DU LABORATOIRE AU DÉSERT MAROCAIN, LE PROJET XTREMLOG

Centre de recherche GRENOBLE - RHÔNE-ALPES

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Guillaume Chelius, Equipe INRIA DNET, Laboratoire LIP ENS Lyon <guillaume.chelius@inria.fr>

UN RÉSEAU DE CAPTEURS AU 25 ÈMF MARATHON DES SABLES

Guillaume Chelius, Equipe INRIA DNET Christophe Braillon, SED INRIA Maud Pasquier, DDT INRIA Roger Pissard Gibollet, SED INRIA Bernard Espiau, DDT INRIA Christine Azevedo, Equipe Projet INRIA DEMAR Nicolas Horvais, Salomon Sports

ORIGIN

Ultra running - for longer periods and longer distances

Marathon des Sables...

The 20 greatest / hardest races in the world... (Ultrafondus n°57, march 2009) :

- Ultra Trail Mont Blanc
- Marathon des Sables
- Badwater
 Running the MdS

Where : morocco desert, around Merzouga

rock desert : reg sand desert : ergs

250km

Night running

I long stage (80km)

I marathon stage

Typical day schedule :

- •05:45 wakeup
- 06:00 ~ 07:00
 - bivouac dismounted
 - breakfast in self-sufficiency
- 07:00 ~ 08:00 water distribution
- 08:30 ~ 09:00 stage start
- end of day
 - dinner
 - footcare
 - sleep

self-sufficiency no assistance

Food: 2000KCal / day

Sleeping bag, clothes, etc.

Optimized backpack ~8 kg

Similar to biologging

A Body Area Network (BANet)

A Body Area Network (BANet) at the MdS

A technological challenge :

- autonomy
- ergonomic
- robustness
- weight
- reliability
- data synchronization

sensor sensor Body Network sensors

SENSOR NETWORK CONCEPTION

Building a sensor node

MSP430

CCC2420

The sensors

Inertial Motion Units (IMUs)

Force Pressure Sensitive (FSR)

Environmental :T°, H

Cardio Frequency Meter

Building a Half-Distributed Body Area Network

IMU node

Master node

FSR node

Building a Half-Distributed Body Area Network

Each node operates independantly from the others

Each node logs its data internally

Time synchronization is performed through the radio protocol

Building a Half-Distributed Body Area Network timestamps timestamps timestamps timestamps timestamps timestamps

Time synchronization

Master node : periodical emission of timestamp packets

Slave nodes : periodical reception of timestamp packets

Activity scheduling : sleep / tx|rx / sleep /tx|rx / sleep

Tradeoff : radio activity, i.e. energy consumption vs synchronization accuracy

Time synchronization

Timestamps period : 153.4ms

Maximum clock drift : 30ppm, *i.e.* ~4us *btw* timespamps

Hypothesis : linear clock drift btw timestamps

$$t_G(m) = t_m^1 + \frac{(t_m^2 - t_m^1)}{(t_s(t_m^2) - t_s(t_m^1))} (t_s(m) - t_s(t_m^1))$$

Activity scheduling & synchronization

Asynchronous & distributed discovery & synchronization protocol

Activity scheduling & synchronization

. . .

. . .

$$P(R_i) = E\left(\frac{W}{\tau}\right)\frac{\frac{\tau}{n} - \lambda}{W - \frac{\tau}{n}} = p$$
$$P\left(R_i\bigwedge_{k=0}^{i-1}\bar{R}_k\right) = p\left(1 - p\right)^i = p_i$$

$$T = W \sum_{i=0}^{\infty} ip_i = W \sum_{i=0}^{\infty} i(1-p)^i p$$

Activity scheduling & synchronization

$$T = W\left(\frac{1}{p} - 1\right) = W\left(\frac{W - \frac{\tau}{n}}{E\left(\frac{W}{\tau}\right)\left(\frac{\tau}{n} - \lambda\right)} - 1\right)$$
$$T = (n - 1)W$$

Tradeoff : radio activity, i.e. energy consumption vs synchronization latency

Integrating the BANet into the runner equipment

THEN, THE RACE

At least a sportive success ! ③

Stage		_	29km	3:30
Stage	2	-	35km	4:54
Stage	3	-	40km	5:08
Stage	4	-	82km	11:58
Stage	5	-	42km	4:43
Stage	6	-	22km	2:00

66th over 1016 competitors

~32h race

Hard conditions

 $T^{\circ} > 50^{\circ}$

H~15%

THE EXPERIMENT

Low clock drift among sensors

Bad news ! 😔

Concurrent processes induced loss of data

ACC reading vs uSD card writing

Non optimized file system access

Non optimized cache

Specific to SD storage

Other bad news ! ③

Robustness of connectors was not sufficient

Due to repeated impacts

Due to sweat, water....

