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Motivations 

Real World 
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Models 
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Underapproximation Overapproximation 

Motivations 

Real World 
A network of Turing Machines 

 

Highly undecidable 
 

Needs:  
Design,  validation, monitoring,… 

 

Models 
  Automated techniques 

  Decidable properties 

  Clear Semantics 
 

But: 
 

Close enough to real world ? 
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Motivations 

Client Server Log 

question 

store 

log 

An example MSC 
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Why scenarios / partial order models ? 
 

  Intuitive  
  Compact representation of  

concurrency  
 
Objectives:  tools  for engineers 
 

  Models for  asynchronous & 
distributed systems behaviors 

 
  Automated verification/analysis 

 
  Avoiding global states computation  

 



Motivations 
Client Server Log 

MSC : 3 events 

a b c 
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Why scenarios / partial order models ? 
 

  Intuitive  
  Compact representation of  

concurrency  
 
Objectives:  tools  for engineers 
 

  Models for  asynchronous & 
distributed systems behaviors 

 
  Automated verification/analysis 

 
  Avoiding global states computation  

 

a 

a 

b b 

a 

a 

b b 

c 
c 

c c 

Automaton : 12 transitions 
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Scenario Automata 

M=(E, {<p}pP , a, m, f ) 
 
Labelled partial order over a finite set of events E 
 

  P : set of processes 

  a  S : labeling  : a(e)=Client !Server(question), … 

  f : E  P : locality of events 
  <p : total ordering for each process pP  
  m : message pairing  
 

 must be a partial order 

 
 

 

Lin(M) = linearizations of 

Scenario automata : MSCs 
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Client Server Log 

question 

store 

log 

m
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Scenario Automata 

Concatenation 
Client Server 

question 

answer Client Server Log 

question 

store 

logged 

Client Server Log 

OK store 

logged 

answer 

OK 

MSC M1 

MSC M2 

MSC M1 ○ M2  

○ = 
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Scenario Automata 

High-level MSCs 

An example HMSC H 

p q 

m 

p q 

n p q 

u v 

H=(Q,,M,q0,QFi) 

 

A scenario automaton defined  
 over a finite set of MSCs M 

 

Path  r=q0 
M1 q1 

M2 … Mk qk 

 

 r○ = M1 ○ M2 ○ … Mk  

 

 

q0 

q1 

q2 


HFM

MLin


)(
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Semantics 
 

  PH = { r = q0 M1 q1 M2 … Mk    qk | qk  QFi} 
 

  FH = { r○ | r  PH } 
 

  LinH =  



Scenario Automata 

High-level MSCs 

An HMSC 

p q 

m 
p q 

n 

q0 

q1 
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!m 

?n 

!n 

!m !m 

?m ?m 

?m ?m ?m 

!n !n !n 

?m 

An equivalent transition system 

…with inifite state space 



Scenario Automata 

Let R be a regular subset of S* :  
 

  
 R  LinH1 ? 

 
 LinH1  R ? 

 

Undecidable problems 
Let H1, H2 be HMSCs 

 
 FH1  FH2 = ?  LinH1   LinH2 = ? 

 
 FH1  FH2 

?  LinH1  LinH2 ? 

 
 FH1 = FH2 

?  LinH1 = LinH2 ? 

 

   
LinH1  Regular ? 

 
 

Not surprising: HMSCs closely related to  Mazurkiewicz traces 
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[Muscholl et al 99] 

[Henriksen et al 05] 

[Darondeau et al 00] 

[Alur et al 99] 



Scenario Automata 

Regular HMSCs  

An HMSC H is regular iff for every cycle r of H  
(f(Er), f(mr))  is a strongly connected graph 

 

every message sent is acknowledged after a finite 

nb of iterations of r. 
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Theorem: 
 H regular    LinH  regular subset of S* 

 

Consequences: 

 LinH1  LinH2 =, LinH1  LinH2 , LinH1 =LinH2  

 R  LinH1 , LinH1  R  decidable  

[Alur et al 99] [Muscholl et al 99] 

p q 

m p q 
n m’ 



Scenario Automata 

Globally cooperative HMSCs 
 [Genest et al 02][Morin02] 
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Theorem:  

 

Let  H1 be a HMSC,  

 H2 be a globally cooperative HMSC, then  

 

FH1  FH2 = ?   

