
MDE 2.0 – Pragmatic formal model verification
and other storiesand other stories

Jordi Cabot

HdR

1

IndexIndex

 Introducing MDE

 Research in MDE

 A Research Agenda for MDE 2 0 A Research Agenda for MDE 2.0

– Models & Quality

– Legacy systems

– Social aspects

– Very Large models

 Dissemination and technology transfer

 Credits

 Conclusions Conclusions

Software is everywherey

Medicine

Power grid

Software
Aerospace

Automotive

but software development is still a challenge p g

Model-driven Engineering

 MDE tries to improve this situation by promoting engineering
principles in Software Engineering

g g

principles in Software Engineering

 MDE advocates the rigorous use of software models as the main
artifacts in all software engineering activitiesartifacts in all software engineering activities.

 This in fact is common practice in many other professions

 Does anybody imagine building a house without plans?

The MDEequationq

Many MDE applicationsy pp

dCode

Generation

Software

Modernization

Systems
interoperability

MDE = Model-Driven Everything

MDSD
(software

development)

MDE
(engineering)

development)

MDSD

MDE

8

What is MDE?

UML OCL
Profile OMG

Code-Generation
OCL

QVTEcore
Marte TGG

DSLs
MetamodelModel Evolution

SBVRMOF
EMF

TGG

DSLs

Model-driven Rev. EngMDD
Profiles

EMF

M2M MDA
Multi-modeling

ATL

M2T
Model-Based Testing BPMN

Graph

Model QualityT2M

There’s hope - Order in the Chaos

 Basic principle: Everything is a model (J. Bézivin)

p

 Models are designed/built/generated to be
–Observed
–TransformedTransformed

 The MDE Equation:
Models + transformations = SoftwareModels + transformations = Software

where of course transformations can also be regarded as models

Models + transformation models = Software

Models + Models SoftwareModels + Models = Software

2 x Models = Software

M d l 1/2 S ft ???????Models = 1/2 Software ???????

What is a model

City of Nantes =
“system” to be

modeled

A map is a model of
this system

Its legend (what
elements can elements can

appear, how they
can be

combined,…) is
the grammar/

t d l
13/09/2012

11

© AtlanMod ‐ atlanmod‐contact@mines‐
nantes.fr

metamodel

Models & Metamodels

A model is the result, of the observation
of a system considering a given y g g

metamodel with specific objectives
or purposes.

. System S Metamodel
MM

representation of
conforms to

Model MModel M

12

The 3-level Modeling Stack

conforms to

Metametamodel
M3

conforms to

Metamodel
M2

conforms to

Model M1

13

© AtlanMod ‐ atlanmod‐contact@mines‐
nantes.fr13/09/2012

Btw, same approach as other Technical Spaces

MDE Grammarware

MOF
(metametamodel)

EBNF.g

UML
(metamodel)

Java.g

ABank.uml MyProgram.java

MDE Core Technique/Operation:
Model TransformationModel Transformation

 Model-to-Model Transformation (M2M)

Java
Metamodel

UML2
Metamodel

ATL
Metamodel

ATL
Metamodel

ATL
Metamodel

Conforms to Conforms to

Conforms to

Transformation
Java-to-UML2

Conforms to Conforms to

Java to UML2

Model bModel a

13/09/2012
15

© AtlanMod ‐ atlanmod‐contact@mines‐
nantes.fr

IndexIndex

 Introducing MDE

 Research in MDE

 A Research Agenda for MDE 2 0 A Research Agenda for MDE 2.0

– Models & Quality

– Legacy systems

– Social aspects

– Very Large models

 Dissemination and technology transfer

 Credits

 Conclusions Conclusions

Research in MDE

We have advanced a lot on the core techniques

 UML and profiles

q

 DSLs & Language workbenches

M d l t d l d d l t t t t f ti Model-to-model and model-to-text transformations

 Model management and evolution

 …

with some contributions: Conceptual Modelingp g

J Cabot, R Raventós: Conceptual Modelling Patterns for Roles. Journal on
Data Semantics

with some contributions: Rule modelingg

J Cabot, E Teniente: Transformation Techniques for OCL Constraints.
Science of Computer Programming Journal

with some contributions: Code Generation

Albert, Cabot, Gómez, Pelechano: Automatic Generation of Basic Behavior Schemas from
Cl i S f d S d liUML Class Diagrams. Software and Systems Modeling

