
Integrating verification in
programming languages

Thomas Jensen, INRIA

Collège de France
Chaire Algorithmes, machines et langages

Seminar
INRIA Rennes, 04/11/2015

x / y

Types
For division to make sense, x and y should be
some kind of numbers.

x : int;
y : int;

 … x / y …

P. Naur: Checking of operand types in Algol compilers (1965)

Pre-conditions
Avoid division-by-0 error.

require y ≠ 0;

… x / y …

Pre- and post-conditions

require x > 0, y > 0;

x / y

ensures result > 0;

Another possible requirement:

"x and y should be positive".

Allows us to say something about the result.

Compositionality

x / g(y)
"The post-condition of one operation
may be another operation's pre-condition"

Specifications are essential for modular
software development.

Why specify?
• Express what the code is supposed to do:

• a priori requirements.

• documentation.

• Check properties at run-time.

• Generate test cases.

• Prove formally that a program satisfies its specification.

• voir cours 2014-2015 : "Prouver les programmes : pourquoi,
quand, comment".

Languages with verification
In the object-oriented paradigm:

• Eiffel (1986): programming with contracts,

• JML : a specification language for Java,

• Spec#: a new version of C# with software contracts.

… and also:
Lustre, Esterel,
SparkADA, Scala,
Racket, Coq, Agda, Idris,… An active area of research!

Today

• Overview of JML and Spec#
• Dynamic and static verification of specifications

• Specifying security and confidentiality.

The JML and Spec# approach

JML and Spec#
• Design a specification language for programmers

• JML (Gary Leavens, Iowa State U.)

• Spec# (Microsoft Redmond).

• Keep close to program syntax

• specs as comments (JML) or language constructs (Spec#)

• logic close to programmer intuition ("good enough")

• Programmer productivity as a key objective

• bug finding is prime objective.

Pre- and post-conditions
Consider a simple bank account application
with a debit method (here Java and JML)

public class Account
private int balance;

public int debit (int amount) {
 …
}

/*@ requires amount >= 0;
ensures \result == balance; @*/

Pre- and post-conditions

Pre- and post-conditions can be weakened.

public class Account
private int balance;

public int debit (int amount) {
 …
}

/*@ requires amount; >= 0
ensures true; @*/

Pre- and post-conditions

public class Account
private int balance;

public int debit (int amount) {
 …
}

/*@ requires amount >= 0;
 ensures
 \result == balance &&
 balance == \old(balance) - amount;
@*/

… and they can be strengthened:

Value of balance
at entry to debit
method

Invariants
Invariants are properties that must hold throughout
the execution.

public class Account
private int balance;

/*@ invariant 0 <= balance; @*/

"Should never
be negative"

Checking invariants dynamically may incur
an important run-time overhead.

Assertions
Specify a property that should hold at one
particular place in the program.

v = get_velocity();

//@ assert v <= SPEED_OF_LIGHT;

So useful that assert was added to most
languages, including Java itself.

Cheaper to verify.

Goes back to von Neumann and Turing (late '40)

Quantifiers
Consider a class Costumer with several accounts
and a table of amounts stored on each account.

public class Costumer {
 private int[] balances
 private Account[] accounts

/*@ ensures \forall i :
 0 <= i && i < table.length-1;
 table[i] <= table[i+1] @*/

Another example: sorting:

/*@ invariant \forall i :
 0 <= i && i < balances.length ;
 balances[i] >= 0 @*/

The language of properties
Close to the programming language, but with a few

essential add-ons:
✓ History variables: \old(var)
✓ Result variable \result
✓ Universal and existential quantification:
• Exceptions, pure methods and assignable

variables, non-null types.

Specifying exceptions

public class Account
private int balance;

public int debit (int amount) throws …{
 …
}

/*@ signals (AccountException e)
amount > balance &&
balance == \old(balance)…; @*/

Only OK if enough
money on account

Null pointers
"I couldn't resist the temptation to put in a null
reference, simply because it was so easy to
implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and
damage in the last forty years."

C.A.R. Hoare, on the design of Algol W

Non-null types

public class Costumer {
 private int [] balances
 private /*@ non-null @*/ Account[] accounts

 void deposit (/*@ non-null @*/ String id,
 int amount){
 …
 /*@ non-null @*/ Account find_account(String id)
 …

Declare and check that a reference always points to
something.

Very useful and easy to check locally.

Side effects
Limit the variables that can be modified in a
method:

Default: assignable \everything
Also useful: assignable \nothing

/*@ requires amount; >= 0
ensures … ;
assignable balance @*/

public int debit (int amount) {
 …
}

Spec#
True language integration:
• assignable variables are signaled by a modifies

declaration in the method header.
• non-null references are declared by a !

class Costumer {
 Account[]! accounts

 void deposit modifies balance (String! id,
 int amount){ … }

Also addresses harder problems:
- limit side effects on internal sub-objects,
- private members must not appear in public signatures.

Pure methods
Methods that are assignable \nothing are
called side-effect free or pure.

