):

Light-field super-ray

A graph applied on each super-ray (estimated *e.g.*, with [Hog17]):

GFT complexity issue

GFT complexity issue

Laplacian interpretation

 $2^{\rm nd}$ derivative, it says how much a z_i value can be estimated by the linear combination of its neighbors:

$$\mathbf{Lz} \longrightarrow \left(\begin{array}{c} \vdots \\ d_i z_i - \sum_{j \in \mathcal{N}(\mathbf{i})} w_{i,j} z_j \\ \vdots \end{array} \right)$$

Laplacian interpretation

 $2^{\rm nd}$ derivative, it says how much a z_i value can be estimated by the linear combination of its neighbors:

$$\mathbf{Lz} \longrightarrow \begin{pmatrix} \vdots \\ d_i z_i - \sum_{j \in \mathcal{N}(i)} w_{i,j} z_j \\ \vdots \end{pmatrix}$$

Total variation:

$$\mathbf{T} \mathbf{V}_{\mathbf{L}}(\mathbf{z}_1) = \mathbf{z}_1^{\mathsf{T}} \mathbf{Lz}_1 = 60$$

$$\mathbf{T} \mathbf{V}_{\mathbf{L}}(\mathbf{z}_2) = \mathbf{z}_2^{\mathsf{T}} \mathbf{Lz}_2 = 120$$

Link with compression

Smooth signal \longrightarrow compact energy

A small number of coefficients sufficient to describe the signal

 \longrightarrow Decrease the graph size

Graph coarsening

In [Loukas 2019], a projection matrix P:

$$\mathbf{z}' = \mathbf{P}\mathbf{z}$$
$$\mathbf{L}' = \mathbf{P}^{\mp}\mathbf{L}\mathbf{P}^{+}$$
$$\tilde{\mathbf{z}} = \mathbf{P}^{+}\mathbf{z}'$$

Theoretical link between $\mathrm{TV}_{\mathbf{L}}(\mathbf{z})$ and $||\mathbf{z}-\tilde{\mathbf{z}}||_2^2$

Application to Light Field compression

Signal-oriented decision

Results

Table of Contents

() Compression with random access

2 Compression with Graph-based Transforms

Interactive coding dissemination

A Sebastien Bellenous (Research engineer), Reda Kaafarani (PhD)

Multi-view 360° view synthesis

At every discrete camera position, the user is able to watch every direction

Learning on the Sphere

Another conventional coding limitation

Compression gain limited by the fidelity criterion

Coding for machine

Data Repurposing

Anju Jose Tom (Postdoc), Tom Bachard (PhD), Tom Bordin (PhD)

Data Repurposing

★ Sampled data collection

★ Generative compression: content regenerated from a digest [Agustsson19]

Anju Jose Tom (Postdoc), Tom Bachard (PhD), Tom Bordin (PhD)

Main collaborators

Inria/Irisa

- Christine Guillemot
- Aline Roumy
- Laurent Guillo
- Olivier Le Meur (now InterDigital)

France

- Elsa Dupraz, IMT Atlantique, Brest
- Michel Kieffer, LSS, Paris-Saclay
- Frédéric Payan, I3S, Nice
- Marco Cagnazzo, Telecom Paris (now Univ Padua)
- Béatrice Pesquet-Popescu, Telecom Paris (now Thalès)

Abroad

- Pascal Frossard, EPFL, Switzerland
- Gene Cheung, Univ. Toronto, Canada
- Antonio Ortega, USC, USA
- Laura Toni, UCL, UK
- Roberto Azevedo, Disney Research, Switzerland
- Nikolaos Thomos, University of Essex, UK
- Sebastian Knorr, Ernst Abbe Univ., Jena
- Charles Yaacoub, USEK, Lebanon

Industry

- Joel Jung, OrangeLabs
- Félix Henry, OrangeLabs
- Méderic Blestel, Mediakind

5

Thank you

Supervised research staff

PhD

- Mira Rizkallah (2016-2019), now Assistant Prof. at Centrale Nantes
- Navid Mahmoudian Bidgoli (2016-2019), now Inria Start-Up Studio (Anax)
- Patrick Garus (2019-now)
- Tom Bachard (2021-now)
- Rémi Piau (2021-now)
- Kai Gu (2021-now)
- Reda Kaafarani (2021-now)
- Tom Bordin (2022-now)

Postdocs

- Xin Su (2015-2018), now Assistant Prof. at Wuhan Univ., China
- Mai Quyen Pham (2018-2019), now Assistant Prof. at IMT Atlantique
- Fatma Hawary (2019-2020), now researcher at Barco, Vancouver, Canada
- Anju Jose Tom (2020-now)

Research engineers

- Cédric Le Cam (2016-2018)
- Antoine Crinière (2016-2018)
- Sébastien Bellenous (2020-now)

References

[Agustsson19] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. V. Gool, "Generative adversarial networks for extreme learned image compression," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 221–231.

[Cheung11] G. Cheung, A. Ortega, and N. Cheung, "Interactive streaming of stored multiview video using redundant frame structures," IEEE Transactions on Image Processing, vol. 3, no. 3, pp. 744–761, Mar. 2011.

[Cheung18] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, "Graph spectral image processing," Proceedings of the IEEE, vol. 106, no. 5, pp. 907–930, May 2018.

[Hog17] M. Hog, N. Sabater, and C. Guillemot, "Superrays for efficient light field processing," IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp. 1187–1199, Oct 2017.

[Hosseini16] M. Hosseini and V. Swaminathan, "Adaptive 360 vr video streaming: Divide and conquer," in 2016 IEEE International Symposium on Multimedia (ISM). IEEE, 2016, pp. 107–110.

[Hu21] W. Hu, J. Pang, X. Liu, D. Tian, C.-W. Lin, and A. Vetro, "Graph signal processing for geometric data and beyond: Theory and applications," IEEE Transactions on Multimedia, 2021.

[Loukas19] A. Loukas, "Graph reduction with spectral and cut guarantees." Journal of Machine Learning Research, vol. 20, no. 116, pp. 1–42, 2019.

[Pfaff21] J. Pfaff, A. Filippov, S. Liu, X. Zhao, J. Chen, S. De-Luxan-Hernandez, T. Wiegand, V. Rufitskiy, A. K. Ramasubramonian, and G. Van der Auwera, "Intra prediction and mode coding in vvc," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3834–3847, 2021.

[Rossi17] S. Rossi and L. Toni, "Navigation-aware adaptive streaming strategies for omnidirectional video," in 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2017, pp. 1–6.

[Shuman13] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[Zare16] A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj, "Hevc-compliant tile-based streaming of panoramic video for virtual reality applications," in Proceedings of the 24th ACM international conference on Multimedia, 2016, pp. 601–605.