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PREFERENCES ARE UBIQUITOUS h INTELLIGENT

L] SYSTEMS

Preferences play a key role in many applications of computer science and
modern information technology:

COMPUTATIONAL RECOMMENDER COMPUTER
ADVERTISING SYSTEMS GAMES
AUTONOMOUS ELECTRONIC ADAPTIVE USER
AGENTS COMMERCE INTERFACES
PERSONALIZED ADAPTIVE SERVICE-ORIENTED

MEDICINE RETRIEVAL SYSTEMS COMPUTING
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medications or therapies
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Amazon files patent for
‘“anticipatory” shipping
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Amazon.com has filed for a patent for a shipping system that would anticipate what
customers buy to decrease shipping time.

Amazon says the shipping system works by analyzing customer data like, purchasing
history, product searches, wish lists and shopping cart contents, the Wall Street
Journal reports. According to the patent filing, items would be moved from
Amazon’s fulfillment center to a shipping hub close to the customer in anticipation
of an eventual purchase.
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“Early work in Al focused on the notion of a goal—an explicit target that must
be achieved—and this paradigm is still dominant in Al problem solving. But as
application domains become more complex and realistic, it is apparent that the
dichotomic notion of a goal, while adequate for certain puzzles, is too crude in
general. The problem is that in many contemporary application domains ... the
user has little knowledge about the set of possible solutions or feasible items,
and what she typically seeks is the best that’s out there. But since the user does
not know what is the best achievable plan or the best available document or
product, she typically cannot characterize it or its properties specifically. As a
result, she will end up either asking for an unachievable goal, getting no
solution in response, or asking for too little, obtaining a solution that can be
substantially improved.”

[Brafman & Domshlak, 2009]

... compared with the dichotomic notion of a goal, preference formalisms
significantly increase flexibility in knowledge representation and problem solving!
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PREFERENCES IN ARTIFICIAL INTELLIGENCE RESEARCH:

— preference representation (preference relations, CP nets, GAI
networks, logical representations, fuzzy constraints, ...)

— preference handling and reasoning with preferences (decision theory,
constraint satisfaction, non-monotonic reasoning, ...)

— preference acquisition (preference elicitation, preference learning, ...)
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| Offizielle Homepage | Daniel Baier |

www.daniel-baier.com/

Willkommen auf der offiziellen Homepage von Fussballprofi Daniel Baier - TSV 1860
Miinchen.

Prof. Dr. Daniel Baier - Brandenburgische Technische Universitat ...
www.tu-cottbus.de/fakultaet3/de/.../team/.../prof-dr-daniel-baier.html|

Vokler, Sascha; Krausche, Daniel; Baier, Daniel: Product Design Optimization Using
Ant Colony And Bee Algorithms: A Comparison, erscheint in: Studies in ...

Daniel Baier
www.weltfussball.de/spieler_profil/daniel-baier/
Daniel Baier - FC Augsburg, VfL Wolfsburg, VfL Wolfsburg II, TSV 1860 Minchen.

Daniel Baier - aktuelle Themen & Nachrichten - sueddeutsche.de
www.sueddeutsche.de/thema/Daniel_Baier

Aktuelle Nachrichten, Informationen und Bilder zum Thema Daniel Baier auf
sueddeutsche.de.

Daniel Baier | Facebook

de-de.facebook.com/daniel.baier.589

Tritt Facebook bei, um dich mit Daniel Baier und anderen Nutzern, die du kennst, zu
vernetzen. Facebook ermoglicht den Menschen das Teilen von Inhalten mit ...

FC Augsburg: Mein Tag in Bad Gégging: Daniel Baier
www.fcaugsburg.de/cms/website.php?id=/index/aktuell/news/...

2. Aug. 2012 — Daniel Baier berichtet heute, was flr die Profis auf dem Programm
stand. Hi FCA- Fans,. heute liegen wieder zwei intensive Trainingseinheiten ...
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NOT CLICKED ON

CLICKED ON

Preferences are not
necessarily expressed
explicitly, but can be
extracted implictly from
people‘s behavior!

Massive amounts of very
noisy data!
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Fostered by the availability of large amounts of data,
PREFERENCE LEARNING has recently emerged as a new
subfield of machine learning, dealing with the learning of
(predictive) preference models from observed, revealed or
automatically extracted preference information.