FH1  FH2 ?    are decidable 

 

There is a bound b N s.t all M FH can be run with 

communication buffers of size  b.  (Existential bound) 

 

[Genest et al 02] 

An HMSC H is globally cooperative iff  

for every cycle r of H (f(Er), f(mr))  is a  

connected graph 

 

Processes do not behave independently in a loop 

p q 

a 

p q 

n b 
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Extensions: Compositional MSCS 

A drawback of HMSCs 
 

MSC languages generated by  

 HMSCs,  

 GC-HMSCs,  

 regular HMSCs … 

 

…are all finitely generated 

p q 

m 

u v 

m n 

o 

m 

n 
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p q 

m n 

m 

m 

m 

n 

n 

n 



Extensions: Compositional MSCS 

Compositional HMSCs 

An example C-HMSC 

p q 

m 

p q 

H=(Q,,M,q0,QFi) 

 

A partial order automaton defined  
 over a set of cMSCs M  
 

 

 

q0 

q1 

q2 

n 

p q 

m n 

n 

n 


HFM

MLin


)(
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[Gunter et al’01, GenestPhD04] 

Dangling Messages emissions/receptions 

Glued at composition time 

Semantics: 
 
 PH ={r=q0 M1 q1 M2 … Mk    qk | qk  QFi} 

 
 FH = {r○ | r  PH and r○  is an MSC } 

 
 LinH =  



Extensions: Compositional MSCS 

Compositional HMSCs 

p q 

m 

p q 

q0 

q1 

q2 

n 

p q 

m n 

n 

n 
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p q 

m n 

m 

m 

m 

n 

n 

n 

Generates  

 

Clearly not finitely generated ! 



Extensions: Compositional MSCS 

Undecidable problems 

C-HMSCs embed : 

 HMSCs 

 Communicating finite state machines (CFSM) 

… and all their undecidable problems 

 
The simple message problem: 

 is there an MSC  M  FH that contains a message of type m ?  

 

The emptiness problem: 

 is FH empty ? 

19 

are undecidable 



Extensions: Compositional MSCS 

Subclasses of cHMSCs 

Some paths of a cHMSC may not generate an MSC 

 

 A cHMSC H is safe is for every path r of PH , r○ is 
an MSC. 

(safe CHMSCs do not embed the whole expressive power 
of CFSMs) 

 Globally cooperative CHMSCs = safe + GC 

 Regular CHMSCs = safe + regular 
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Extensions: Causal HMSCS 

Causal MSCs 

Client Server 

login 

question 

Labelled partial order over a set of events  

M= (E , {     }pP , a, m, f ) 

 
  P, a,f  as usual,  

 

  m  : message pairing as usual 
 

      : partial order 
 

 (  m )*  is a partial order 

 
Lin(M) = linearizations of 
  

|∏
 

p 

|∏
 

p 
Pp

 m 
|∏

 

p   

|∏
 

p 
Pp
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[GGHTY07, GGHTY09] 



Extensions: Causal HMSCS 

Visual extensions 

Client Server 

login 

question 

Vis(M) = MSCs that are compatible with M 

Client Server 

login 

question 

Client Server 

login 

question 

CaMSC M 
MSC M’ MSC M’’ 
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Extensions: Causal HMSCS 

Concatenation 

Independence relation Ip  Sp x Sp for each pP  
(Symmetric and irreflexive) 

p q 

n 

m oI 

p q 

n’ 

m’ 

p q 

n 

m 

Ip={ (p!q(n),p!q(m’)) , (p!q(m’), p!q(n)) } 
Iq =   

Note: M1 or M2 need not respect { Ip }pP 

  

CaMSC M1 CaMSC M2 

CaMSC M1 ○
I M2 

m’ 

n’ 
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Extensions: Causal HMSCS 

Causal HMSCs 

p q 

m 

p q 

n 

p q 

u v 

H=(Q,,M,q0,QFi)  

 +  { Ip }pP 

 

A partial order automaton defined  
 over a finite set of Causal MSCs M 

 

Path  r=q0 
M1 q1 

M2 … Mk qk 

 

 r○I = M1 ○
I M2 ○

I … Mk  

 

q0 

q1 

q2 
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Semantics: 
 

  PH ={r=q0 M1 q1 M2 …    Mk  qk | qk  QFi} 
 

  FH = { r○I | r  PH} 
 

   
       
 


