Scenario Automata

Theory and Applications

Jury:Albert BenvenisteRoland GrozPaul GastinClaude JardMartin LeuckerMadhavan MukundSophie PinchinatP.S. Thiagarajan

Loïc Hélouët

May 17th 2013

A network of Turing Machines

Highly undecidable

Needs:

Design, validation, monitoring,...

<u>Models</u>

- Automated techniques
- Decidable properties
- Clear Semantics

But:

Close enough to real world ?

- Why scenarios / partial order models ?
 - Intuitive
 - Compact representation of concurrency
- **Objectives:** tools for engineers
 - Models for asynchronous & distributed systems behaviors
 - Automated verification/analysis
 - Avoiding global states computation

- Why scenarios / partial order models ?
 - Intuitive
 - Compact representation of concurrency
- **Objectives:** tools for engineers
 - Models for asynchronous & distributed systems behaviors
 - Automated verification/analysis
 - Avoiding global states computation

MSC : 3 events

Automaton : 12 transitions

Outline

- Scenario automata
- Extensions
- Operators
- Verification & partial order logics
- Application
- Conclusion

Outline

Scenario automata
Extensions
Operators
Verification & partial order logics
Application
Conclusion

Scenario automata : MSCs

$$M = (E, \{<_p\}_{p \in P}, \alpha, \mu, \phi)$$

Labelled partial order over a finite set of events E

P: set of processes
 α → Σ: labeling : α(e)=Client !Server(question), ...
 φ: E → P: locality of events
 <_p: total ordering for each process p∈P

 μ : message pairing

must be a partial order

Lin(M) = linearizations of

 $\bigcup_{p < p} \cup \mu$

 ${\cal J}\,\mu$ $p \in I$

Scenario Automata

High-level MSCs

 $H=(Q,\rightarrow,M,q_0,Q_{Fi})$

A scenario automaton defined over a finite set of MSCs M

Path

$$\rho = q_0 \xrightarrow{M_1} q_1 \xrightarrow{M_2} \dots \xrightarrow{M_k} q_k$$
$$\rho^\circ = M_1 \circ M_2 \circ \dots M_k$$

<u>Semantics</u>

$$P_{H} = \{ \rho = q_{0} \xrightarrow{M_{1}} q_{1} \xrightarrow{M_{2}} \dots \xrightarrow{M_{k}} q_{k} \mid q_{k} \in Q_{Fi} \}$$

$$F_{H} = \{ \rho^{\circ} \mid \rho \in P_{H} \}$$

$$Lin_{H} = \bigcup_{M \in F_{H}} Lin(M)$$

Scenario Automata

High-level MSCs

Undecidable problems

Let H_1 , H_2 be HMSCs

$F_{H_1} \cap F_{H_2} = \emptyset$?	$Lin_{H_1} \cap Lin_{H_2} = \emptyset? $ [Muscholl et al 99]	
$F_{H_1} \subseteq F_{H_2}$?	$Lin_{H_1} \subseteq Lin_{H_2}$?	[Darondeau et al 00]
$F_{H_1} = F_{H_2}$?	$Lin_{H_1} = Lin_{H_2}$?	
	Lin _{H1} Regular ?	[Henriksen et al 05]

Let *R* be a regular subset of Σ^* :

$$R \subseteq Lin_{H_1}$$
?
[Alur et al 99]
Lin_{H1} $\subseteq R$?

Not surprising: HMSCs closely related to Mazurkiewicz traces

Regular HMSCs [Alur et al 99] [Muscholl et al 99]

An HMSC H is **regular** iff for every cycle ρ of H $(\phi(E_{\rho^o}), \phi(\mu_{\rho^o}))$ is a strongly connected graph

every message sent is acknowledged after a finite nb of iterations of ρ .

$$\begin{array}{ll} \underline{Theorem:}\\ H \ regular &\Rightarrow & Lin_{H} \ regular \ subset \ of \ \varSigma^{*}\\ \underline{Consequences:}\\ Lin_{H1} \cap Lin_{H2} = \varnothing, \ Lin_{H1} \subseteq Lin_{H2}, \ Lin_{H1} = Lin_{H2}\\ R \subseteq Lin_{H1}, \ Lin_{H1} \subseteq R \ decidable \end{array}$$

Globally cooperative HMSCs

[Genest et al 02][Morin02]

а

b

An HMSC H is globally cooperative iff for every cycle ρ of H ($\phi(E_{\rho^o}), \phi(\mu_{\rho^o})$) is a connected graph

Processes do not behave independently in a loop

[Genest et al 02]

Let H_1 be a HMSC, H_2 be a globally cooperative HMSC, then

 $\begin{array}{ll} F_{H_1} \cap F_{H_2} = \varnothing ? \\ F_{H_1} \subseteq F_{H_2} ? \end{array} \quad \text{are decidable} \end{array}$

There is a bound $b \in N$ s.t all $M \in F_H$ can be run with communication buffers of size $\leq b$. (Existential bound)

Theorem:

Outline

Scenario automata

- Extensions
 - Compositional MSCs
 - Causal HMSCs
 - Dynamic MSC Grammars
- Operators
- Verification & partial order logics
- Application
- Conclusion

A drawback of HMSCs

MSC languages generated by HMSCs, GC-HMSCs, regular HMSCs ...

