Integrating verification in
orogramming languages

Thomas Jensen, INRIA

Seminar
INRIA Rennes, 04/11/2015

College de France
Chaire Algorithmes, machines et langages

y 4

informatiques 4” mathématiques

(2L 7 2

Types

For division to make sense, x and y should be
some kind of numbers.

X : int;
Yy : int;
Xx /vy

P. Naur: Checking of operand types in Algol compilers (1965)

Pre-conditions

Avoid division-by-0 error.

require y # 0;

. x /vy .

Pre- and post-conditions

Another possible requirement:
'x and y should be positive’".

Allows us to say something about the result.

require x > 0, y > 0;

x /vy

ensures result > 0;

Compositionality

Specifications are essential for modular
software development.

X/ gly)

"The post-condition of one operation
may be another operation's pre-condition”

Why specity?
Express what the code Is supposed to do:

e 4 priori requirements.

e documentation.
Check properties at run-time.
(Generate test cases.

Prove formally that a program satisties its specification.

e voir cours 2014-2015 : "Prouver les programmes : pourquol,
quand, comment’.

Languages with veritication

In the object-oriented paradigm:

o Eiffel (1986): programming with contracts,

 JML : a specification language for Java,

e Spec#: a new version of C# with software contracts.

... and also:
Lustre, Esterel,

SparkADA, Scala,
Racket, Coqg, Agda, Idris,... An active area of research!

loday

e Overview of JML and Spec#

 Dynamic and static veritication of specifications

e Specitying security and confidentiality.

The JML and Spec# approach

JML and Spec#

* Design a specification language for programmers
« JML (Gary Leavens, lowa State U.)
e Spec# (Microsoft Redmond).

 Keep close to program syntax
e specs as comments (JML) or language constructs (Spec#)

 logic close to programmer intuition ("good enough)

* Programmer productivity as a key objective

e bug finding is prime objective.

Pre- and post-conditions

Consider a simple bank account application
with a debit method (here Java and JML)

public class Account
private int balance;

/*@ requires amount >= 0;
ensures \result == balance; @*/

public int debit (int amount) {

}

Pre- and post-conditions

Pre- and post-conditions can be weakened.

public class Account
private int balance;

/*Q@ requires amount; >= 0
ensures true; @*/

public int debit (int amount) ({

}

Pre- and post-conditions

... and they can be strengthened:

publ}c cla§s Account Value of balance
pr:l.vate int balance; at entry to debit
_ method
/*Q@ requires amount >= 0;
ensures
\result == balance &&
balance == \old(balance) - amount;

@*/
public int debit (int amount) {

}

Invariants

Invariants are properties that must hold throughout
the execution.

public class Account Sl mEver
private int balance; be negative'

/*@ invariant 0 <= balance; @%*/

Checking invariants dynamically may incur
an Iimportant run-time overhead.

Assertions

Specity a property that should hold at one
particular place in the program.

v = get velocity()

//@ assert v <= SPEED OF LIGHT;

Cheaper to verity.

So useful that assert was added to most
languages, including Java itselt.

Goes back to von Neumann and Turing (late '40)

Quantifiers

Consider a class costumer With several accounts
and a table of amounts stored on each account.

public class Costumer ({
private int[] balances
private Account[] accounts

/*@ invariant \forall i
0 <=1 && 1 < balances.length ;
balances[i] >= 0 @x/

Another example: sorting:

/*Q@ ensures \forall i :
0 <=1 && i < table.length-1;
table[i] <= table[i+l] @x/

The language of properties

Close to the programming language, but with a few
essential add-ons:

v History variables: \old (var)

v Result variable \result

v Universal and existential quantification:

* Exceptions, pure methods and assignable

variables, non-null types.

Specitying exceptions

_ Only OK if enough

private int balance;

/*Q@ signals (AccountException e)
amount > balance &&
balance == \old(balance)..; @*/

public int debit (int amount) throws ..{

}

Null pointers

'l couldn't resist the temptation to put in a null
reference, simply because it was so easy to
implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and
damage in the last forty years."

C.A.R. Hoare, on the design of Algol W

Non-null types

Declare and check that a reterence always points to
something.

public class Costumer {
private int [] balances
private /*@ non-null @*/ Account[] accounts

void deposit (/*@ non-null @*/ String id,
int amount) {

/*@ non-null @*/ Account find account(String id)

Very useful and easy to check locally.

Side effects

Limit the variables that can be modified in a
method:

/*Q@ requires amount; >= 0
ensures .. ;
assignable balance @*/
public int debit (int amount) {

}

Detault: assignable \everything
Also useful: assignable \nothing

SpecH

True language integration:

e assignable variables are signaled by a modifies
declaration in the method header.

* non-null references are declared by a'!

class Costumer ({
Account[]! accounts

void deposit modifies balance (String! id,
int amount){ .. }

Also addresses harder problems:
- [imit side effects on internal sub-objects,
- private members must not appear in public signatures.

Pure methods

Methods that are assignable \nothing are
called side-effect free or pure.

int /*Q@ pure @*/ getBalance() ;
int /*Q@ pure non-null @*/ findAccount(..)

Pure methods are the only methods that can be used in
specifications.

/*@ invariant 0 <= getBalance(); @*/

Verification

How to verify

* Dynamic verification.

* (Generating verification conditions.

* |nteractive theorem proving with programmer-specified
Invariants

e See course on SMT.

e Static (automatic) program analysis.