HFM

H MLinLin


 )(
HFM

H MVisVis


 )(



Extensions: Causal HMSCS 

Example 

Client Server 

Question 

Answer 

Iclient= {(Client!Server(Question), Client?Server(Answer) )}  

IServer =  

Client Server 

Question 

Answer 

 VisH 

A CaHMSC H 

q0 

q1 
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Extensions: Causal HMSCS 

Results on Causal HMSCs 

  Regular CaHMSCs 
  Automaton AH that recognizes  LinH (exponential size) 

  , , =,  regular Model checking decidable 

 

  Globally cooperative CaHMSCs 
  H CaHMSC and H’ with same trace alphabet 

Build CaHMSCs over atoms of H and H’  

FH  FH’ =  ?  PSPACE- complete 

FH  FH’    EXPSPACE- complete 

 

  For CaHMSCs H and H’ with distinct independence relation 
FH  FH’ =  ?   undecidable 
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Extensions: Causal HMSCS 

Comparison of MSC languages 

R-HMSC 

HMSCs 

GC-HMSCs 

R-CaHMSCs R-CHMSCs 

GC-CaHMSCs 

CaHMSCs 

GC-CHMSCs 

Safe CHMSCs 

CHMSCs 

27 

: Inclusion of MSC Languages  



Extensions: Dynamic MSC Grammars 
28 

Dynamic MSC grammars 

A context free grammar with MSCs as terminals 

Axiom ::= M0. A 

A ::= M1.B | M2 

B::= M1.B.M2 |M2 

 

1 2 

spawn 

P1, P2 

P2 

1 2 

m 

P1 
P2 1 2 

spawn 

P1 P2 

3 

P2 

m 

M0 

 

M2 

 

M1 

 

[BH10a] 

[Leucker 02] Variant of  Dynamic MSCs 



Extensions: Dynamic MSC Grammars 
29 

Dynamic MSC grammars 

Generate MSC languages :  
– With dynamic creation,  

– Over arbitrary sets of processes 

1 2 

spawn 

3 

m 

4 5 6 

m 

spawn 

spawn 

spawn 

spawn m 

m 

m 
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Operators : projection 

Projection 
Project MSC languages on a subset of events 

A B C 

n 

m 

o 

a 

d 
c 

b 

A B 

a 

d 
c 

b 

X={a,b,c,d} PX(M) M 
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[GHM03] 



Operators : projection 

Projection 
Projection for MSC languages: S={a,b,c} 

 

q0 

q1 

q2 

A C 

m 
a 

B C 
o 

d 

A B 

n 

c 

b 

A B 

a 

d 

c 

b 

c 

b 

c 

b 
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 S )(, eEeXM MM a

 HXH FMMFH
M

 SS )()()(

  HMSC projections and safe CHMSCs have 
the same expressive power 

 P(FH)  FH’ =   decidable (if H’ G.C.) 

  One can decide if a projection is 
equivalent to an HMSC 



Operators : parallel composition 
33 

Parallel composition 

A B 

m 
a 

c 
b 

A B 

c 

b 
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A B 

m 
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n 
|| = 

Problem : 

[DGH08] 
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21


HH

F undecidable ! 
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Parallel Composition 

Enforce common events on a single process 

 Emptiness for HMSC products decidable (PSPACE) 

    existentially bounded decidable 

 If H1,H2 G. C. and          is .bounded, then one 
can compute an  bounded cHMSC representing  
  (but of exponential size)  

 

H3 

.bnd ?  || 

yes H1 

H2 

.bounded ?  || yes 

NO 
NO 

2H1H2 

21 HH

21 HH

21 HH



Operators : parallel composition 
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Fibered product 

q0 

q1 

q2 

A B 
m 

B C 
o 

d 

A B 

n 

c 

b 

Synchronize : MSCs and events in pairs of MSCs 

q’0 

q’1 

q’2 

A B 

m a 

A 

a 

C B 

n 

b 

 q00 

q11 

A B 

m a 

m 

q22 

B C 
o 

d 

A 

a 

C B 
n 

b 

A 

n 

c 

= 

a 

[CHK04,HKJ06] 

but Very syntactic… more controllable than || : FH1H2 =  ?  decidable 



Operators : projection 

Conclusion 

 HMSC projections can be of practical use 
For verification purpose, to emphasize some causalities,… 

 

 No satisfactory solution for parallel composition: 
undecidable emptiness, effective product for pairs 
of GC HMSCs but not beyond, …. 