(preference) (preference)
data - models
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Tutorials:

— European Conf. on Machine Learning, 2010

— Int. Conf. Discovery Science, 2011

— Int. Conf. Algorithmic Decision Theory, 2011
— European Conf. on Artificial Intelligence, 2012

= Int. Conf. Algorithmic Learning Theory, 2014 Preference

Learning

Workshops:
- ECML/PDKK 08-10: Workshop on Preference Learning

— ECAI 2012: Workshop on Preference Learning: Problems
and Applications in Al

J. Firnkranz &

E. Hillermeier (eds.)

Preference Learning

Springer-Verlag 2011

— Dagstuhl Seminar on Preference Learning (2014)

Special Issue on
Representing,
Processing, and
Learning Preferences:
Theoretical and

Practical Challenges
(2011)

Machine

Learning

Special Issue on
Preference Learning
(2013) 10
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=  NIPS 2001: New Methods for Preference Elicitation

= NIPS 2002: Beyond Classification and Regression: Learning Rankings, Preferences, Equality
Predicates, and Other Structures

= Kl 2003: Preference Learning: Models, Methods, Applications

= NIPS 2004: Learning with Structured Outputs

= NIPS 2005: Workshop on Learning to Rank

= |JCAI 2005: Advances in Preference Handling

= SIGIR 07-10: Workshop on Learning to Rank for Information Retrieval

= ECML/PDKK 08-10: Workshop on Preference Learning

= NIPS 2009: Workshop on Advances in Ranking

=  American Institute of Mathematics Workshop in Summer 2010: The Mathematics of Ranking
= NIPS 2011: Workshop on Choice Models and Preference Learning

= EURO 2009-12: Special Track on Preference Learning

=  ECAI 2012: Workshop on Preference Learning: Problems and Applications in Al
= DA2PL 2012: From Decision Analysis to Preference Learning

=  Dagstuhl Seminar on Preference Learning (2014)

= NIPS 2014: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and
Machine Learning
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Structured Output Learning Classification (ordinal,
Prediction Monotone Models multilabel, ...)

Information
Retrieval

Learning with
weak supervision

Preference
Learning

Economics &
Decison Science

Recommender

Systems

Statistics Social Choice

Multiple Criteria
Decision Making

Graph theory

Optimization Operations
P Research

2
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— binary vs. graded (e.g., relevance judgements vs. ratings)

— absolute vs. relative (e.g., assessing single alternatives vs. comparing pairs)
— explicit vs. implicit (e.g., direct feedback vs. click-through data)

— structured vs. unstructured (e.g., ratings on a given scale vs. free text)

— single uservs. multiple users (e.g., document keywords vs. social tagging)

— single vs. multi-dimensional

A wide spectrum of learning problems!

13
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TRAINING
(0.74,1,25,165) = (0.45,0,35,155) Pairwise
(0.47,1,46,183) = (0.57,1,61,177) oreferences

(0.25,0,26,199) = (0.73,0,46,185) between objects
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=2 induction of a RANKING FUNCTION
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PREDICTION (ranking a new set of objects)
Q — {w17 L2, L3, Ly, L5,Le, L7, L, L9, L10,L11,L12, 3313}

L1g ™ Ly = X7 > L1 > L11 »m Xy > L — 13 = X9 ~ L3 »~ 12 = 5 = Lg
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OBJECT RANKING COLLABORATIVE FILTERING

description of alternatives features identifier
representation of preference relative absolute
predictions ranking utility degrees

number of users/models single many

17
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representation type of preference information

A A
[ [ \
task context | alternative training prediction ground truth
(input) (output) information
ID ID

collaborative
filtering

dyadic
prediction

multilabel
classification

multilabel

ranking

label
ranking

subset
ranking

instance
ranking

feature

feature

feature

feature

feature

ID

feature

feature

absolute absolute absolute
ordinal ordinal ordinal

absolute absolute absolute
ordinal ordinal ordinal

absolute absolute absolute
binary binary binary

absolute ranking absolute
binary binary
relative ranking ranking
binary

relative ranking ranking or subset
binary

absolute ranking absolute
ordinal ordinal

18



OUTLINE
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PART 1

Preference

learning

PART 2

Label
ranking

SYSTEMS

PART 3

Preference-based
bandit algorithms

19



SUPERVISED LEARNING M o
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= What kind of training data is offered to the learning algorithm?

