
Scenario Automata

Theory and Applications

Jury: Albert Benveniste

 Roland Groz

 Paul Gastin

 Claude Jard

 Martin Leucker

 Madhavan Mukund

 Sophie Pinchinat

 P.S. Thiagarajan

Loïc Hélouët

May 17th 2013

Motivations

Real World

2

Models

a

b

a

Underapproximation Overapproximation

Motivations

Real World
A network of Turing Machines

Highly undecidable

Needs:
Design, validation, monitoring,…

Models
 Automated techniques

 Decidable properties

 Clear Semantics

But:

Close enough to real world ?

3

Motivations

Client Server Log

question

store

log

An example MSC

4

Why scenarios / partial order models ?

 Intuitive
 Compact representation of

concurrency

Objectives: tools for engineers

 Models for asynchronous &
distributed systems behaviors

 Automated verification/analysis

 Avoiding global states computation

Motivations
Client Server Log

MSC : 3 events

a b c

5

Why scenarios / partial order models ?

 Intuitive
 Compact representation of

concurrency

Objectives: tools for engineers

 Models for asynchronous &
distributed systems behaviors

 Automated verification/analysis

 Avoiding global states computation

a

a

b b

a

a

b b

c
c

c c

Automaton : 12 transitions

Outline

 Scenario automata

 Extensions

 Operators

 Verification & partial order logics

 Application

 Conclusion

6

Outline

 Scenario automata

 Extensions

 Operators

 Verification & partial order logics

 Application

 Conclusion

7

Scenario Automata

M=(E, {<p}pP , a, m, f)

Labelled partial order over a finite set of events E

 P : set of processes

 a S : labeling : a(e)=Client !Server(question), …

 f : E P : locality of events
 <p : total ordering for each process pP
 m : message pairing

 must be a partial order

Lin(M) = linearizations of

Scenario automata : MSCs

m
Pp

p

*

Client Server Log

question

store

log

m

Pp

p

store

8

Scenario Automata

Concatenation
Client Server

question

answer Client Server Log

question

store

logged

Client Server Log

OK store

logged

answer

OK

MSC M1

MSC M2

MSC M1 ○ M2

○ =

9

Scenario Automata

High-level MSCs

An example HMSC H

p q

m

p q

n p q

u v

H=(Q,,M,q0,QFi)

A scenario automaton defined
 over a finite set of MSCs M

Path r=q0
M1 q1

M2 … Mk qk

 r○ = M1 ○ M2 ○ … Mk

q0

q1

q2

HFM

MLin

)(

10

Semantics

 PH = { r = q0 M1 q1 M2 … Mk qk | qk QFi}

 FH = { r○ | r PH }

 LinH =

Scenario Automata

High-level MSCs

An HMSC

p q

m
p q

n

q0

q1

11

!m

?n

!n

!m !m

?m ?m

?m ?m ?m

!n !n !n

?m

An equivalent transition system

…with inifite state space

Scenario Automata

Let R be a regular subset of S* :

 R LinH1 ?

 LinH1 R ?

Undecidable problems
Let H1, H2 be HMSCs

 FH1 FH2 = ? LinH1 LinH2 = ?

 FH1 FH2

? LinH1 LinH2 ?

 FH1 = FH2

? LinH1 = LinH2 ?

LinH1 Regular ?

Not surprising: HMSCs closely related to Mazurkiewicz traces

12

[Muscholl et al 99]

[Henriksen et al 05]

[Darondeau et al 00]

[Alur et al 99]

Scenario Automata

Regular HMSCs

An HMSC H is regular iff for every cycle r of H
(f(Er), f(mr)) is a strongly connected graph

every message sent is acknowledged after a finite

nb of iterations of r.

13

Theorem:
 H regular LinH regular subset of S*

Consequences:

 LinH1 LinH2 =, LinH1 LinH2 , LinH1 =LinH2

 R LinH1 , LinH1 R decidable

[Alur et al 99] [Muscholl et al 99]

p q

m p q
n m’

Scenario Automata

Globally cooperative HMSCs
 [Genest et al 02][Morin02]

14

Theorem:

Let H1 be a HMSC,

 H2 be a globally cooperative HMSC, then

FH1 FH2 = ?