 Interesting subclasses of C/HMSCs are not 
preserved by P, ||,… 
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Verification & Partial Order Logic 
38 

Verification 

Regular Model-checking (LTL, CTL, etc.)  applies only  

to regular [H/C/CA]-HMSCs 

Undecidable otherwise 

HMSC-based verification: 
Let Hspec, Hbad be two C/Ca/HMSCs. If Hbad is globally cooperative, then 
 use Hspec  Hbad =? (Safety) 
 

Let Hspec, Hgood be two C/Ca/HMSCs. If Hgood is globally cooperative, then 
 Hspec   Hgood ? (Refinement) 

Problem : Hspec, Hbad , Hgood need to be defined at the same abstraction level 

H Glob.Coop. P(H) Glob.Coop. 



Verification & Partial Order Logic 
39 

Verification 

MSO for MSCs 

MSCs are non- interleaved models :  
 
 reason on non-interleaved representation of behaviors 
 with LOCAL logics (MSO,PDL,TLC-,…) 

( ) ( )( ) ( ) PpXxyxnextqypxmsgxlaba  ,,,,)(::

 ,,,,21 PpXx 

Server Log 

store 

log 

a 

[Madhusudan01] 



Verification & Partial Order Logic 
40 

Verification 

Example :  MSCs are FIFO.  

 

 

Main principle : build a (tree) automaton that recognizes models for f, intersect 
with the original model.  Automata guess an interpretation for variables, 
synthesizes facts to recognize sequences of MSCs (parse trees) satisfying f. 
 

MSO for MSCs is decidable for 
 HMSCS 
 Safe CHMSCs 
 causal HMSCs 
 Dynamic HMSCs, Dynamic MSC grammars 

)),)(,(()),)(,((,,,',,',(: qypxmsgqypxmsgqpyyxx 

))',()',( yynextxxnext 

[Madhusudan01] 

[MadhusudanMeenakshi01] 

[Leucker02] [BHH10b] 



Verification & Partial Order Logic 
41 

Verification 

MSO decidability is not so surprising:  

 all orders produced by these models can be seen as 

 productions of a context free graph grammar.  

 

 

 

It is undecidable wheter, given an MSO formula f, there exists an MSC satisfying f.  

 

Specifying with logical statements only is not possible. [YHG08] 
 

Can we go further? : specify with logics and drop the automata/grammars/… 

[Gastin03] 
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Application:Diagnosis 43 

Applications : Diagnosis 

Objective :  
 provide information to supervisors of a distributed system 
 starting from:  

  a partial observation (log) : O  
  a model of the system : M 

 

Questions :  
  Is there a run of M that embeds O ?  (existence) 
  list all runs that embed O ?  (Diagnosis) 
  is there a faulty run that embeds O ?  (fault detect°) 
 

Solutions for  : Automata, Petri Nets,  … 
 Build a product or an unfolding : M x O  

[GGH06,GGHM13] 



A B C 

O : Observation 

Diagnosis 

Probes 

Diagnoser 
a 

c 

b 

A 

B 

C 

D 

m 

44 

a 

b 

c!b(m) 

c 

Diagnosis :  H’= H x O 
 
Every M in FH’ embeds O  
 



Application:Diagnosis 45 

Embedding 

O : Observation 

A B 

a 

c 

b 

m 

C 

Explanation for O as a MSC 

A B 

a 

c 

b 
n 

C D 

b 

m 

m 
a 



Application:Diagnosis 46 

Results 

 Theorem: 
H’ = H x O is an HMSC of size at most in    s.t.  

  every M in FH that embeds O is also in FH’  

  every M in FH’ embeds O 

Note :  undecidable in general for CHMSCs  
 
 Take G a cHMSC: is there a run that embeds O  O =  
 = The simple message problem 

A B 

m 

  Diagnosis/existence are  decidable for HMSCs 
  Nice associative properties : (HxO1)  (HxO2)= H x (O1 || O2) 
  

( )obsPP
OHO


.



Application:Diagnosis 47 

Diagnosis as an MSO property 

A B 

a 

c 

b 

m 

C ),,,(),,,(,,,,: tzyxcaustzyxlabtzyxO 

)()()()(:),,,( ! tlabzlabylabxlabtzyxlab mcba 

zxyxtzyxcaus :),,,(

txzxxyxxxxtzyxclosed  '''',':),,,( 

)'(xlab obsS

),,,( tzyxclosed

Diagnosis / existence are decidable for CaHMSCs, 
dynamic HMSCs,… 

M embeds O  M          fO  
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Conclusion 

 

 

 Several extensions : Causal HMSCs, dynamic    
MSC Grammars, Extended coregions, ….  

