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Model Checking

Exhaustive verification of programs or abstract models

Spec: output error is always 0

Model Checker
✓

×

✓ Under all sequences of inputs, the module never raises error
× Under some input sequence, the module sets error to 1

(counterexample often provided)
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Model Checking: Some Uses

Hardware: cache coherence protocols, file transfer protocols, PCI etc.
Distributed algorithms: consensus, leader election
Railway signaling systems
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Controller Synthesis

Controller System Disturbances

actions

sensors

Goal: Given a system (model), automatically compute a controller to
ensure the system always has desired behavior.
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Controller Synthesis

Controller System Uncontrollable inputs

Controllable inputs

Observation
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Controller Synthesis

Controller System Uncontrollable inputs

Controllable inputs

Observation

Spec: error is always 0

Synthesis
✓

×

✓ There is a controller which, under all sequences of uncontrollable inputs,
prescribes a controllable input such that the module never raises error
× For all controllers, under some input sequence, error is raised
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Controller Synthesis: Uses

Automatic construction / completion of protocols
Solving planning problems under uncertainties
Requirements verification

Many techniques and applications are common to model checking and
synthesis
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Timed Systems

Systems whose behaviors depend on the correct timings of events.

Models in which execution times and deadlines are explicitly represented.

Clock synchronization protocols
Embedded programs under a real-time scheduling policy
Cyber physical systems: e.g. a program interacting with a physical
environment
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Probabilistic Systems

Systems whose behaviors can be understood as being generated by
stochastic processes.

e.g. behaviors follow probability distributions.

Randomized algorithms
Deterministic programs within a stochastic environment:
e.g. disturbances, random user behavior, weather conditions.
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This Thesis

Quantitative features such as time and probabilities are fundamental in
several applications of formal methods.

Model checking and synthesis algorithms for timed and probabilistic
systems

Overview
1 Algorithms for timed systems
2 Algorithms for probabilistic systems
3 Other Works
4 Conclusion
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Outline

1 Algorithms for Timed Systems
Model Checking for Large Timed Automata
Robustness for Timed Automata

2 Probabilistic Systems
Stochastic Shortest Paths
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Models with Explicit Timings: Timed Automata

Timed automata: Finite automaton + clock variables:
Locations (ℓ0, ℓ1, ℓ2): finite-state program
Clocks (x , y): time constraints [Alur, Dill 1994]

ℓ0 ℓ1 ℓ2
x = 1, y := 0

x ≤ 2, send, x := 0

y ≥ 2, receive, y := 0

1

1

2

2

x
0

0

y
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Symbolic State Space Representation: Zones

▶ Explicit enumeration is no longer possible
(ℓ2, x = 1.500, y = 0.500), (ℓ2, x = 1.501, y = 0.501), (ℓ2, x = 1.502, y = 0.502), . . .

In timed automata, it suffices to enumerate zones:
[Henzinger, Nicollin, Sifakis, Yovine 1994]

But they all apply explicit enumeration on discrete states
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Termination and good efficiency thanks to sound and complete
abstraction operators. Recent survey: [FORMATS 2022]

Zone-based model checking tools:
Proprietary: Uppaal, PAT
Free: Opaal/LTSmin, TChecker

But they all apply explicit enumeration on discrete states
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Algorithms for Timed Automata
with Large Discrete State Spaces

1 Algorithms based on predicate abstraction
2 Algorithm based on finite automata learning
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Predicate Abstraction

▶ We consider an abstract domain defined by predicates:

x ≤ k | x ≥ k | x − y ≤ k x , y clocks, k ∈ Z

Predicates: x − y ≤ −1, y ≤ 2, x ≤ 2, x ≤ 3, x − y ≤ 2

y

x

A valuation on the predicates defines a cell and is an abstract state
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Abstraction Mapping

Examples

y

x

⇝
y

x

y

x

⇝
y

x
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Abstract System

y

x

Transitions between valuations are replaced by transitions between cells

(ℓ0, x=3, y=2.7) → (ℓ1, x=4.2, y=3.9) → (ℓ1, x=4.4, y=4.1)

becomes (ℓ0, ) → (ℓ1, ) → (ℓ1, )
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Predicate Abstraction