Albert,Cabot, Gómez,Pelechano. Generating operation specifications from UML class
diagrams: A model transformation approach. Data & Knowledge Engineering

with some personal contributions: Code
GenerationGeneration

PSE1
…
PSEe

c
c'1

c
PSE1
…
PSE

Step 2

e

PSEe+1
…
PSEh

c2

Step 1

...
c'e

c'2,e+1Step 3
c

PSEn PSEh

PSEk

...

...

...

...

...

...
…
PSEn

cp c'p,n

J Cabot, E Teniente: Incremental Integrity Checking of UML/OCL
Conceptual Schemas. Journal of Systems and Software

with some contributions: UML Validation

Validate

Stakeholder
English Text

Validate

Explains
Transf M2T:

SBVR to Natural
Language

Models UML
CASE
Tool

UML Model
Transf. M2M:
UML to SBVR

g g

SBVR Model
Structured
English

Designer RuleSpeak

. . .

J Cabot R Pau R Raventós: From UML/OCL to SBVR Specifications: J Cabot, R Pau, R Raventós: From UML/OCL to SBVR Specifications:
a Challenging Transformation. Information Systems

with some contributions: API integrationg

J Cánovas, F Jouault, J Cabot, J García Molina. API2MoL:
Automating the building of bridges between APIs and Model-Driven
E i i I f ti d S ft T h lEngineering. Information and Software Technology.

But it’s clearly not enough

 Modeling will be commonplace in 3 years time – S. Mellor

Though he is giving the same answer for the last 20 years

IndexIndex

 Introducing MDE

 Research in MDE

 A Research Agenda for MDE 2 0 A Research Agenda for MDE 2.0

– Models & Quality

– Legacy systems

– Social aspects

– Very Large models

 Dissemination and technology transfer

 Credits

 Conclusions Conclusions

What else do we need? What else do we need?
MDE 2.0

Four main challenges

1.Quality of models

g

2.Support for legacy systemspp g y y

3.Social aspects of MDEp

4.Very large models / Scalabilityy g / y

QualityQuality

Quality

 Quality is a very broad concept

Q y

 We focus on the verification of models (are we building the models right?)
and, partially, on their validation (are we building the right models?)

Importance of Quality in modelsp Q y

MDE-based software development process
Original
model

1st refinement nth refinement
Source
Code

...
Model

Transformation
Model

Transformation

Errors in models will lead to errors in
the resulting software

31
©
l

the resulting software

A Basic quality property: Satisfiabilityq y p p y y

 Satisfiability is the most basic correctness property for static models.
Liveliness redundancy can be expressed in terms of this oneLiveliness, redundancy,… can be expressed in terms of this one

 A model is satisfiable if it is possible to create a valid instantiation of that
model. Otherwise it is useless, users won’t be able to work with the model

 A instantiation is valid if it satisfies all model constraintsA instantiation is valid if it satisfies all model constraints

DeptEmployee
WorksIn* 1

id: String

Dept

name: String

Employee

1 0..1Boss

deptworkers

manager managed
d1: Dept

id = “HR”

e1: Employee

WorksIn

e2: Employee

WorksIn

name = “Peter”

e1: Employee

Boss name = “Timothy”

e2: Employee

Example: Is it satisfiable?

2 parent

Person
name: string children

*

+ constraint : Nobody can be his own ancestor

How models are verified?

…..
34

©
l

Strong Satisfiability

But Quality classified as a Grand ChallengeQ y g

MDE

1E+18 scenarios for small
models (classes=10)()

More than cells in the
human body!!!

Finding the right trade-offg g

 No perfect solution exists

Automation EfficiencyAutomation Efficiency

V ifi tiVerification

Expressiveness Completep p

Our “pragmatic” approachp g pp

EMF/UML modelEMF/UML model

1. Class diagram / metamodel

2 OCL t i t

Property?