Dynamic or static veritication”

Dynamic evaluation of pre- and post-conditions
and invariants:

e casy to Implement

® run-time overhead (especially with invariants,
nistory variables and recursion)

e |ate discovery of errors

Static checking of pre-, posts- and invariants:

e difficult program veritication problem, often with
approximations and false positives.

® NO run-time overhead

e carly detection of (some) errors

|ssues with dynamic verification

Veritying first-order contracts is well understood -
both In theory and In practice.

Contracts for higher-order functions pose guestions:

eg., how to check that a functional argument satisties
Even -> Even.

int M (Even -> Even £, int x) {
. E(£(x))..
}

Who is to blame when M (incr, 3) goes wrong?

Types and Blame

Type checking is one of the major success stories
of formal veritication:

"Well-typed program do not go wrong"

For incremental software development it is important to mix
statically and dynamically veritied code:

"Well-typed parts of code cannot be blamed"

Static program analysis

Static program analysis

Infer properties about the behaviour of a program
without running the program:

e Automatic.
e Correct.

* Approximate.

Veritying binary search

/]
static int bsearch(int key, int([] vec) {
/]
int low = 0, high = vec.length - 1;
/]
while (0 < high-low) {
/]
int mid = low + (high - low) / 2;
/]
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;
//
}
//
return -1;
y /)

ensure: -1 = \result < size of(vec);

Veritying binary search

// PRE: 0 < |vecy
static int bsearch(int key, int([] vec) {
/] (I1) keyy=keyAlvecy| = |vec| A0 < |vecy|
int low = 0, high = vec.length - 1;
/] () keyy = key Al|vecy| =|vec| A0 < low < high+1 < |vecy|
while (0 < high-low) {
/] (I3) keyy=key A |vecy| =|vec| A0 < low < high < |vecy|
int mid = low + (high - low) / 2;
/] (I4) keyy = key/A|vecy| = |vec| A0 < low < high < |vecy|/A low+
high—1<2:-mid < low+ high
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

/] (Is) keyy=keyAl|vecy| =|vec| A\=2+3-1low <2 -high+midA
—1+4+2:-1low £ high+2-mid A -1+ low < mid €< 1+ high/A high <
low+midAl+high <2-low+midAl+low+mid < |[vecy|+highA2 <
lvecg| A2+ high +mid < |veco| + low

}
/] (Ig) keyy = key A |vecy| = |[vec| Alow—1 < high € 1ow A0 <
low A high < |vecy|
return -1;
/) POST: —1 < res < |vecy|

Abstract interpretation

A foundation for static program analysis:
Interpret program over abstract domain of properties.
EqQ, abstract integers by,

e sSigns (+,-,+)

e intervals ([1;1],[0;3],[1;c[,...)

® polyhedra

Polynhedral analysis

Describe program states by convex sets.

.]A

A

>

Represented by sets of linear inequalities:

O<Xx, Xx<2y.

Example

x := 0, vy :=0;

while (x < 6) {
if (..) {

y =y + 2;

}
X := x +1;
}

assert (y < 12)

Polynedral analysis

X="7y="7
Stabilisation

X 2 6 °

X=60<y<12 < X D619 & Py 20x

A x<6"

xg:@@zy@Zx

X< h) D<Yyy<<ZX +2

/x:=x+1;

&P Ve y%éx

One analysis of many

 Numerical domains for integers, floats,...

e Alias, null-pointer and shape analysis of memory.

Principle of program analysis:
 translate to flow equations over partial orders,

* general solver based on iteration.

Specitying security

Information security

Three main properties of information security
* Confidentiality,

* Integrity of data,

e Availability.

Most are non-functional properties

Confidentiality

Classity data as
* private/secret/confidential
* public

A basic security policy:
'‘Confidential data should not become public’

Breaking confidentiality

int secret s; // s € {0,1}
int public p;

p := s; // direct flow
1f s == 1 then

p :=1

else // indirect flow

p =0

Dynamic veritication

Add a security level to all data and variables

Security levels evolve due to assignments

p = s; // direct flow

and when we assign under secret control:

1f s == 1 then
p =1

Secure?

Not enough to enforce confidentiality

int secret s; // s € {0,1}
int public p,q;

p :=0; qg:=1; p=0,g=1 p=0,qg=1
1f s == 0 then

q :=0; p=0,g=0 skip
if q == 1 then
p :=1; skip p=1,g=1
p=0 p=1

The "no-sensitive-upgrade” principle

Static information flow control

Information flow types:

[,Tx Toc € {public C secret]

Typing rules:
el TETX TchTx ,
assign
Tpc|— X = e
= e. oc U = Si i=1,2 £
/

Toc1f e then S; else S

'Real" information flow control

More elaborate policies would also specity how to
declassify confidential data:

e what to declassify?

* when to declassity”?

Proposals tfor information flow control for Java:
o JIF (Cornell)
e Paralocks (Chalmers)

Integrating verification In
orogramming languages
e Specification and verification increasingly present
* Robust code.

* More productive programmers.

* Both in academia and in industry.
* Functional and non-functional properties.

* Mix of dynamic and static verification.

Integrating verification in
orogramming languages

Thomas Jensen, INRIA

Seminar
INRIA Rennes, 04/11/2015

College de France
Chaire Algorithmes, machines et langages

y 4

informatiques 4” mathématiques

(2L 7 2