Algorithm
1 Select a set of predicates P e.g. constraints that appear in the guards

2 Model check abstract system with binary decision diagrams (BDD)
3 Refine from counterexamples using zone interpolants

BDDs handle large discrete state spaces and predicates on clocks

Victor Roussanaly’s PhD thesis (2019), [Roussanaly, S., Markey CAV 2019]

Tool and experiments: https://github.com/osankur/symrob/
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Using Finite Automata Learning

Cooperative Approach: combine two types of model checkers:
1 a timed automata model checker for small discrete state spaces
2 finite-state model checker for large discrete state spaces (without

clocks)

Ocan Sankur Formal Methods for Timed and Probabilistic Systems 17 / 39



Observation

Theorem
Any timed automaton can be written as

FA ∥ TA

where FA is a finite automaton, TA is a timed automaton.

(in such a way that, in general, FA is large, and TA has 1 location)

Ocan Sankur Formal Methods for Timed and Probabilistic Systems 18 / 39



Observation

Theorem
Any timed automaton can be written as

FA ∥ TA

where FA is a finite automaton, TA is a timed automaton.

(in such a way that, in general, FA is large, and TA has 1 location)

Ocan Sankur Formal Methods for Timed and Probabilistic Systems 18 / 39



Assume-Guarantee Reasoning

Assume we want to establish

L(FA ∥ TA) ⊆ Spec

for a regular language Spec.

One can guess a finite automaton H, and apply:

L(TA) ⊆ L(H) L(FA∥H) ⊆ Spec
L(FA ∥ TA) ⊆ Spec.

Asym

▶ First premise: timed automata model checking
▶ Second premise: finite-state model checking
▶ Finding H: Use automata learning (e.g. L∗) to find appropriate H
→ application of assume-guarantee model checking with automatic learning of assumptions

[Cobleigh, Giannakopoulou, Pasareanu, TACAS 2003]

[S. TACAS 2023]
Tool and experiments: https://github.com/osankur/compRTMC
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Timing Imprecisions in Timed Automata

1 Robustness Analysis
2 Robust Control
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Clock Imprecisions in Timed Automata

Consider periodic tasks with specification:

“consumei must start at most 1 second after the end of producei .”

prod1 prod2 prod3 prod4 prod5

cons1 cons2 cons3 cons4 cons5

τ

τ

. . .
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τ − δ

τ

. . .
violation

▶ Assume that in reality, the period of produce is shorter by δ = 0.1
▶ Buffer overflow not caught by a standard analysis
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Clock Imprecisions in Timed Automata

Consider periodic tasks with specification:

“consumei must start at most 1 second after the end of producei .”

prod1 prod2 prod3 prod4 prod5 prod6 prod7 prod8 prod9 prod10

cons1 cons2 cons3 cons4 cons5 cons6 cons7 cons8 cons9 cons10

τ − δ

τ

violation

▶ Assume that in reality, the period of produce is shorter by δ = 0.1
▶ Buffer overflow not caught by a standard analysis

Error is inevitable for all possible bounds δ
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Robust model checking

Imprecisions are modeled by guard enlargement:
e.g. 1 ≤ x ≤ 2 ⇝ 1 − δ ≤ x ≤ 2 + δ.

[Puri 2000], [Doyen, De Wulf, Markey, Raskin 2008]

Robust model checking
Given timed automaton TA and specification ϕ, decide if there exists
δ > 0 such that TA+δ |= ϕ.

Contribution: Semi-algorithm for checking robust safety
often small overhead over exact model checking

computes bound δ

Tool and experiments: https://github.com/osankur/symrob/
[S. TACAS 2015]
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Robust Controller Synthesis

Real-time planning:
Stay at each station [20, 40] sec
Move between stations in [60, 90] sec
Complete a tour in [420, 520] sec

And repeat all day!

Adversarial perturbations: Passenger behavior, weather conditions, etc.