FH1 FH2 ? are decidable

There is a bound b N s.t all M FH can be run with

communication buffers of size b. (Existential bound)

[Genest et al 02]

An HMSC H is globally cooperative iff

for every cycle r of H (f(Er), f(mr)) is a

connected graph

Processes do not behave independently in a loop

p q

a

p q

n b

Outline

 Scenario automata

 Extensions
 Compositional MSCs

 Causal HMSCs

 Dynamic MSC Grammars

 Operators

 Verification & partial order logics

 Application

 Conclusion

15

Extensions: Compositional MSCS

A drawback of HMSCs

MSC languages generated by

 HMSCs,

 GC-HMSCs,

 regular HMSCs …

…are all finitely generated

p q

m

u v

m n

o

m

n

16

p q

m n

m

m

m

n

n

n

Extensions: Compositional MSCS

Compositional HMSCs

An example C-HMSC

p q

m

p q

H=(Q,,M,q0,QFi)

A partial order automaton defined
 over a set of cMSCs M

q0

q1

q2

n

p q

m n

n

n

HFM

MLin

)(

17

[Gunter et al’01, GenestPhD04]

Dangling Messages emissions/receptions

Glued at composition time

Semantics:

 PH ={r=q0 M1 q1 M2 … Mk qk | qk QFi}

 FH = {r○ | r PH and r○ is an MSC }

 LinH =

Extensions: Compositional MSCS

Compositional HMSCs

p q

m

p q

q0

q1

q2

n

p q

m n

n

n

18

p q

m n

m

m

m

n

n

n

Generates

Clearly not finitely generated !

Extensions: Compositional MSCS

Undecidable problems

C-HMSCs embed :

 HMSCs

 Communicating finite state machines (CFSM)

… and all their undecidable problems

The simple message problem:

 is there an MSC M FH that contains a message of type m ?

The emptiness problem:

 is FH empty ?

19

are undecidable

Extensions: Compositional MSCS

Subclasses of cHMSCs

Some paths of a cHMSC may not generate an MSC

 A cHMSC H is safe is for every path r of PH , r○ is
an MSC.

(safe CHMSCs do not embed the whole expressive power
of CFSMs)

 Globally cooperative CHMSCs = safe + GC

 Regular CHMSCs = safe + regular

20

Extensions: Causal HMSCS

Causal MSCs

Client Server

login

question

Labelled partial order over a set of events

M= (E , { }pP , a, m, f)

 P, a,f as usual,

 m : message pairing as usual

 : partial order

 (m)* is a partial order

Lin(M) = linearizations of

|∏

p

|∏

p
Pp

 m
|∏

p

|∏

p
Pp

21

[GGHTY07, GGHTY09]

Extensions: Causal HMSCS

Visual extensions

Client Server

login

question

Vis(M) = MSCs that are compatible with M

Client Server

login

question

Client Server

login

question

CaMSC M
MSC M’ MSC M’’

22

Extensions: Causal HMSCS

Concatenation

Independence relation Ip Sp x Sp for each pP
(Symmetric and irreflexive)

p q

n

m oI

p q

n’

m’

p q

n

m

Ip={ (p!q(n),p!q(m’)) , (p!q(m’), p!q(n)) }
Iq =

Note: M1 or M2 need not respect { Ip }pP

CaMSC M1 CaMSC M2

CaMSC M1 ○
I M2

m’

n’

23

Extensions: Causal HMSCS

Causal HMSCs

p q

m

p q

n

p q

u v

H=(Q,,M,q0,QFi)

 + { Ip }pP

A partial order automaton defined
 over a finite set of Causal MSCs M

Path r=q0
M1 q1

M2 … Mk qk

 r○I = M1 ○
I M2 ○

I … Mk

q0

q1

q2

24

Semantics:

 PH ={r=q0 M1 q1 M2 … Mk qk | qk QFi}

 FH = { r○I | r PH}

HFM

H MLinLin

)(
HFM

H MVisVis

)(

Extensions: Causal HMSCS

Example

Client Server

Question

Answer

Iclient= {(Client!Server(Question), Client?Server(Answer))}

IServer =

Client Server

Question

Answer

 VisH

A CaHMSC H

q0

q1

25

Extensions: Causal HMSCS

Results on Causal HMSCs

 Regular CaHMSCs
 Automaton AH that recognizes LinH (exponential size)