... are all finitely generated

Generational HMSCs

[Gunter et al'01, GenestPhD04]

 $H=(Q, \rightarrow, M, q_0, Q_{Fi})$

A partial order automaton defined over a set of cMSCs M

Dangling Messages emissions/receptions Glued at composition time

Semantics:

$$P_{H} = \{ \rho = q_{0} \xrightarrow{M_{1}} q_{1} \xrightarrow{M_{2}} \dots \xrightarrow{M_{k}} q_{k} \mid q_{k} \in Q_{Fi} \}$$

$$F_{H} = \{\rho^{\circ} \mid \rho \in P_{H} \text{ and } \rho^{\circ} \text{ is an MSC } \}$$

$$Lin_{H} = \bigcup_{M \in F_{H}} Lin(M)$$

An example C-HMSC

Extensions: Compositional MSCS

 q_2

р

 \mathbf{q}_1

р

q

a

Extensions: Compositional MSCS

Undecidable problems

C-HMSCs embed :

HMSCs

Communicating finite state machines (CFSM) ... and all their undecidable problems

The simple message problem:

is there an MSC $M \in F_H$ that contains a message of type m?

The emptiness problem:

is F_H empty ?

are undecidable

Subclasses of cHMSCs

Some paths of a cHMSC may not generate an MSC

A cHMSC *H* is safe is for every path ρ of P_H , ρ° is an MSC.

(safe CHMSCs do not embed the whole expressive power of CFSMs)

- Globally cooperative CHMSCs = safe + GC
- Regular CHMSCs = safe + regular

Causal MSCs [GGHTY07, GGHTY09]

Labelled partial order over a set of events $M=(E, \{\underline{\sqsubseteq}_{\rho}\}_{\rho \in P}, \alpha, \mu, \phi)$ \blacksquare *P*, α, ϕ as usual, μ : message pairing as usual \square \square_{p} : partial order $\left(\bigcup_{p\in P} \sqsubseteq_p \cup \mu\right)^*$ is a partial order $J \sqsubseteq_{p} \cup \mu$ Lin(M) = linearizations of

Visual extensions

Concatenation

Independence relation $I_p \subseteq \Sigma_p \times \Sigma_p$ for each $p \in P$ (Symmetric and irreflexive)

Causal HMSCs

A partial order automaton defined over a finite set of Causal MSCs M

Path

$$\rho = q_0 \stackrel{M_1}{\longrightarrow} q_1 \stackrel{M_2}{\longrightarrow} \dots \stackrel{M_k}{\longrightarrow} q_k$$
$$\rho^{\circ I} = M_1 \circ^I M_2 \circ^I \dots M_k$$

<u>Semantics:</u>

$$P_{H} = \{ \rho = q_{0} \xrightarrow{M_{1}} q_{1} \xrightarrow{M_{2}} \dots \xrightarrow{M_{k}} q_{k} \mid q_{k} \in Q_{Fi} \}$$
$$F_{\mu} = \{ \rho^{\circ l} \mid \rho \in P_{\mu} \}$$

Vis_H =
$$\bigcup_{M \in F_H} Vis(M)$$
 Lin_H = $\bigcup_{M \in F_H} Lin(M)$

Extensions: Causal HMSCS

Example

 $I_{client} = \{ (Client!Server(Question), Client?Server(Answer)) \}$ $I_{Server} = \emptyset$

Results on Causal HMSCs

Regular CaHMSCs

Automaton A_H that recognizes Lin_H (exponential size)

∩, ⊆, =, regular Model checking decidable

Globally cooperative CaHMSCs

H CaHMSC and H' with same trace alphabet

Build CaHMSCs over **atoms** of H and H'

 $F_H \cap F_{H'} = \emptyset$?PSPACE- complete $F_H \subseteq F_{H'}$ EXPSPACE- complete

For CaHMSCs H and H' with **distinct** independence relation

 $F_{H} \cap F_{H'} = \emptyset$? undecidable

Comparison of MSC languages

Inclusion of MSC Languages

Dynamic MSC grammars

A context free grammar with MSCs as terminals

Dynamic MSC grammars

Generate MSC languages :

