Graphical Models, Distributed Fusion, and Sensor Networks

Alan S. Willsky

October 2005

One Group's Journey

The launch: Collaboration with Albert Benveniste and Michele Basseville**Initial question: what are wavelets really** good for (in terms that a card-carrying statistical signal processor would like) What does optimal inference mean and look like for multiresolution models (whatever they are) The answer (at least **our** answer): Stochastic models defined on multiresolution *trees*

MR tree models as a cash cow

- **MR models on trees admit really fast** and scalable algorithms that involve propagation of statistics up and down (more generally throughout the tree)
	- **Generalization of Levinson**
	- **Generalization of Kalman filters and RTS** smoothers
	- **Calculation of likelihoods**

STARE

…

Milking that cow for all it's worth

● Theory

₩ Old control theorists never die: Riccati equations, MR system theory, etc.

MR models of Markov processes and fields

₩ Stochastic realization theory and "internal models"

MR internal wavelet representations

New results on max-entropy covariance extension

Keep on milking…

- *Applications*
	- ₩ Computer vision/image processing
		- Motion estimation in image sequences
		- **Image restoration and reconstruction**
	- ₩ **Geophysics**
		- Oceanography
		- Groundwater hydrology
		- Helioseismology (???)
		- **Other fields I don't understand and probably** can't spell

One F'rinstance

Altimetric Estimates - 5cm Intervals

Bathymetry Contours with Large Residual Overlay 195 200 205 210 215 220

Estimation Error

Sadly, cows can't fly (no matter how hard they flap their ears)

- **The dark side of trees is the same as the bright** side: No loops
- ☀ Try #1: Pretend the problem isn't there
	- If the real objectives are at coarse scales, then finescale artifacts may not matter
- **☀ Try #2: Beat the dealer**
	- ₩ Cheating: Averaging multiple trees
	- **Theoretically precise cheating: Overlapping trees**
- Try #3: Partial (and later, total) surrender
	- **Put the &#%!*@# loops in!!**
	- **Now we're playing on the same field (sort of) as AI** graphical model-niks and statistical physicists

Graphical Models 101 *G =* (*V, E*) = a graph ₩ *V =* Set of vertices *E* ⊂ *V*×*V =* Set of edges *I* \subseteq **C** = Set of cliques Markovianity on *G* (Hammersley-Clifford) *}) C* $P({x_s | s \in V}) \propto |\psi_c(x_c)|$ • Objectives $\prod_{c \in \mathbf{C}}$ $|\psi|$

> $$ $P_{\scriptscriptstyle S}(\, \overline{x}_{\scriptscriptstyle S} \,)$ Estimation: : Compute

For trees: Optimal algorithms compute reparameterizations

For Estimation

$$
P(\lbrace x_s \mid s \in \mathcal{V} \rbrace) = \prod_{s \in \mathcal{V}} P_s(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{P_{st}(x_s, x_t)}{P_s(x_s)P_t(x_t)}
$$

For Optimization

$$
P(\lbrace x_{s} | s \in V \rbrace) \propto \prod_{s \in V} \overline{P}_{s}(x_{s}) \prod_{(s,t) \in E} \frac{P_{st}(x_{s}, x_{t})}{\overline{P}_{s}(x_{s}) \overline{P}_{t}(x_{t})}
$$

{ x | t s } t≠ $P_s(x_s) = max \quad P(\{x_s \mid s \in V\})$

Algorithms that do this on trees

- *Message-passing* algorithms for "estimation" (marginal computation)
	- Two-sweep algorithms (leaves-root-leaves)
		- For linear/Gaussian models, these are the generalizations of Kalman filters and smoothers
	- 駦 Belief propagation, sum-product algorithm
		- Non-directional (no root; all nodes are equal)
		- **Lots of freedom in message scheduling**
- *Message-passing* algorithms for "optimization" (MAP estimation)
	- **Two sweep: Generalization of Viterbi/dynamic** programming
	- Max-product algorithm

What do people do when there are loops?

駦 One well-oiled approach

₩ Belief propagation (and max-product) are algorithms whose local form is well defined for any graph

● So why not just use these algorithms?

. Well-recognized limitations

 The algorithm fuses information based on invalid assumptions of conditional independence

Think Chicken Little, rumor propagation,...

Do these algorithms converge?

If so, what do they converge to?

Something else we've been doing: Tree-reparameterization

For any embedded acyclic structure:

For Estimation

$$
P(\lbrace x_s \mid s \in V \rbrace) = \prod_{s \in V} T_s(x_s) \prod_{(s,t) \in E_{tree}} \frac{T_{st}(x_s, x_t)}{T_s(x_s)T_t(x_t)} \times \text{Remainder}
$$

For Optimization

$$
P(\{x_s \mid s \in V\}) \propto \prod_{s \in V} \overline{T}_s(x_s) \prod_{(s,t) \in \mathcal{E}_{tree}} \frac{T_{st}(x_s, x_t)}{\overline{T}_s(x_s) \overline{T}_t(x_t)} \times \text{Remainder}
$$

$$
\overline{T}_s(x_s) = \max \quad T(\{x_s \mid s \in V\})
$$
\n
$$
\{x_t \mid t \neq s\}
$$

So what does any of this have to do with distributed fusion and sensor networks?