2. OCL constraints

Translate Ded ce

Constraint Satisfaction Problem

Translate Deduce

S l i ?

Constraint Satisfaction Problem

1. Variables – basic types + struct/list

2 D m ins finit
Solve

Solution?2. Domains – finite

3. Constraints – Prolog

4 P dd l 4. Property -> Additional Constraint

Translation of OCL invariants

context Paper inv: self.wordCount < 10000

 OCL invariant =
OperationCallExp

<OCL invariant =
instance of OCL
metamodelmetamodel

 Invariant becomes a
AttribCallExp

wordCount
IntLiteralExp

10000

constraint of the CSP

VariableE pVariableExp
self

Translation of OCL invariants

Result

OperationCallExp
LessThan(Vars, Result):-

// Evaluate subexpressions

OperationCallExp
<

// a uate sube p ess o s
Attribute(Vars, X),
Constant(Y),

X Y

AttribCallExp IntLiteralExpConstant(Y),
// Compute result
#<(X,Y, Result). Z

AttribCallExp
wordCount

IntLiteralExp
10000

#<(X,Y, Result). Z

VariableExp
selfself

Translation of OCL invariants

Resultattribute(Vars, X) :- Result

// Evaluate subexpressions
self(Vars, Z),

OperationCallExp
<

X Y
arg(Z, “wordCount”, X).

X Y

AttribCallExp
wordCount

IntLiteralExp
10000

Z

self(Vars Z) :

Z

VariableExp
constant (Y):-

Y = 10000

self(Vars, Z) :-
// Z is the only visible var

nth1(1 Va s Z)

VariableExp
self

Y = 10000. nth1(1, Vars, Z).

Translation of OCL invariants

context Paper inv: self.wordCount < 10000

invariant(Papers):-
// Expression must be true
// for each Paper
(for (Paper, Papers)

do
LessThan([Paper],Result),
Result #= 1) .

OCL Prolog library

 To analyze OCL constraints, it is necessary to provide a translation for
all OCL constructs in terms of the Prolog-based language used by the

g y

all OCL constructs in terms of the Prolog-based language used by the
ECLiPSe solver.

 We have extended ECLiPSe with a new library dedicated to the We have extended ECLiPSe with a new library dedicated to the
translation of OCL constraints

 The library makes use of the ECLiPSe support for higher-orderThe library makes use of the ECLiPSe support for higher order
predicates

e.g. ocl_set_collect(Instances, Vars, Set, Predicate, Result),

 Removal of symmetries and the suspension mechanism are used to
optimize the performance of the library

Resolution of the CSP

Define cardinality variables
Constraints on cardinalities

Assign cardinalities

Define attribute variables

Constraints on attributes

Assign attributes
ProofProof

Trade-offs in verification

 Decidability: is automation possible? Yes

 Completeness: proof for any input?
No, bounded verification
(but Small Scope hypothesis – D. Jackson)

 Expressiveness: full OCL support? Yes

 Efficiency: Controlled by the usery y

 Validation is also possible: we can generate valid instances from p g
partial models

Other applications (1): Operation contractspp () p

 Verification of contracts: Applicability and executability of
operations, determinism,…

Other applications(2): Graph Transformation to OCLpp () p

NAC: LHS: RHS:

work

machine

op1

machine machine

op2

context System::work()context System::work()

pre: Machine::allInstances()−>exists(m|
not (Operator::allInstances()−>exists(op1|m.operator−> includes(op1)))

LHS
NAC

post: Machine::allInstances()@pre−>exists(m| not
(Operator::allInstances@pre()−>exists(op1|m.operator->includes(p1)))
and op2.oclIsNew() and op2.oclIsTypeOf(Operator) and m.operator−>includes(op2p () p yp (p) p (p

RHS

b l ó d /O f k f h lCabot, Clarisó, Guerra, de Lara: A UML/OCL framework for the analysis
of graph transformation rules. Software and System Modeling