 , , =, regular Model checking decidable

 Globally cooperative CaHMSCs
 H CaHMSC and H’ with same trace alphabet

Build CaHMSCs over atoms of H and H’

FH FH’ = ? PSPACE- complete

FH FH’ EXPSPACE- complete

 For CaHMSCs H and H’ with distinct independence relation
FH FH’ = ? undecidable

26

Extensions: Causal HMSCS

Comparison of MSC languages

R-HMSC

HMSCs

GC-HMSCs

R-CaHMSCs R-CHMSCs

GC-CaHMSCs

CaHMSCs

GC-CHMSCs

Safe CHMSCs

CHMSCs

27

: Inclusion of MSC Languages

Extensions: Dynamic MSC Grammars
28

Dynamic MSC grammars

A context free grammar with MSCs as terminals

Axiom ::= M0. A

A ::= M1.B | M2

B::= M1.B.M2 |M2

1 2

spawn

P1, P2

P2

1 2

m

P1
P2 1 2

spawn

P1 P2

3

P2

m

M0

M2

M1

[BH10a]

[Leucker 02] Variant of Dynamic MSCs

Extensions: Dynamic MSC Grammars
29

Dynamic MSC grammars

Generate MSC languages :
– With dynamic creation,

– Over arbitrary sets of processes

1 2

spawn

3

m

4 5 6

m

spawn

spawn

spawn

spawn m

m

m

Outline

 Scenario automata

 Extensions

 Operators

 Verification & partial order logics

 Application

 Conclusion

30

Operators : projection

Projection
Project MSC languages on a subset of events

A B C

n

m

o

a

d
c

b

A B

a

d
c

b

X={a,b,c,d} PX(M) M

31

[GHM03]

Operators : projection

Projection
Projection for MSC languages: S={a,b,c}

q0

q1

q2

A C

m
a

B C
o

d

A B

n

c

b

A B

a

d

c

b

c

b

c

b

32

 S)(, eEeXM MM a

 HXH FMMFH
M

 SS)()()(

 HMSC projections and safe CHMSCs have
the same expressive power

 P(FH) FH’ = decidable (if H’ G.C.)

 One can decide if a projection is
equivalent to an HMSC

Operators : parallel composition
33

Parallel composition

A B

m
a

c
b

A B

c

b

n

A B

m
a

c

b

n
|| =

Problem :

[DGH08]

)(
21

MlinM
MM

)(),(21 MlinMlinshuffle of

disagree on order of common evts
21, MMif

21

22

11
21

MMF

H

H

FM

FMHH

?
21

HH

F undecidable !

34

Parallel Composition

Enforce common events on a single process

 Emptiness for HMSC products decidable (PSPACE)

 existentially bounded decidable

 If H1,H2 G. C. and is .bounded, then one
can compute an bounded cHMSC representing
 (but of exponential size)

H3

.bnd ? ||

yes H1

H2

.bounded ? || yes

NO
NO

2H1H2

21 HH

21 HH

21 HH

Operators : parallel composition
35

Fibered product

q0

q1

q2

A B
m

B C
o

d

A B

n

c

b

Synchronize : MSCs and events in pairs of MSCs

q’0

q’1

q’2

A B

m a

A

a

C B

n

b

 q00

q11

A B

m a

m

q22

B C
o

d

A

a

C B
n

b

A

n

c

=

a

[CHK04,HKJ06]

but Very syntactic… more controllable than || : FH1H2 = ? decidable

Operators : projection

Conclusion

 HMSC projections can be of practical use
For verification purpose, to emphasize some causalities,…

 No satisfactory solution for parallel composition:
undecidable emptiness, effective product for pairs
of GC HMSCs but not beyond, ….