- With dynamic creation,
- Over arbitrary sets of processes

Outline

Scenario automata
Extensions
Operators
Verification & partial order logics
Application
Conclusion

Projection [GHM03]

Project MSC languages on a subset of events

HMSC projections and safe CHMSCs have the same expressive power
 ∏(F_H) ∩ F_{H'} = Ø decidable (if H' G.C.)
 One can decide if a projection is equivalent to an HMSC

Parallel composition [DGH08]

Parallel Composition

Enforce common events on a single process

Emptiness for HMSC products decidable (PSPACE)

 $H_1 H_2$ existentially bounded decidable

If H_1, H_2 G. C. and $H_1 \| H_2$ is \exists .bounded, then one can compute an \exists bounded cHMSC representing $H_1 \| H_2$ (but of exponential size)

Fibered product

[CHK04,HKJ06]

Synchronize : MSCs and events in pairs of MSCs

Operators : parallel composition

Conclusion

For verification purpose, to emphasize some causalities,...

No satisfactory solution for parallel composition: undecidable emptiness, effective product for pairs of GC HMSCs but not beyond,

Interesting subclasses of C/HMSCs are not preserved by *Π*, //, ⊗...

Outline

Scenario automata
Extensions
Operators
Verification & partial order logics
Application
Conclusion

Regular Model-checking (LTL, CTL, etc.) applies only to **regular** [H/C/CA]-HMSCs

Undecidable otherwise

HMSC-based verification:

Let H_{spec} , H_{bad} be two C/Ca/HMSCs. If H_{bad} is **globally cooperative**, then use $H_{spec} \cap H_{bad} = \emptyset$? (Safety)

Let H_{spec} , H_{good} be two C/Ca/HMSCs. If H_{good} is globally cooperative, then $H_{spec} \subseteq H_{good}$? (Refinement)

Problem: H_{spec} H_{good} need to be defined at the same abstraction levelH Glob.Coop. \checkmark $\Pi(H)$ Glob.Coop.

Verification & Partial Order Logic

MSCs are non- interleaved models :

reason on non-interleaved representation of behaviors with LOCAL logics (MSO,PDL,TLC⁻,...)

MSO for MSCs [Madhusudan01]

 $\varphi ::= lab_a(x) | msg((x, p), (y, q)) | next(x, y) | x \in X | p \in P$ $\neg \varphi | \varphi_1 \land \varphi_2 | \exists x, \varphi | \exists X, \varphi | \exists p, \varphi | \exists P, \varphi$

Example : MSCs are FIFO.

 $\varphi \coloneqq \neg(\exists x, x', y, y', p, q, msg((x, p)(y, q)) \land msg((x, p)(y, q)) \land next(x, x') \land next(y, y'))$

MSO for MSCs is decidable for

HMSCS

[Madhusudan01]

Safe CHMSCs

[MadhusudanMeenakshi01]

- causal HMSCs
- Dynamic HMSCs, Dynamic MSC grammars [Leucker02] [BHH10b]

<u>Main principle</u> : build a (tree) automaton that recognizes models for $\exists \phi$, intersect with the original model. Automata guess an interpretation for variables, synthesizes facts to recognize sequences of MSCs (parse trees) satisfying $\exists \phi$.

MSO decidability is not so surprising:

all orders produced by these models can be seen as productions of a context free graph grammar.

<u>Can we go further?</u> : specify with logics and drop the automata/grammars/...

[Gastin03]

It is undecidable wheter, given an MSO formula φ , there exists an MSC satisfying φ .

Specifying with logical statements only is not possible. [YHG08]

Outline

Scenario automata
Extensions
Operators
Verification & partial order logics
Application : Diagnosis
Conclusion

Applications : Diagnosis

[GGH06,GGHM13]

<u>Objective</u> :

provide information to supervisors of a distributed system starting from:

- a partial observation (log) : O
- a model of the system : M

<u>Questions</u> :

- Is there a run of M that embeds O ?
- list all runs that embed O ?
- is there a faulty run that embeds O ?
- (existence) (Diagnosis) (fault detect°)

Solutions for : Automata, Petri Nets, ...