/*@ invariant 0 <= getBalance(); @*/

Pure methods are the only methods that can be used in
specifications.

int /*@ pure @*/ getBalance();
int /*@ pure non-null @*/ findAccount(…)

Verification

How to verify

• Dynamic verification.

• Generating verification conditions.

• Interactive theorem proving with programmer-specified
invariants

• See course on SMT.

• Static (automatic) program analysis.

Dynamic or static verification?
Dynamic evaluation of pre- and post-conditions
and invariants:
• easy to implement
• run-time overhead (especially with invariants,

history variables and recursion)
• late discovery of errors

Static checking of pre-, posts- and invariants:
• difficult program verification problem, often with

approximations and false positives.
• no run-time overhead
• early detection of (some) errors

Issues with dynamic verification
Verifying first-order contracts is well understood -
both in theory and in practice.

Contracts for higher-order functions pose questions:
eg., how to check that a functional argument satisfies
Even -> Even.

 int M (Even -> Even f, int x) {
… f(f(x))…

 }

Who is to blame when M(incr,3)goes wrong?

Types and Blame

For incremental software development it is important to mix
statically and dynamically verified code:

"Well-typed parts of code cannot be blamed"

Type checking is one of the major success stories
of formal verification:

"Well-typed program do not go wrong"

Static program analysis

Static program analysis

Infer properties about the behaviour of a program
without running the program:

• Automatic.

• Correct.

• Approximate.

ensure: -1 ≤ \result < size_of(vec);

Verifying binary search

Verifying binary search

Abstract interpretation
A foundation for static program analysis:

Interpret program over abstract domain of properties.

Eg, abstract integers by,

• signs (+,-,±)

• intervals ([1 ; 1] , [0 ; 3] , [1 ; ∞[,…)

• polyhedra

Polyhedral analysis
Describe program states by convex sets.

Represented by sets of linear inequalities:

0 ≤ x , x < 2y.

Example

x := 0; y := 0;
while (x < 6) {
 if (…) {
 y := y + 2;
 }
 x := x +1;
}

assert (y ≤ 12)

Polyhedral analysis

x := 0; y := 0;

x < 6 ?

y := y +2

x := x + 1;

x ≥ 6 ?

x = ?, y = ?

x = 0, y = 0

x = 0, y = 0

x = 0, 0 ≤ y ≤ 2

x = 1, 0 ≤ y ≤ 2

x ≤ 1, 0 ≤ y ≤ 2x

x ≤ 1, 0 ≤ y ≤ 2x

x ≤ 1, 0 ≤ y ≤ 2x +2

 1 ≤ x ≤ 2, 0 ≤ y ≤ 2x

0 ≤ y ≤ 2x

x < 6, 0 ≤ y ≤ 2x

x < 6, 0 ≤ y ≤ 2x +2

x ≤ 6, 0 ≤ y ≤ 2x

x ≤ 6, 0 ≤ y ≤ 2x x = 6, 0 ≤ y ≤ 12

Stabilisation

One analysis of many

• Numerical domains for integers, floats,…

• Alias, null-pointer and shape analysis of memory.

Principle of program analysis:

• translate to flow equations over partial orders,

• general solver based on iteration.

Specifying security

Information security
Three main properties of information security

• Confidentiality,

• Integrity of data,

• Availability.

Most are non-functional properties

Confidentiality
Classify data as
• private/secret/confidential
• public

A basic security policy:

"Confidential data should not become public"

Breaking confidentiality

int secret s; // s ∈ {0,1}
int public p;

p := s; // direct flow

if s == 1 then
p := 1
else // indirect flow
p := 0

Dynamic verification

Add a security level to all data and variables

p := s; // direct flow

Security levels evolve due to assignments

p := s; // direct flow

and when we assign under secret control:

if s == 1 then
p := 1
if s == 1 then
p := 1

Secure?
Not enough to enforce confidentiality

p := 0; q := 1;
if s == 0 then
 q := 0;
if q == 1 then
 p := 1;

int secret s; // s ∈ {0,1}
int public p,q;

The "no-sensitive-upgrade" principle

s=0
p=0,q=1

p=0,q=0

skip
p=0

s=1
p=0,q=1

skip

p=1,q=1
p=1

Static information flow control
Information flow types:

⊢ e : T T ⊑ Tx Tpc ⊑ Tx

Tpc ⊢ x := e assign

 ⊢ e : T Tpc ⨆ T ⊢ Si i = 1,2

Tpc ⊢ if e then S1 else S2 if

T,Tx,Tpc ∈ {public ⊑ secret}

Typing rules:

"Real" information flow control

More elaborate policies would also specify how to
declassify confidential data:

• what to declassify?
• when to declassify?

Proposals for information flow control for Java:
• JIF (Cornell)
• Paralocks (Chalmers)

Integrating verification in
programming languages

• Specification and verification increasingly present

• Robust code.

• More productive programmers.

• Both in academia and in industry.

• Functional and non-functional properties.

• Mix of dynamic and static verification.

Integrating verification in
programming languages

Thomas Jensen, INRIA

Collège de France
Chaire Algorithmes, machines et langages

Seminar
INRIA Rennes, 04/11/2015