Time Perturbation model given bound δ:

20<x<40

y :=0
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Robust Controller Synthesis

Problem
Given timed automaton TA, and Buchi property ϕ, is there δ > 0 and a
control strategy σ such that σ guarantees ϕ.

[Chatterjee, Henzinger, Prabhu 2011], [S., Bouyer, Markey, Reynier CONCUR 2013]

Can the airtrain run for an indefinitely?

A zone-based algorithm based on double DFS with parametric zones for
checking robust Buchi:

This also applies to when perturbations can be stochastic and independent

[Oualhadj, Reynier, S. CONCUR 2014]
[Busatto-Gaston, Monmege, Reynier, S. CAV 2019]

Tool and experiments: https://verif.ulb.ac.be/dbusatto/
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Perspectives

Target: Scalability
Combine the knowledge developed on the clock space with model
checking techniques for large finite-state systems

Symbolic verification techniques
Program verification

Applications and benchmarks: target synchronous systems or
real-time programs

Target: Applications of Robustness
Target new applications, case studies where a low-level analysis is
needed
Computing maximal perturbation bounds: slack-time analysis
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Outline

1 Algorithms for Timed Systems
Model Checking for Large Timed Automata
Robustness for Timed Automata

2 Probabilistic Systems
Stochastic Shortest Paths
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Weighted Markov Decision Processes (MDP)

waiting
room train light

traffic
medium
traffic

heavy
traffic

, 2 , 1

wait, 3

relax, 35

, 2

, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
0.7

0.1

0.1 0.9

What is the shortest path?
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Strategies in MDPs

Strategy
Function that assigns an action to every history

7→

(waiting room) 7→ wait

(waiting room) (waiting room) 7→
. . .
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Strategies in MDPs

Strategy
Function that assigns an action to every history

7→

(waiting room) 7→ wait

(waiting room) (waiting room) 7→
. . .

Total Payoff of a History

Sum of the weights until reaching target state T = (or ∞)

total-payoff( ) = 45
total-payoff( (waiting room) (wait) (train) (relax) ) = 2 + 3 + 35 = 40
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Strategies in MDPs

Strategy
Function that assigns an action to every history

Total Payoff of a History

Sum of the weights until reaching target state T = (or ∞)

Expected Total Payoff of a strategy σ: Eσ
M [TP(T )]

The stochastic shortest path to T is the strategy with minimal expected
total payoff:

inf
σ
Eσ

M [TP(T )]
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Sum of the weights until reaching target state T = (or ∞)

Expected Total Payoff of a strategy σ: Eσ
M [TP(T )]

The stochastic shortest path to T is the strategy with minimal expected
total payoff:

inf
σ
Eσ

M [TP(T )]

▶ Here, is the “shortest path”:

EM [TP(T )] = 33.

Ocan Sankur Formal Methods for Timed and Probabilistic Systems 28 / 39



Stochastic Shortest Path with Arbitrary Weights

Litterature
Only for nonnegative weights [de Alfaro 1999]
Or under following assumptions: [Bertsekas, Tsitsiklis 1991]
▶ there exists a proper strategy (σ is proper if Pσ

M(⋄T ) = 1)
▶ total payoff goes to +∞ under all non-proper strategies

▶ General weights:

s
t

u
T

invest, 0
0.9

0.1

+4

-10

▶ Total payoff ̸→ ∞:
s t w

u v

1

0

2

-2
-3

Theorem
Stochastic shortest paths in general weighted MDPs can be computed in
polynomial time.