Build a product or an unfolding : M x O

Application: Diagnosis

Embedding

O: Observation

Explanation for O as a MSC

Results

Theorem:

 $H' = H \times O$ is an HMSC of size at most in $O(|H| |O|^{|P| \times |P_{obs}|})$ s.t.

every *M* in F_H that embeds O is also in $F_{H'}$

every *M* in *F_{H'}* embeds O

Diagnosis/existence are decidable for HMSCs

Nice associative properties : $(HxO_1) \otimes (HxO_2) = H \times (O_1 | | O_2)$

Note : undecidable in general for CHMSCs

Take G a cHMSC: is there a run that embeds O = The simple message problem

Application: Diagnosis

m

O =

Diagnosis as an MSO property

$$\varphi_{o} \coloneqq \exists x, y, z, t, lab(x, y, z, t) \land caus(x, y, z, t) \\ \land closed(x, y, z, t) \coloneqq lab_{a}(x) \land lab_{b}(y) \land lab_{c}(z) \land lab_{m}(t) \\ caus(x, y, z, t) \coloneqq x \leq y \land x \leq z \\ closed(x, y, z, t) \coloneqq \forall x', x' \prec x \lor x' \prec y \lor x \prec x' \prec z \lor x' \prec \\ \Rightarrow lab_{\Sigma obs}(x')$$

Application: Diagnosis

Outline

Scenario automata
Extensions
Operators
Verification & partial order logics
Application
Conclusion

Over the last 10 years

- Several extensions : Causal HMSCs, dynamic MSC Grammars, Extended coregions,
 - Decidable classes remain incomplete models.
- Composition w/o automaton/grammar structure highly undecidable
- Modularity (//) leads to undecidability too
- MSO decidability / diagnosis easily achieved
 - Scenarios well adapted to Diagnosis.

The Scenario Algorithm

<u>Repeat</u>

[C/Ca/Dyn/...] HMSCs are incompletePropose an extension !Pb X is undecidable for the extensionFind a subclass to solve the problem

<u>Until</u>???

???=
(provocation)
the model is complete enough to be a decent modeling tool
your models are so ugly that nobody wants to use them
no one wants to read a paper on MSCs anymore
you get bored

Future plans

Scenario specific issues :

- Generalize decidability results for scenarios seen as graph grammars
- Implementation: for HMSCs, Dynamic MSC grammars
- Causal HMSCs: finite generation, equivalence with HMSCs
- Diagnosis: Online diagnosis, alternatives to MSO
- Security: covert flows detection with probabilities, information theory, etc.

Future plans

Time & Robustness :

Check if timed requirements make sense w.r.t. implementation assumptions (architecture,...)

Abstraction :

obtain decidable models using s abstractions of real systems

From Telecoms to services:

many assumptions on scenarios due to IP-like communications (FIFO, etc)

In **Services** : no FIFO, open and dynamic world, sessions,data... *new models, new problems, new solutions Closer to real world situations*

Acknowledgements

- The Distribcom/Vertecs/S4 (now SUMO) colleagues
- Students and Postdocs
 - A. Degorre
 - T. Gazagnaire, J.Klein, T.Ziadi, R. Abdallah,...
 - S.Yang, S.Akshay, B. Masson
- All members of the CASDS, DST, and now DISTOL associated teams, INRIA for funding them
- courir@inria.fr, courir@irisa.fr

And of course....Philippe

Questions ?

Ravitaillement en salle Sein !

Conclusion

Communication graph

An useful abstraction of the contents of MSCs

Communication graph CG(M)

Regular HMSCs

[Alur et al 99] [Muscholl et al 99]

Definition: H is regular iff

 $\forall \rho = q_1 \stackrel{M_1}{\rightarrow} q_2 \stackrel{M_2}{\rightarrow} \dots \stackrel{M_k}{\rightarrow} q_1$ cycle of *H*,

 $CG(\rho^{\circ})$ is a strongly connected graph

<u>Theorem:</u>

H regular \Rightarrow *Lin_H* regular subset of Σ^*

Consequences:

 $\begin{aligned} \operatorname{Lin}_{H1} &\cap \operatorname{Lin}_{H2} = \emptyset, \operatorname{Lin}_{H1} \subseteq \operatorname{Lin}_{H2}, \operatorname{Lin}_{H1} = \operatorname{Lin}_{H2} \\ R \subseteq \operatorname{Lin}_{H1}, \operatorname{Lin}_{H1} \subseteq R \ \text{decidable} \end{aligned}$

Globally cooperative HMSCs

[Genest et al 02][Morin02]

Definition: H is Globally Cooperative iff

 $\forall \rho$, cycle of *H*, *CG*(ρ°) is a connected graph

Theorem: [Genest et al 02]

Let H_1 be a HMSC, H_2 be a globally cooperative HMSC, then

$$F_{H_1} \cap F_{H_2} = \emptyset ? ,$$

$$F_{H_1} \subseteq F_{H_2} ?$$

Decidable

Product : states

Product : transitions

Product : transitions

Product : final nodes

Applications : intrusion detection

Idea : use HMSCs to represent « normal behaviors » of a system

```
Normal (O, H<sub>1</sub>, ...H<sub>n</sub>)
for (i=0; i<n; i++) {
    if (L(H_i \times \pi_{\Sigma_i}(O)) = \phi) {
        return true // raise an alarm
    }
    Return false
```

If no explanation exists for an observation O, raise an alarm.