= What type of model (prediction) is the learner supposed to produce?

h: X —)Y
= Whatis the nature of the ground truth, and how is a model assessed?

L: y><y->]R+

« penalty for predicting
— .
(v.9") y if the true outcome is y*
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= What kind of training data is offered to the learning algorithm?

= What type of model (prediction) is the learner supposed to produce?

h: X —)Y

=  What is the nature of the ground truth, and how is a model assessed?

R(h) = /Xxyﬁ(h(w),y) dP(X,Y)

t

unknown data-
generating process



PREFERENCE LEARNING TASKS

Preference learning problems are challenging, because

— sought predictions are complex/structured,
— supervision is weak (partial, noisy, ...),

— performance metrics are hard to optimize,

h INTELLIGENT

L] SYSTEMS

top-K ranking
clickthrough data
NDCG@K

22
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... mapping instances to TOTAL ORDERS over a fixed set of alternatives/labels:

“UROPEAN |OURNAL OF =

CPERATIONAL ESEARCH

INFORMATION
SCIENCES

achine

(35,0,...,325) —> |-

instance x € X

(e.g., features of a person)

... likes more
... reads more
... publishes more in

23
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TRAINING

| Xa | X% | X | preferences

X3
10 IVER A>-B,C>D

0.34 0

1.45 0 32 YUAN B — C - A Instances are

1.92 1 46 DI 8. D A-D,C~D, A C associated with
preferences

0.74 1 S IS C -~ A>~D,A~B between labels

0.95 1 72 VA B - D,A>-D

1.04 o) 33 IS D - A>-B,C>~B,A>~C

... no demand for full rankings!

24
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PREDICTION

A B C D
ooz 1 ae EEENEENEENE

new instance ranking ?

25
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PREDICTION A B C D
002 1 81 382 et

new instance 7(i) = position of i-th label

26



LABEL RANKING: PREDICTION
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PREDICTION
092 1 81 382 " labers.
L LOSS

GROUND TRUTH )

ey

L(m, ) = Z (7(i) — 7% (1))’ LOSS

RANK CORRELATION

27
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PREDICTION
092 1 81 382 " labers.
L LOSS

GROUND TRUTH ‘\L

ey

L= > [0 = r)E () 7 () <0]  Loss

RANK CORRELATION

28
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How to learn a label ranker h: X — &, 7

DIFFERENT APPROACHES:

— Reduction to simpler problems (binary classification)
Transform the problem, so as to make it amenable to standard
ML algorithms.

— Extension of (classification) algorithms
Generalize standard ML algorithms, so as to make them applicable
to label ranking data.

— Probabilistic modeling and statistical inference

Make use of statistical models for rank data and parameter
estimation methods.

29
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Ranking by Pairwise Comparison (RPC) trains models

M, ;: X —=|0,1] (1<i<j<k)

Given a query instance x, M, ; is supposed to predict the probability that
Yi = Yj:
M j(z) = P(y; = y;)
=1— P(yj >~ yz)

— decomposition into k(k — 1)/2 binary classification problems

31



RANKING BY PAIRWISE COMPARISON i

Training data (for the label pair A and B):

---- preferences class

0.34
1.45
1.22
0.74
0.95
1.04

© r r P, O

32
46
25
72
33

[

INTELLIGENT

SYSTEMS

32
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Training data (for the label pair A and B):

10 174 1

034 O

1.22 1 46 421

0.74 1 25 165
0

1.04 33 158

33
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At prediction time, a query instance is submitted to all models, and the
predictions are combined into a binary preference relation:

o Mij(x), <]

Al lCc 0
03 08 04

predictions

M, () 0.7 0.7 0.9
02 0.3 0.3

06 01 0.7

How to produce a ranking on the basis of this preference relation?