Well, we *are* talking about passing messages and fusing information

But there are special issues in sensor networks that add some twists and require some thought

And that also lead to new results for graphical models more generally

A first example: Sensor Localization and Calibration

- **★ Variables at each node can include**
	- ₩ Node location, orientation, time offset
- ☀ Sources of information
	- **Priors on variables (single-node potentials)**
		- Time of arrival (1-way or 2-way), bearing, and *absence of signal*
			- **These enter as edge potentials**
			- ☀ Modeling absence of signals may be needed for well-posedness, but it also leads to denser graphs

Even this problem raises new challenges

养 BP algorithms require sending messages that are likelihood functions or prob. distributions **That's fine if the variables are discrete or if we are** dealing with linear-Gaussian problems ₩ More generally very little was available in the literature (other than brute-force discretization) **● Our approach: Nonparametric Belief**

Propagation (NBP)

Nonparametric Inference for General Graph s

Belief Propagation

- General graphs
- Discrete or Gaussian

Particle Filters

- Markov chains
- General potentials

Nonparametric BP

- General graphs
- General potentials

Problem: **What is the product of two collections of particles?**

I. Message Product: Draw samples of x_i from the product of all incoming messages and the local observation potential

II. Message Propagation: Draw samples of x_s from the compatibility function, $\psi_{st}(x_s, x_t)$, fixing x_t to the values sampled in step I

Samples form new kernel density estimate of outgoing message (determine new kernel bandwidths)

NBP particle generation

Dealing with the explosion of terms in products **How do we sample from the product** without explicitly constructing it? **The key issue is solving the label** sampling problem (which kernel) Solutions that have been developed involve

- Multiresolution Gibbs sampling using KD-trees
- **Importance sampling**

Examples: Hand-tracking and contour tracking using level sets

Communications-sensitive message-passing

Objective:

ANA

- **Provide each node with computationally simple (and** completely local) mechanism to decide if sending a message is worth it
- Need to adapt the algorithm in a simple way so that each node has a mechanism for updating its beliefs when it doesn't receive a full set of messages

Simple rule:

- B Don't send a message if the K-L divergence from the previous message falls below a threshold
- If a node doesn't receive a message, use the last one sent (which requires a bit of memory: to save the last one sent)

Illustrating comms-sensitive message-passing dynamics

Organized network data association

Self-organization with region-based representation

Empirical observations

Sharp transitions in performance as a function of message tolerance threshold

 Dynamics of messaging provides scenariodependent adaptivity automatically

However:

暮

- Where is the *theory* to explain this behavior and provide design guidelines?
- This approach bases censoring *solely* on the information as measured by the *transmitting node*, with no attention paid to the objectives of the *receiving node*

How different are BP messages?

Why dynamic range?

. Satisfies sub-additivity condition

 $M_t(x) \propto m_{ut}(x) \cdot m_{st}(x)$

 $\hat{M}_t(x) \propto \hat{m}_{ut}(x) \cdot \hat{m}_{st}(x)$

 $log d(E_t) = log d(M_t/\hat{M}_t)$ \leq log $d(e_{ut}) +$ log $d(e_{st})$

Message errors contract under edge potential strength/mixing condition

Results using this measure

- *S***EARER EXECUTE:** Best known convergence results for loopy BP
	- **Result also provides result on relative** locations of multiple fixed points

Bounds and stochastic approximations for effects of (possibly intentional) message errors

Experiments

- ☀ Relatively weak potential functions
	- Loopy BP guaranteed to converge
	- **Bound and estimate** behave similarly

Stronger potentials

- Loopy BP *not* guaranteed to converge
- **Estimate may still be** useful[']

Communicating particle sets **☀ Problem: transmit** *N iid* samples **● Sequence of samples:** ₩ Expected cost is ¼ N*R*H(p) $H(p) =$ differential entropy R = resolution of samples **● Set of samples Invariant to reordering** We can reorder to reduce the transmission cost \bullet Expected cost is ¼ N*R*H(p) – log(N!) **Entropy reduced for any deterministic order** • In 1-D, "sorted" order \bullet In > 1-D, can be harder, but...

Trading off error vs communications

KD-trees

₩

恙

- Õ Tree-structure successively divides point sets Typically along some cardinal dimension
- Cache statistics of subsets for fast computation
- Example: cache means and covariances
- Can also be used for approximation…
	- Any cut through the tree is a density estimate
	- Õ Easy to optimize over possible cuts
		- Communications cost
		- Upper bound on error (KL, max-log, etc)

Examples – Sensor localization

 Many inter-related aspects ₩ Message schedule

鬻

Ö

- Outward "tree-like" pass
- Typical "parallel" schedule

 # of iterations (messages) ₩ Typically require very few (1-3) Could replace by msg stopping criterion

Message approximation / bit budget

- ☀ Most messages (eventually) "simple"
	- **•** unimodal, near-Gaussian
- Early messages & poorly localized sensors
	- May require more bits / components...