System files were partially corrupted

Some data

Clearly enough data to analyze !

Race stage	Functional nodes
	1, 3, 8, 9, 10, 12, 19, 14, 15
2	1, 3, 9, 10, 12
3	12
4	7, 12, 19
5	3, 7, 12, 19
6	12

DATA ANALYSIS

Original objectives :

- Movement segmentation
- Determination of qualitative & quantitative parameters
 - on the movement
 - on the subject
 - on the environment

OFFLINE ANALYSIS !

Segmentation & classification

- walk vs run vs stop
- fast vs slow
- Descent vs ascent
- Hard ground vs soft ground
- Average speed, instantaneous speed
- Back angle, gait analysis
- Foot movement and pressure in shoes
- Correlation with physical and environmental parameters

EVERYTHING WE CAN !

MAG tronc

GYR tronc

3-axis accelerometer, 100Hz, 6bits

3-axis gyrometer, 100Hz, 6bits

3 axis magnetometer, 50Hz, 6bits

~175MB per IMU for a 32h race

13 IMU sensor nodes

~2.275GB for IMU data only !

6-point insole, 100Hz, 12bits

~104MB per insole for a 32h race

2 insole sensor nodes

~207MB for insole data only !

deterministic analysis e.g., gait reconstruction

statistical analysis e.g., run segmentation

First experiments in laboratory and on the beach...

Janvier 2010, Montpellier

Moving walkway
Stadium

3. Beach of Palavas: sand, backpack, «real conditions»

Experimentations

DATA ANALYSIS

deterministic analysis

From mono IMU attitude reconstruction

Done! ADT INRIA SENSAS

To multiple IMUs reconstruction

At work ! © ADT INRIA SENSAS

DATA ANALYSIS

statistical analysis

Segment and classify the runner movement...

Based on accelerometer and pressure data

Without reconstructing the movement

Sensors :

ACC: 3-axis accelerometers

FSR : sole pressure sensors

Auto-correlation:

A FSR provides a measurement of the local value of the vertical component of the force field.

This signal is periodic during a steady-state locomotion.

The period is computed by sliding autocorrelation.

Jump detection, intervals:

We assume that the norms of accelerometer signals and the frequency of impacts are composed of successive intervals within which the process is stationary, separated by abrupt jumps.

The detection of these jumps is performed using independent sequential tests of detection of abrupt changes [1]. A sequence of steady-state intervals is obtained for each sensor.

[1] M. Basseville and I.V. Nikiforov, Detection of abrupt changes - theory and application, Prentice Hall, Inc., 1993

FSR Intervals

ACC Intervals

FSR Intervals

Single timebase

Single timebase:

Intervals obtained for each sensor can be gathered as a onedimensional ordered sequence. By projecting all (or some selection of) the sequences of intervals on a single timebase, we get a one-dimensional ordered sequence of M intervals.

K-means:

A simple classification method allows assigning each interval to one of the various walking and running defined classes.

STAGE I

PERSPECTIVES

Advancing on data analysis

e.g. Multiple IMUs reconstruction

Offering software tools to manipulate IMU data

ADT SENSAS WP SENSBIO

VALORIZATION

Next generation sensor nodes

New sensors

HiKoB project

Collaborations

Sport with SALOMON

Functional rehabilitation with MASEA project (EPI DEMAR)

Biologging with CERFE, DEPE/IPHC

Functional rehabilitation with MASEA project (EPI DEMAR)

Experimentations to come ?

THE YUKON ARCTIC ULTRA

Ultra Marathon Adventure Racing Across Canada's Frozen North

MARK HINES

INRIA Direction

MANY THANKS TO :

INRIA UR Grenoble Rhône-Alpes Direction

INRIA UR Grenoble Rhône-Alpes Communication

INRIA Communication

INRIA UR Grenoble Rhône-Alpes RH

INRIA UR Grenoble Rhône-Alpes DTI

ADT INRIA SENSTOOLS

REFERENCES:

http://www.inrialpes.fr/Xtremlog/

G. Chelius, C. Braillon, M. Pasquier, N. Horvais, R. Pissard Gibollet, B. Espiau and C. Azevedo, <u>A</u> <u>Wearable Sensor Network for Gait Analysis: a 6-day Experiment of Running Through the Desert</u>, IEEE Trans. on Mechatronics (under submission)

M. Pasquier, B. Espiau and C. Azevedo, <u>Signal-based segmentation of human locomotion using</u> <u>embedded sensor network</u>, ICASSP 2011, May 2011