 

 

49 

 MSO decidability / diagnosis easily achieved 
 

 Scenarios well adapted to Diagnosis.   

 Decidable classes remain incomplete models.  
 Composition w/o automaton/grammar structure 
 highly undecidable 
 Modularity (||)  leads to undecidability too  

Over the last 10 years 



Conclusion 

Repeat 

 [C/Ca/Dyn/…] HMSCs are incomplete 

 Propose an extension !  

 Pb X is undecidable for the extension 

 Find a subclass to solve the problem 

Until ???  
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The Scenario Algorithm 

 the model is complete enough to be a decent modeling tool 
 your models are so ugly that nobody wants to use them 
 no one wants to read a paper on MSCs anymore 
 you get bored 
 …. 

??? = 
(provocation) 



Conclusion 

Future plans 

Scenario specific issues :  
 

  Generalize decidability results for scenarios seen as graph 
grammars 
 

  Implementation: for HMSCs, Dynamic MSC grammars 

  Causal HMSCs: finite generation, equivalence with HMSCs 

  Diagnosis: Online diagnosis, alternatives to MSO  

  Security:  covert flows detection with probabilities, 
information theory, etc.  

51 



Conclusion 

Future plans 
 Time & Robustness :  

 Check if timed requirements make sense w.r.t. 
 implementation assumptions (architecture,…) 

 Abstraction :  

 obtain decidable models using s abstractions of real systems  

From Telecoms to services: 
many assumptions on scenarios due to IP-like  communications 
(FIFO, etc) 

In Services : no FIFO, open and dynamic world, sessions,data… 

52 

new models, new problems, new solutions 
Closer to real world situations 



Conclusion 
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Conclusion 
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Questions ? 

Ravitaillement en salle Sein ! 



Scenario Automata 

Communication graph 

Client 

An useful abstraction of the  

contents of MSCs 

Server 

Log 

An example MSC M 

Communication graph CG(M) 

Client Server Log 

question 

store 
logged 

answer 

OK 

MSC M  
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Scenario Automata 

Regular HMSCs  

Definition: H is regular iff 

  

  r = q1 
M1 q2 

M2 … Mk q1 cycle of H,  
 

 CG(r○) is a strongly connected graph 
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Theorem: 
 H regular    LinH  regular subset of S* 

 

Consequences: 

 LinH1  LinH2 =, LinH1  LinH2 , LinH1 =LinH2  

 R  LinH1 , LinH1  R  decidable  

[Alur et al 99] [Muscholl et al 99] 



Scenario Automata 

Globally cooperative HMSCs 
 

Definition: H is Globally Cooperative iff 

  

   r,  cycle of H, CG(r○) is a connected graph 
 

[Genest et al 02][Morin02] 
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Theorem:  

 

Let  H1 be a HMSC,  

 H2 be a globally cooperative HMSC, then  

 

FH1  FH2 = ? ,  

FH1  FH2 ?   Decidable 

 

[Genest et al 02] 



Product : states 

qi 

A B C 

D 

O : Observation 

A B 

a 

c 

b 

m 

C 
a 

a 

b 

States recall:  
  A node of H 
  for every process p, the events of O  
 that have been « seen » by p 
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Product : transitions 

qi 

A B C 

D 
A B 

a 

c 

b 

m 

C 

a 
a 

b 

 

 

qj 

A B C 

D a 

b   

A B 

c 

b 
n 

M 

a 

b 
c 

qi 

M 

qj 
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Product : transitions 

qi 

A B C 

D 
A B 

a 

c 

b 

m 

C 

a 
a 

b 

 

 

A 

a 

M 

qi 

M 

qj 
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Product : final nodes 

qi 

A B C 

D 

qj 

A B C 

D 

M1 

M2 

EA O EC ED 

O EC’ ED’ 
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Applications : intrusion detection 

Idea : use HMSCs to represent « normal behaviors » of a system 
 
 Normal (O,H1,…Hn) 

 

  for (i=0;i<n;i++){ 

 

   if (                   ) { 

 

    return true // raise an alarm 

   } 

  } 

 Return false 

 
If no explanation exists for an observation O,  raise an alarm. 

f   ))(( OHL
ii

62 