[Baier, Bertrand, Dubslaff, Gburek, S. LICS 2018]
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Variance Weighted Markov Decision Processes

waiting
room train light

traffic
medium
traffic

heavy
traffic

, 2 , 1

wait, 3

relax, 35

, 2

, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
0.7

0.1

0.1 0.9

EM [TP(T )] = 33

VM [TP(T )] = 0.2(20 − 33)2 + 0.2 × 0.7(30 − 33)2 + 0.1(70 − 33)2

= 177 ≈ 13.302
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Variance Weighted Markov Decision Processes
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EM [TP(T )] = 37.33, VM [TP(T )] ≈ 1.02
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Variance Weighted Markov Decision Processes

waiting
room train light

traffic
medium
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heavy
traffic

, 2 , 1

wait, 3

relax, 35

, 2

, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
0.7

0.1

0.1 0.9

EM [TP(T )] = 45, VM [TP(T )] = 0
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Variance in Weighted Markov Decision Processes

Minimizing variance is difficult because it is a quadratic expression

Open: Given bounds α, β, compute a strategy σ with
Eσ[TP(T )] ≤ α,Vσ[TP(T )] ≤ β.
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Open: Given bounds α, β, compute a strategy σ with
Eσ[TP(T )] ≤ α,Vσ[TP(T )] ≤ β.

Lexicographic Optimality
1) α = infσ Eσ[TP(T )]. 2) Minimize variance among strategies with
expectation α

in polynomial time.

[Piribauer, S., Baier CONCUR 2022]
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Variance in Weighted Markov Decision Processes

Minimizing variance is difficult because it is a quadratic expression

Open: Given bounds α, β, compute a strategy σ with
Eσ[TP(T )] ≤ α,Vσ[TP(T )] ≤ β.

Lexicographic Optimality
1) α = infσ Eσ[TP(T )]. 2) Minimize variance among strategies with
expectation α

in polynomial time.

Variance-Penalized Expectation (VPE)
Maximize: Eσ[TP(T )] − λVσ[TP(T )]

linear combination of expectation and variance
The problem is EXPTIME-hard, and is in EXPSPACE.

[Piribauer, S., Baier CONCUR 2022]
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Percentiles in Weighted Markov Decision Processes

waiting
room train light

traffic
medium
traffic

heavy
traffic

, 2 , 1

wait, 3

relax, 35

, 2

, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
0.7

0.1

0.1 0.9

Another way of controlling the risks:

Pσ[TP(T ) ≤ 37] ≥ 0.9

[Filar, Krass, Ross 1995]
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waiting
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Another way of controlling the risks:

Pσ[TP(T ) ≤ 37] ≥ 0.9 ∧ Pσ[TP(T ) ≤ 40] ≥ 0.99

[Filar, Krass, Ross 1995]
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Percentiles in Weighted Markov Decision Processes

waiting
room train light

traffic
medium
traffic

heavy
traffic

, 2 , 1

wait, 3

relax, 35

, 2

, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
0.7

0.1

0.1 0.9

Another way of controlling the risks:

Pσ[TP(T ) ≤ 37] ≥ 0.9 ∧ Pσ[TP(T ) ≤ 40] ≥ 0.99 ∧ Pσ[TP(T ) ≤ 43] ≥ 0.999

[Filar, Krass, Ross 1995]
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Multiple Weights in Markov Decision Processes
Weights: Duration (minutes), Carbon footprint (grams of CO2 per km)

waiting
room train light

traffic
medium
traffic

heavy
traffic

, 2m, 0g , 1m, 0g

wait, 3m, 0g

relax
35m,22g

, 2m, 0g

,
45m, 40g

drive
20m,500g

drive
30m,650g

drive
70m,900g

0.1 0.9 0.2
0.7

0.1

0.1 0.9

Pσ[TP (T ) ≤ 50] ≥ 0.99 ∧ Pσ[TP (T ) ≤ 60] ≥ 1

∧ Pσ[TP (T ) ≤ 110] ≥ 0.9 ∧ Pσ[TP (T ) ≤ 140] ≥ 0.99
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Percentiles on Multiple Weights

Multiple Percentile Queries
One can compute strategy σ that satisfies a given Boolean combination of
queries of the form Pσ[TPi(T ) ≤ β] ≥ α, if such a strategy exists, in
pseudo-polynomial time.

[Randour, Raskin, S. CAV 2015, VMCAI 2015, FMSD 2017]

Similar results hold for other objectives:
(LimSup) Mean-payoff: In polynomial-time for

MP(w) = lim sup
n→∞

1
n

n∑
i=1

wi .