How can we take objectives of other nodes into account?

- Rapprochement of two lines of inquiry
	- **Decentralized detection**

募

- Message passing algorithms for graphical models
- . We're just starting, but what we now know:
	- When there are communications constraints and both local and global objectives, optimal design requires the sensing nodes to *organize*
	- This organization in essence specifies a *protocol* for generating and interpreting messages
	- Avoiding the traps of optimality for decentralized detection for complex networks requires careful thought

A tractable and instructive case

Directed set of sensing/decision nodes

- 當 Each node has its local measurements
- **Each node receives one or more bits of** information from its "parents" and sends one or more bits to its "children"
- Ö Overall cost is a sum of costs incurred by each node based on the bits it generates and the value of the state of the phenomenon being measured
- Each node has a local model of the part of the underlying phenomenon that it observes and for which it is responsible
	- **Simplest case: the phenomenon being measured has** graph structure compatible with that of the sensing nodes

Person-by-person optimal solution

● Iterative optimization of local decision rules: A message-passing algorithm! **. Each local optimization step requires** A pdf for the bits received from parents (based on the current decision rules at ancestor nodes)

A cost-to-go summarizing the impact of different decisions on offspring nodes based on their current decision rules

Two algorithmic structures

- 駦 Gauss-Seidel, e.g. sweeping from one end to the other and then back
	- **Convergence guaranteed, as cost reduced at** each stage
	- Very particular message scheduling
- **. Jacobi—Everyone updates at the same time**
	- No convergence guarantees, but has same equilibria
	- Corresponds to the simplest message passing structure in BP: Everyone sends and receives messages at each iteration

What happens with more general networks?

- **. Basic answer: We'll let you know**
- 駦 What we **do** know:
	- *** Choosing decision "rules" corresponds to** specifying a graphical model consisting of
		- The underlying phenomenon
		- ☀ *The sensor network (the part of the model we get to play with)*
		- The cost
	- **. For this reason**
		- There are nontrivial issues in specifying globally compatible decision "rules"
		- Optimization (and for that matter cost evaluation) is intractable, for exactly the same reasons as inference for graphical models

Alternate approach to approximate inference: Recursive Cavity Models

Comments

- **Linear-Gaussian models** Ľ Graphical model specified by P-1 Algorithm corresponds to *information form* of MR tree algorithms, with one additional step
	- Thinning approximations to maintain tractability
	- ☀ Leads to bounded errors under appropriate crossboundary "mixing" conditions

. For sensor networks

- **Offers possibility of propagating information out** from "seed" nodes
- **Computations at each stage involve information** propagation around cavities

Recursive Cavity Modeling: Remote Sensing Application

Estimated SSHA (cm above Mean-Sea-Level)

Walk-sums, BP, and new algorithmic structures

- **Focus (for now) on linear-Gaussian** models
	- **For simplicity normalize variables so that** $P^{-1} = I - R$
	- \bullet R has zero diagonal

 Non-zero off-diagonal elements correspond to edges in the graph

Values equal to partial correlation coefficients

Walk-sums, Part II

. For "walk-summable" models ${\sf P}=({\sf I}-{\sf R})^{\text{-}1}$ $=$ ${\sf I}+{\sf R}$ + ${\sf R}^2$ + \ldots For any element of P, this sum corresponds to so-called "walk-sums" ₩ Sums of products of elements of R corresponding to walks from one node to another

● BP computes <i>strict subseries of these walk sums for the diagonal elements of P

Walk-sums, Part III

- ☀ Dynamic systems interpretation and questions:
	- 當 BP performs this computation via a distributed algorithm with local dynamics at each node with minimal memory
		- **Remember the most recent set of messages**
	- **Full walk-sums are realizable with local dynamics** only of very high dimension in general
		- Dimensions that grow with graph size
	- **There are** *many* **algorithms with increased memory** that calculate larger subseries
		- E.g., include one more path
		- State or "node" augmentation (e.g., Kikuchi, GBP)
	- What are the subseries that are realizable with state dimensions that don't depend on graph size?

Dealing with Limited Power: Sensor Tasking and *Handoff*

So where are we going? - I

☀ Graphical models

- 當 New classes of algorithms
	- RCM++

…

- **Algorithms based on walk-sum interpretations and** realization theory for graphical computations
- Theoretical analysis and performance guarantees
- Ö Model estimation and approximation
	- Learning graphical structure
		- \bullet From data
		- From more complex models
- **An array of applications**
	- "Bag of parts" models for object recognition (and *maybe* structural biology)
	- **Fast surface reconstruction and visualization**

So where are we going? - II

Information science in the large These problems are not problems in signal processing, computing, information theory They are problems in *all* of these fields **.*** And we've just scratched the surface ₩ Why should the graph of the phenomenon be the same as the sensing/communication network? **What if we send more complex messages with** protocol bits (e.g. to overcome BP over-counting) What if nodes develop protocols to *request* messages

IF In this case "no news" IS news...