RANKING BY PAIRWISE COMPARISON
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|
|
|
—> 7’1,2 —)Ml,z | —-)Ml,g
|
|
|
| T 3f—2Mi3 : M3
|
|
RANKIN
|71 4 My My 6
|
T : a‘: — 7,-) —> 7T
|
—| T2, 3—>Ma 3 : | Mo 3
|
_ |
DECOM : BINARY
POSITION 75 4| —a| Mo 4 | —>( M 4 PREDICTION
|
|
| T3, 42 M3 4 : | M3 4
|
|

BINARY
CLASSIFICATION 35
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Recall our original goal

R(h):/)(yﬁ(h(az),y)dP(X,Y) —  min

and our representation:

h=AGG (Mu, My, ..., My_1)

Loss decomposition problem: Is it possible to find a suitable loss £,
to be minimized (in expectation) by the pairwise learners, and an
aggregation function AGG, such that h = AGG(Mj2,..., Mk_11)

minimizes £ (in expectation)?
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A Bl C D
A 03 08 04
0.7 0.9

0.2 0.3 0.3
06 01 0.7

predlctlons

M, B>~A>D>C
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Theorem: Suppose the pairwise learners M, ; yield unbiased probability
estimates and let m be a ranking such that

(Z P(i,q) > > P(, q)) = (7(1) <7(j)) -

Then m minimizes risk w.r.t. to the Spearman loss

k
Llm,m*) =Y (n(i) — 7*(i))"

1=1

38
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Proposition: For the following losses, RPC can not guarantee a risk
minimizing prediction:

e 0/1 loss
L(m,7%) =[x # 7]

e Hamming distance
k
L(m,m*) =) [r(i) # 7 ()]
i=1

e Cayley distance (minimal number of transpositions of any pair of
labels needed to turn the first ranking into the second one)

e Ulam distance (minimal number of position changes of labels needed

to turn the first ranking into the second one)
39
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Label
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SYSTEMS

PART 3

Preference-based
bandit algorithms
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»pulling an arm* € > choosing an option

partial information online learning
sequential decision process

41



MULTI-ARMED BANDITS
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Looking for ane
stop shop
for all your

Weh Snliniuns 2

> putting an advertisement

ulling an arm* €= .
»P & on a website

choice of an option/strategy (arm) yields a random reward

partial information online learning
sequential decision process

42
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> picking a traffic route

,pulling an arm” €
from source to target

choice of an option/strategy (arm) yields a random reward

partial information online learning
sequential decision process

43



MULTI-ARMED BANDITS
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X1 ~Py

XQNPQ

X4NP4

,pulling an arm” €

® choosing an option

choice of an option/strategy (arm) yields a random reward

partial information online learning
sequential decision process

44



MULTI-ARMED BANDITS

XlNP1

Xo ~ Py

Immediate reward:
Cumulative reward:

i INTELLIGENT

SYSTEMS

X3NP3

X4 ~Py

X5 ~ Ps

2.5
2.5

45



MULTI-ARMED BANDITS

XlNP1

Xo ~ Py

Immediate reward:
Cumulative reward:

2.5
2.5

X3NP3

3.1
5.6

i INTELLIGENT

SYSTEMS

X4 ~Py

X5 ~ Ps

46



MULTI-ARMED BANDITS
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X1~ Py Xo ~ Py

X3 ~ Pj3

X4 ~Py

X5 ~ Ps

Immediate reward:
Cumulative reward:

2.5
2.5

3.1 1.
5.0 7.

.
3

47
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X, ~P;| [ Xo~nPo| | X5~Ps| | Xi~Py| | Xs~ Py

Immediate reward:

3.1 1.7 3.
Cumulative reward: 5.6 7.3 11.

2.5 7
2.5 0

maximize cumulative reward = explore and exploit (tradeoff)

find best option = pure exploration (effort vs. certainty)

48



PREFERENCE-BASED BANDITS h

INTELLIGENT
L] SYSTEMS

XlNP1 XQNPQ X3NP3 X4NP4 X5NP5

In many applications,

the assignment of (numeric) rewards to single outcomes (and hence
the assessment of individual options on an absolute scale) is difficult,

while the qualitative comparison between pairs of outcomes (arms/
options) is more feasible.

49
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RETRIEVAL RETRIEVAL RETRIEVAL RETRIEVAL RETRIEVAL
FUNCTION FUNCTION FUNCTION FUNCTION FUNCTION
1 2 3 4 5
X3 . Xl Noisy preferences can

be inferred from how
a user clicks through

an interleaved list of
documents [Radlinski
et al., 2008].

The result returned by the third retrieval
function, for a given query, is preferred to the
result returned by the first search engine.