 Interesting subclasses of C/HMSCs are not
preserved by P, ||,…

36

Outline

 Scenario automata

 Extensions

 Operators

 Verification & partial order logics

 Application

 Conclusion

37

Verification & Partial Order Logic
38

Verification

Regular Model-checking (LTL, CTL, etc.) applies only

to regular [H/C/CA]-HMSCs

Undecidable otherwise

HMSC-based verification:
Let Hspec, Hbad be two C/Ca/HMSCs. If Hbad is globally cooperative, then
 use Hspec Hbad =? (Safety)

Let Hspec, Hgood be two C/Ca/HMSCs. If Hgood is globally cooperative, then
 Hspec Hgood ? (Refinement)

Problem : Hspec, Hbad , Hgood need to be defined at the same abstraction level

H Glob.Coop. P(H) Glob.Coop.

Verification & Partial Order Logic
39

Verification

MSO for MSCs

MSCs are non- interleaved models :

 reason on non-interleaved representation of behaviors
 with LOCAL logics (MSO,PDL,TLC-,…)

() ()() () PpXxyxnextqypxmsgxlaba ,,,,)(::

 ,,,,21 PpXx

Server Log

store

log

a

[Madhusudan01]

Verification & Partial Order Logic
40

Verification

Example : MSCs are FIFO.

Main principle : build a (tree) automaton that recognizes models for f, intersect
with the original model. Automata guess an interpretation for variables,
synthesizes facts to recognize sequences of MSCs (parse trees) satisfying f.

MSO for MSCs is decidable for
 HMSCS
 Safe CHMSCs
 causal HMSCs
 Dynamic HMSCs, Dynamic MSC grammars

)),)(,(()),)(,((,,,',,',(: qypxmsgqypxmsgqpyyxx

))',()',(yynextxxnext

[Madhusudan01]

[MadhusudanMeenakshi01]

[Leucker02] [BHH10b]

Verification & Partial Order Logic
41

Verification

MSO decidability is not so surprising:

 all orders produced by these models can be seen as

 productions of a context free graph grammar.

It is undecidable wheter, given an MSO formula f, there exists an MSC satisfying f.

Specifying with logical statements only is not possible. [YHG08]

Can we go further? : specify with logics and drop the automata/grammars/…

[Gastin03]

Outline

 Scenario automata

 Extensions

 Operators

 Verification & partial order logics

 Application : Diagnosis

 Conclusion

42

Application:Diagnosis 43

Applications : Diagnosis

Objective :
 provide information to supervisors of a distributed system
 starting from:

 a partial observation (log) : O
 a model of the system : M

Questions :
 Is there a run of M that embeds O ? (existence)
 list all runs that embed O ? (Diagnosis)
 is there a faulty run that embeds O ? (fault detect°)

Solutions for : Automata, Petri Nets, …
 Build a product or an unfolding : M x O

[GGH06,GGHM13]

A B C

O : Observation

Diagnosis

Probes

Diagnoser
a

c

b

A

B

C

D

m

44

a

b

c!b(m)

c

Diagnosis : H’= H x O

Every M in FH’ embeds O

Application:Diagnosis 45

Embedding

O : Observation

A B

a

c

b

m

C

Explanation for O as a MSC

A B

a

c

b
n

C D

b

m

m
a

Application:Diagnosis 46

Results

 Theorem:
H’ = H x O is an HMSC of size at most in s.t.

 every M in FH that embeds O is also in FH’

 every M in FH’ embeds O

Note : undecidable in general for CHMSCs

 Take G a cHMSC: is there a run that embeds O O =
 = The simple message problem

A B

m

 Diagnosis/existence are decidable for HMSCs
 Nice associative properties : (HxO1) (HxO2)= H x (O1 || O2)

()obsPP
OHO

.

Application:Diagnosis 47

Diagnosis as an MSO property

A B

a

c

b

m

C),,,(),,,(,,,,: tzyxcaustzyxlabtzyxO

)()()()(:),,,(! tlabzlabylabxlabtzyxlab mcba

zxyxtzyxcaus :),,,(

txzxxyxxxxtzyxclosed '''',':),,,(

)'(xlab obsS

),,,(tzyxclosed

Diagnosis / existence are decidable for CaHMSCs,
dynamic HMSCs,…

M embeds O M fO

Outline

 Scenario automata

 Extensions

 Operators

 Verification & partial order logics

 Application

 Conclusion

48

Conclusion

 Several extensions : Causal HMSCs, dynamic
MSC Grammars, Extended coregions, ….