Other applications(3): TGG / QVT / ATL to OCLpp () / Q /
work

c :Class t :Tablec2t :Cl2Tb
{new} {new}

{new} {new}

name
persistent

name{new}

ATTR COND: c name=t name and c persistent=trueATTR COND: c.name=t.name and c.persistent=true

Invariants:

context Cl2Tb Inv:context Cl2Tb Inv:
self.class.size()=1 and self.table.size()=1 and self.class.name=self.table.name

context Class Inv:
self.persistent=true implies self.Cl2Tb.size() >=1self.persistent true implies self.Cl2Tb.size() > 1

context Table Inv:
self.Cl2Tb.size() >=1

Cabot, Clariso, Guerra, de Lara: Verification
and validation of declarative model-to-model
transformations through invariants. Journal of

Systems and Software

Challenges / Work in Progressg / g

 Incremental verification

 Combine CSPs with SMT solvers to provide a complete verification approach
when possible.

 More meaningful feedback (e.g. the subset of constraints that cause the
inconsistency)

 Model slicing for parallel verification

Model-driven Reverse EngineeringModel driven Reverse Engineering

MoDISCO: a MDRE framerwork

Legacy

Modernization
helpers

Systems •Documentation
•Impact analysis

M d lSource code •Models
•Viewpoints

d d

Source code

Databases

•Restructured code
•Migrated code

•Metrics

Configuration
files

MoDisco •Norms checking

Eclipse Modeling

MoDisco

 Instead of adhoc Rev. Eng. Solutions, we use an intermediate
model based representation of the legacy systemmodel-based representation of the legacy system

MDRE phases in MoDisco

Discover Understand Transform

Legacy artifacts :

Discover Understand Transform

Legacy artifacts :
‐ source code

‐ configuration files
‐ tests

databases Models Viewpoints
New

Software Artifacts

 Why? Models provide an homogeneous and
interrelated representation of all legacy components

‐ databases
‐ etc.

Software Artifacts

interrelated representation of all legacy components.

No information loss: initial models have a 1:1
correspondance with the codecorrespondance with the code

51

Challenges / Work in Progressg / g

 Extraction of business rules
– Getting a model of the code helps but it’s still too low-level for a

stakeholder to look at it
– Semi-automatic approach with IBM.

 Rev Eng of the whole software system
– We know how to extract a model from a single component but we g p

don’t take into account its relationship with other components (esp. in
other layers)

– Companies are interested in knowing the enterprise architecture (e.g.
TOGAF) f tTOGAF) of a system

Challenges / Work in Progress

 Reverse Engineering of security policies

Challenges / Work in Progress

Social aspects of MDESocial aspects of MDE

Social aspects of MDEp

 We need a better understanding of the needs of users (technical and non-
technical) to make sure we solve their actual problems (and not the ones technical) to make sure we solve their actual problems (and not the ones
we think they have).

 One example: Huge amount of research on providing methods for the One example: Huge amount of research on providing methods for the
specification, validation, etc of non-functional requirements:
– Nontechnical constraints (like cost, type of license, specific providers)

are as prominent as technical requirements like performance or security p q p y
– Modern technology platforms already cover many applications’ quality

requirements so explicit NFR management not so useful
– NFRs are hardly ever documented and poorly validated

Architecture Quality Revisited. Buschmann, Frank; Ameller, David; Ayala,
Cl di P C b t J di F h X i IEEE S ft l 29 (4)Claudia P.; Cabot, Jordi; Franch, Xavier. IEEE Software, vol. 29 (4)

Dealing with users is not easy

56
©
l

Collaborative development of DSLsp

 Participation of end-users is specially relevant when creating DSLs since we
are creating a language for themare creating a language for them

Collaborative development of DSLsp

Collaborative development of DSLsp

 Collaboro: process + DSL + tool to enable the collaborative development of
DSLsDSLs

 Users suggest changes to both abstract and concrete syntax levels

 The community comments and votes changes and solutions

Once an agreement is reached (based on a given decision policy e g Once an agreement is reached (based on a given decision policy, e.g.
unanimity) the solution is added to the current language version

 We get: We get:
– Languages that better satisfy the users’ needs
– Traceability to justify the rational behind the language design decisions

Challenges / Work in progressg / p g

 Gamification techniques to promote more user interaction

 What constitutes a good concrete syntax for DSLs?