(LimInf) MeanPayoff: Exponential in the dimensions:

MP(w) = lim inf
n→∞

1
n

n∑
i=1

wi .

Discounted sum: pseudo-polynomial time

DS(w) =
∞∑

i=0
γiwi .
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Multiple Environments in Markov Decision Processes

Regular day
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Multiple Environments in Markov Decision Processes

National strike
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Multiple Environments in Markov Decision Processes
National strike

waiting
room train light

traffic
medium
traffic

heavy
traffic

, 2 , 1

wait, 3

relax, 35

, 2

, 45

drive, 20 drive, 30 drive, 70

0.9 0.1 0.1
0.4

0.5

0.9 0.1

Is there a single strategy σ satisfying

Pσ
regular[ϕ] ≥ 0.9 ∧ Pσ

strike[ϕ] ≥ 0.7

without a prior knowledge of which case it is.

▶ Limited form of partial observation
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Multiple Environments in Markov Decision Processes

Given a finite family of MDPs Mi = (S, A, δi), i ∈ I, objective ϕ, and
probability thresholds αi , compute σ such that

∀i ∈ I,Pσ
Mi [ϕ] ≥ αi .
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Multiple Environments in Markov Decision Processes

Given a finite family of MDPs Mi = (S, A, δi), i ∈ I, objective ϕ, and
probability thresholds αi , compute σ such that

∀i ∈ I,Pσ
Mi [ϕ] ≥ αi .

Qualitative Case (αi = 1)
Almost-sure: PSPACE-complete for reachability, safety, and parity
Complexity poly. in |M|, exp. in |I|
Limit-Sure: PSPACE-complete ∀ϵ, ∃σ, ∀i ∈ I,Pσ

Mi
[ϕ] ≥ 1 − ϵ
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Multiple Environments in Markov Decision Processes

Given a finite family of MDPs Mi = (S, A, δi), i ∈ I, objective ϕ, and
probability thresholds αi , compute σ such that

∀i ∈ I,Pσ
Mi [ϕ] ≥ αi .

Qualitative Case (αi = 1)
Almost-sure: PSPACE-complete for reachability, safety, and parity
Complexity poly. in |M|, exp. in |I|
Limit-Sure: PSPACE-complete ∀ϵ, ∃σ, ∀i ∈ I,Pσ

Mi
[ϕ] ≥ 1 − ϵ

Quantitative Case for |I| = 2
The ϵ-gap problem is decidable:

Answer Yes if ∀i ∈ I,Pσ
Mi

[ϕ] ≥ αi .
Answer No if ∃i ∈ I,Pσ

Mi
[ϕ] < αi − ϵ.

Answer arbitrarily otherwise.
[Raskin, S. FSTTCS 2014]
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Perspectives

We want more control over distributions induced by synthesis
Simply optimizing expectation may not be sufficient

Target: Feasible Cases
for bounding expectation and variance
for the quantitative case for multi-environment MDPs

Target: Rich specifications
Can we mix guarantees on expectation, variance, percentiles
Worst-case guarantees
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Other Works

Other Topics and Students
Non-Zero Sum Games, Synthesis PhD: Suman Sadhukhan (2021)

Parameterized Verification PhD: Nicolas Waldburger (Ongoing)

Multi-Agent Path Finding PhD: Arthur Queffelec (2021)
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Other Works

Other Topics and Students
Non-Zero Sum Games, Synthesis PhD: Suman Sadhukhan (2021)

Parameterized Verification PhD: Nicolas Waldburger (Ongoing)

Multi-Agent Path Finding PhD: Arthur Queffelec (2021)

Some Projects
PI of ANR Ticktac (2018-2023)
Academic and industrial projects: other ANR and European projects,
Nokia Bell Labs, Mitsubishi Electric, NewLogUp (upcoming)
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Conclusions

Model checking and Synthesis with quantitative features:
real-time constraints

large discrete state spaces
robustness verification and robust synthesis

probabilities
expectation, variance, percentile, multiple environments
stochastic shortest path, mean payoff, discounted sum, parity
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