50



INTELLIGENT

PREFERENCE-BASED BANDITS i

SYSTEMS

PLAYER PLAYER PLAYER PLAYER PLAYER
1 2 3 4 5
X3 = X4

Third player has beaten first player in a match.

51
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PLAYER PLAYER PLAYER PLAYER PLAYER
1 2 3 4 5
X3 = X4

— This setting has first been introduced as the dueling bandits problem (Yue and
Joachims, 2009).

— More generally, we speak of preference-based multi-armed bandits (PB-MAB).

52



FORMAL SETTING

— fixed set of arms (options) A = {a1,...,ax}

h INTELLIGENT

L] SYSTEMS

— action space of the learner (agent) = {(4,7) |1 <i<j < K}

(compairing pairs of arms a; and a;)

— feedback generated by an (unknown, time-stationary) probabilistic
process characterized by a preference relation

where

— typically, Q is reciprocal (¢;; =1 —¢;.)

d1.1
qd2.1

L dK,1

qd1,2
q2.2

dK,2

d1,K
q2. K

dK,K

q;,; = P (az- — aj)

53



THE PREFERENCE RELATION h NTELLIGENT
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— We say arm a; beats arm a; if ¢; ; > 1/2.

— The degrees of distinguishability

1
A;i=q;; — =
EAR (N
quantify the hardness of a PB-MAB task.
— Definition of regret is not straightforward.

— Assumptions on properties of Q are crucial for learning.

— Coherence: The pairwise comparisons need to provide hints (even if
“noisy” ones) on the target.

54
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best arm

ranking

GROUND
TRUTH

COHERENCE
I q1,1 41,2
42,1 Q422
Q -
| dK,1 4K.,2

qd1,K
q2. K

dK,K _

SYSTEMS

top-k subset

a

3
I—>CL2

... the preference relation
is derived from, or at
least strongly restricted
by the target!
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OVERVIEW OF METHODS
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5

interleaved filter

axiomatics beat-the-mean

: RUCB
consistent
preferences gradient descent

utility functions

reduction
preference-based
(stochastic) MAB statistical models Mallows

voting bandits

possibly

preference-based
racing

inonsistent
preferences

PAC rank
[Busa-Fekete and E.H., ALT 2014] elicitation

(&)
(0]



PROPERTIES OF PREFERENCE RELATION i
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Statistical approach

Coherence through statistical assumptions on the data generating process,
e.g., pairwise probabilities as marginals of a Mallows model:

gij =P(a; = a;) = Z P (7| mg,0)

() <m(g)

- > exp(—0A(w,m))
(f)(ﬂ-o’ 6) (i) <m(j)

— reference ranking mg is the natural target!

57



PAIRWISE SAMPLING
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aj ao as a4
a e | =
0] 1 O 1 O 1
a2 | jo—t— fmte—]  fpet—
0 1 0 1 O 1
Q3 | femf] | || Fo—
0 110 1 0 1
O e et T e e M e
0 1 O 1 O 1

uncertainty about pairwise
preferences

]

SYSTEMS

translates uncertainty

into about ranking
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Busa-Fekete et al. (2014) propose a sampling strategy called
MallowsMPR, which is based on the merge sort algorithm for
selecting the arms to be compared.

However, two arms a; and a; are not only compared once, but possibly
several times until being sure enough:

1/2 ¢ [(/fz) — Cijy i+ C-i,j] :
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Theorem: For any 0 < 6 < 1, MallowsMPR outputs the reference
ranking 7y with probability at least 1 — d, and the number of pairwise
comparisons taken by the algorithm is

O (K 10%‘2 K log K loNg2 K)
P op

_1=¢ o g
where p = 172, ¢ = exp(—0).
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In general, the approach performs
quite well compared to baselines.

However, it may fail if the
underlying data is not enough
,Mallowsian“ ...
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Growing interest in preferences in Al and preference learning

Focus so far on rank-based preference models (,learning-to-rank“)

Online preference learning not yet strongly developed

= Preference-based online learning with multi-armed bandits (PB-MAB):
— emerging research topic,
— no complete and coherent framework so far,
— many open questions and problems (e.g., necessary conditions for bounds
on regret or sample complexity, lower bounds, verifying model

assumptions, generalizations to large (structured) set of arms, contextual
bandits, adversarial setting, etc., ...)
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