 Learning from web designers: AB testing for DSLs
– E.g. evolve the concrete syntax based on which E.g. evolve the concrete syntax based on which

alternative gets more “conversions”).

Very large modelsVery large models

Scalabilityy

 MDE tools fail when dealing with very large models
– E.g. reverse engineering of the Eclipse platform generates a model of

more than 5M instances
– EMF just crashes with these volumes

 Scalability important both at the model (loading very large
models) and model manipulation level (executing complex
transformations on large models)

 Key problem in industrial scenarios but far from a trivial oneKey problem in industrial scenarios but far from a trivial one
– Very Large DataBases is the main conf. in the database domain with

37 editions and still looking for solutions

Modeling in the cloudModeling in the cloud

 Can the Cloud be used to handle VLMs?

 Two key aspects:
– Model storage in the Cloud for efficiently storing and loading VLMs
– Model transformation in the Cloud for distributing the computation of

the transformation
• Each virtual node executes the full transformation on a subset of

h d lthe model
• Each virtual node executes part of the transformation on the full

model

Cloud Virtual ModelCloud Virtual Model

Cloud Virtual ModelCloud Virtual Model

Parallel Transformation Overview

Challenges / Work in ProgressChallenges / Work in Progress

 Optimal way to split the models and transformations
– And when not to split them

 Best technology for the backend?
– Hadoop for storing the models plus MapReduce for the transformations?

 Reactive transformation engine:
– Automaticaly activate only the strictly needed computation in response

to updates or requests of model elements.
– Incremental, minimal set of recalculations

IndexIndex

 Introducing MDE

 Research in MDE

 A Research Agenda for MDE 2 0 A Research Agenda for MDE 2.0

– Models & Quality

– Legacy systems

– Social aspects

– Very Large models

 Dissemination and technology transfer

 Credits

 Conclusions Conclusions

Always with technology transfer in mindAlways with technology transfer in mind

How do we bridge the gap?

 Traditional direct approach

Research Labs
(Scientific
Experts)

Technology
Transfer

C i

Innovation
Companies
(End Users)

Direct technology transfer doesn’t work!: Our tools

are not good and they won’t magically become great
70

©
l

are not good and they won t magically become great

We need a new business model

 Three-entity approach

 Introduction of a third entity in the
process

Labs (scientific experts)

– A SME as Technology Provider

Research
challengesIndustrializ

– Play the role of
Interface between
researchers and users

Open
source

ation

Big Companies
/ end-users

source

SME
/ end users

Services

71
©
l

DisseminationDissemination

The Modeling Languages portalg g g p

 Dissemination of MDE news, tutorials, tools,… for people:
– Researchers and practitioners
– Novices or experts

 Goal: to explore and discuss when, where and how MDE
can improve current software engineering practices

 modeling-languages.com

CreditsCredits

Credits

 Research is always a team activity
Works on conceptual modeling and code generation together with colleagues from – Works on conceptual modeling and code-generation together with colleagues from
Technical University of Catalonia and Politecnico di Milano

– Quality line started together with R. Clariso (Open University of Catalonia) and J.
de Lara and E. Guerra (Autonomous university of Madrid)

– Univ. of Toronto taught me the importance of social and organizational aspects of
Software Engineering

– … thanks also to and many more co-authors that I can’t list here

 Current research lines possible thanks to the members of the AtlanMod
team (EMN / INRIA / LINA)

 AtlanMod was created in 2008 by Jean Bézivin. He is the “father” of
MoDisco and of the technology transfer model we are following.

Wrapping upWrapping up

Conclusions

 MDE is changing the way we build software g g y
– Though this “we” is still limited

 We have explored some of the (IMHO) promising research
directions to improve MDE (and its adoption):
– Quality, scalability, human aspects, legacy systems

 MDE as a means to an end Better Software Engineering

 It is ok to renounce to perfect solutions in exchange of
useful ones use u o es
– The good-enough revolution (Wired – 09/2009)

