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Raising of new 3D image modalities
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Two peculiarities of 3D data (among others)

F Only a subpart of the visual data can be watched at a given time

F The pixels lie on non-euclidean domain
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Research achievements

What achievable performance ?

- New formulation of the problem

(C28) (J19)

- User access modeling: navigation graph

- Derivation of Optimal performance

Proof of Concept

- First experimentation on toy graph

(J22)

Practical 3D image coder

- Coder development for 360° data

(C41,43) (J24)

- Achievement of optimal performance

- Coder development for 3D mesh

Tile-based Incremental

Tiles for 6DoF ?

- Definition of Navigation segments

- Optimal tiling

- Representation of Navigation segments 

(C17,18,29) (J3,8,13,18,23)
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Coding cost evaluation
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Coding cost evaluation

Hypothesis 2
When coding source xi,
at least one neighbor
(xj1 , xj2 , xj3 ,xj4) is available
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Coding cost evaluation

Hypothesis 3
When coding source xi,
based on source xj

the rate is:

hi|j = H(Xi|Xj)
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Multiple Prediction (MP)
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Coding cost evaluation

Compound (C) [Cheung11]
A parity codeword able
to decode any prediction

SC = max
j
hi|j

RC = max
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Coding cost evaluation

Our result
We have proven that
theoretically
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Coding cost evaluation
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At Encoder’s side

8 possible intra predictions (e.g., those of VVC [Pfaff21]) have to be
anticipated:
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Results
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Image on a graph

Graphs represent a pairwise relationship between the pixels.

G = (V, E ,W), where
• V are the nodes (indexed from 1
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• E are the edges
• W are the weights on the edges

An image on a graph: assign a color to each node
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Useful definitions

Adjacency matrix A:

aij =
{

1 if ei,j ∈ E
0 otherwise

Degree matrix D:

dij =
{

degree(vi) ifi = j
0 otherwise

Laplacian matrix L:
L = D−A
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Graph Fourier Transform

Compute the Laplacian matrix:

L = D−A

Find the eigenvectors and the eigenvalues:

L = UΛU>

Project the signal z on the eigenvectors to get the transformed coefficients:

α = U>z

The inverse transform is:
z = Uα

More details in e.g., [Shuman13] [Cheung18] [Hu21]
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Frequency in the graph
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Graph Transforms on the sphere
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Research achievements

Graph segmentation

- Rate-distortion oriented partitioning

(C35,36) (J21)

Separable transform

- graph separation

(J20)

Graph reduction

- graph coarsening

(J28)

- eigenvector alignment

- optimal graph reduction

How to construct the graph ? How to reduce GFT complexity ?

Graph for 3D modalities

- 360°

- Light Fields

- 3D mesh

(C32, 39,44)

Graph describing the 3D geometry

- GBR construction

- Generalization to 
any camera config.

- Color compression

(C19,20,21,24,30) (J10,16) 

?

Graph construction:
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Research achievements

Mira Rizkallah (PhD)
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GFT complexity issue

(a) Full Laplacian
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Light-field super-ray

A graph applied on each super-ray (estimated e.g., with [Hog17]):
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GFT complexity issue

(a) Full Laplacian (b) Segmentation

(c) Dimension separation
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GFT complexity issue

(a) Full Laplacian (b) Segmentation

(c) Dimension separation (d) Reduction

. .
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Laplacian interpretation

2nd derivative, it says how much a zi value can be estimated by the linear
combination of its neighbors:

Lz −→


...

dizi −
∑

j∈N (i) wi,jzj

...
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TVL(z2) = z>2 Lz2 = 120
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Link with compression

Smooth signal −→ compact energy

A small number of coefficients sufficient to describe the signal

−→ Decrease the graph size
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Graph coarsening

In [Loukas 2019], a projection matrix P:

z′ = Pz

L′ = P∓LP+

z̃ = P+z′

Theoretical link between TVL(z) and ||z− z̃||22
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Application to Light Field compression
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Signal-oriented decision

(J28) Rizkallah, TM, Guillemot, 2019
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Results

(J28) Rizkallah, TM, Guillemot, 2019
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Interactive coding dissemination

What achievable performance ?

- New formulation of the problem

(C28) (J19)

- User access modeling: navigation graph

- Derivation of Optimal performance

Proof of Concept

- First experimentation on toy graph

(J22)

Practical 3D image coder

- Coder development for 360° data

(C41,43) (J24)

- Achievement of optimal performance

- Coder development for 3D mesh

Tile-based Incremental

Tiles for 6DoF ?

- Definition of Navigation segments

- Optimal tiling

- Representation of Navigation segments 

(C17,18,29) (J3,8,13,18,23)

Coder transfer

- open-source implementation

- demonstrator

- extension to video streaming optim.

Sebastien Bellenous (Research engineer), Reda Kaafarani (PhD)
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Multi-view 360◦ view synthesis

User is able to make discrete translation in the scene

At every discrete camera position, the user is able to watch every direction

Kai Gu (PhD)
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Learning on the Sphere

Graph segmentation

- Rate-distortion oriented partitioning

(C35,36) (J21)

Separable transform

- graph separation

(J20)

Graph reduction

- graph coarsening

(J28)

- eigenvector alignment

- optimal graph reduction

Graph for 3D modalities

- 360°

- Light Fields

- 3D mesh

(C32, 39,44)

Graph describing the 3D geometry

- GBR construction

- Generalization to 
any camera config.

- Color compression

(C19,20,21,24,30) (J10,16) 

?

Graph construction:

Geometric Deep Learning

OSLO toolbox

- On-the-Sphere learning toolbox

(J31s)

Anax Start-up

- 360° image editing using AI

Navid Mahmoudian Bidgoli and Simon Evain (Anax co-leaders)
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Another conventional coding limitation

Prediction

+
+ -

Transform Quantization Entropy Coder

Entropy Decoder +
+

Transform-1

Transform-1

Block 

Scheduler

Block 
Scheduler

Prediction

ENCODER

DECODER

+

+
+

+

Compression gain limited by the fidelity criterion



46/50

Coding for machine

ML Encoder f

ML Decoder gm

ML Decoder gh

Transmission

over channel

Machine

QoE metrics

Human

Task-oriented metrics

Rémi Piau (PhD)
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Data Repurposing

Data Collection

Information 

perceived by user

Conventional

Compression

fidelity

Data

Repurposing

fidelity

Anju Jose Tom (Postdoc), Tom Bachard (PhD), Tom Bordin (PhD)
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Data Repurposing

F Sampled data collection

−→

F Generative compression: content regenerated from a digest [Agustsson19]

−→

Anju Jose Tom (Postdoc), Tom Bachard (PhD), Tom Bordin (PhD)
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