49

 MSO decidability / diagnosis easily achieved

 Scenarios well adapted to Diagnosis.

 Decidable classes remain incomplete models.
 Composition w/o automaton/grammar structure
 highly undecidable
 Modularity (||) leads to undecidability too

Over the last 10 years

Conclusion

Repeat

 [C/Ca/Dyn/…] HMSCs are incomplete

 Propose an extension !

 Pb X is undecidable for the extension

 Find a subclass to solve the problem

Until ???

50

The Scenario Algorithm

 the model is complete enough to be a decent modeling tool
 your models are so ugly that nobody wants to use them
 no one wants to read a paper on MSCs anymore
 you get bored
 ….

??? =
(provocation)

Conclusion

Future plans

Scenario specific issues :

 Generalize decidability results for scenarios seen as graph
grammars

 Implementation: for HMSCs, Dynamic MSC grammars

 Causal HMSCs: finite generation, equivalence with HMSCs

 Diagnosis: Online diagnosis, alternatives to MSO

 Security: covert flows detection with probabilities,
information theory, etc.

51

Conclusion

Future plans
 Time & Robustness :

 Check if timed requirements make sense w.r.t.
 implementation assumptions (architecture,…)

 Abstraction :

 obtain decidable models using s abstractions of real systems

From Telecoms to services:
many assumptions on scenarios due to IP-like communications
(FIFO, etc)

In Services : no FIFO, open and dynamic world, sessions,data…

52

new models, new problems, new solutions
Closer to real world situations

Conclusion

Acknowledgements
 The Distribcom/Vertecs/S4 (now SUMO) colleagues

 Students and Postdocs
A. Degorre

 T. Gazagnaire, J.Klein, T.Ziadi, R. Abdallah,…

 S.Yang, S.Akshay, B. Masson

 All members of the CASDS, DST, and now DISTOL
associated teams, INRIA for funding them

 courir@inria.fr, courir@irisa.fr

 And of course….Philippe

53

Conclusion
54

Questions ?

Ravitaillement en salle Sein !

Scenario Automata

Communication graph

Client

An useful abstraction of the

contents of MSCs

Server

Log

An example MSC M

Communication graph CG(M)

Client Server Log

question

store
logged

answer

OK

MSC M

55

Scenario Automata

Regular HMSCs

Definition: H is regular iff

 r = q1
M1 q2

M2 … Mk q1 cycle of H,

 CG(r○) is a strongly connected graph

56

Theorem:
 H regular LinH regular subset of S*

Consequences:

 LinH1 LinH2 =, LinH1 LinH2 , LinH1 =LinH2

 R LinH1 , LinH1 R decidable

[Alur et al 99] [Muscholl et al 99]

Scenario Automata

Globally cooperative HMSCs

Definition: H is Globally Cooperative iff

 r, cycle of H, CG(r○) is a connected graph

[Genest et al 02][Morin02]

57

Theorem:

Let H1 be a HMSC,

 H2 be a globally cooperative HMSC, then

FH1 FH2 = ? ,

FH1 FH2 ? Decidable

[Genest et al 02]

Product : states

qi

A B C

D

O : Observation

A B

a

c

b

m

C
a

a

b

States recall:
 A node of H
 for every process p, the events of O
 that have been « seen » by p

58

Product : transitions

qi

A B C

D
A B

a

c

b

m

C

a
a

b

qj

A B C

D a

b

A B

c

b
n

M

a

b
c

qi

M

qj
59

Product : transitions

qi

A B C

D
A B

a

c

b

m

C

a
a

b

A

a

M

qi

M

qj
60

Product : final nodes

qi

A B C

D

qj

A B C

D

M1

M2

EA O EC ED

O EC’ ED’

61

Applications : intrusion detection

Idea : use HMSCs to represent « normal behaviors » of a system

 Normal (O,H1,…Hn)

 for (i=0;i<n;i++){

 if () {

 return true // raise an alarm

 }

 }

 Return false

If no explanation exists for an observation O, raise an alarm.

f))((OHL
ii

62

