One Group’s Journey

- The launch: Collaboration with Albert Benveniste and Michele Basseville
- Initial question: what are wavelets really good for (in terms that a card-carrying statistical signal processor would like)
 - What does optimal inference mean and look like for multiresolution models (whatever they are)
- The answer (at least our answer): Stochastic models defined on multiresolution trees
MR tree models as a cash cow

- MR models on trees admit really fast and scalable algorithms that involve propagation of statistics up and down (more generally throughout the tree)
- Generalization of Levinson
- Generalization of Kalman filters and RTS smoothers
- Calculation of likelihoods
- …
Milking that cow for all it’s worth

✦ Theory

✦ Old control theorists never die: Riccati equations, MR system theory, etc.

✦ MR models of Markov processes and fields

✦ Stochastic realization theory and “internal models”

✦ MR internal wavelet representations

✦ New results on max-entropy covariance extension
Keep on milking…

- **Applications**
 - Computer vision/image processing
 - Motion estimation in image sequences
 - Image restoration and reconstruction

- **Geophysics**
 - Oceanography
 - Groundwater hydrology
 - Helioseismology (???)
 - Other fields I don’t understand and probably can’t spell
One F’reinstance
Sadly, cows can’t fly (no matter how hard they flap their ears)

- The dark side of trees is the same as the bright side: No loops
- Try #1: Pretend the problem isn’t there
 - If the real objectives are at coarse scales, then fine-scale artifacts may not matter
- Try #2: Beat the dealer
 - Cheating: Averaging multiple trees
 - Theoretically precise cheating: Overlapping trees
- Try #3: Partial (and later, total) surrender
 - Put the &#%!*@# loops in!!
 - Now we’re playing on the same field (sort of) as AI graphical model-niks and statistical physicists
Graphical Models 101

- $G = (V, E)$ = a graph
 - V = Set of vertices
 - $E \subset V \times V$ = Set of edges
 - C = Set of cliques

- Markovianity on G (Hammersley-Clifford)

$$P({x_s \mid s \in V}) \propto \prod_{c \in C} \psi_c(x_c)$$

• Objectives

Estimation: Compute $P_s(x_s)$
Optimization: $\arg \max P({x_s \mid s \in V})$
For trees: Optimal algorithms compute reparameterizations

For Estimation

\[P(\{ x_s \mid s \in \mathcal{V} \}) = \prod_{s \in \mathcal{V}} P_s(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{P_{st}(x_s, x_t)}{P_s(x_s)P_t(x_t)} \]

For Optimization

\[P(\{ x_s \mid s \in \mathcal{V} \}) \propto \prod_{s \in \mathcal{V}} P_s(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{\tilde{P}_{st}(x_s, x_t)}{P_s(x_s)P_t(x_t)} \]

\[\tilde{P}_s(x_s) = \max_{\{ x_t \mid t \neq s \}} P(\{ x_s \mid s \in \mathcal{V} \}) \]
Algorithms that do this on trees

- **Message-passing** algorithms for “estimation” (marginal computation)
 - Two-sweep algorithms (leaves-root-leaves)
 - For linear/Gaussian models, these are the generalizations of Kalman filters and smoothers
 - Belief propagation, sum-product algorithm
 - Non-directional (no root; all nodes are equal)
 - Lots of freedom in message scheduling

- **Message-passing** algorithms for “optimization” (MAP estimation)
 - Two sweep: Generalization of Viterbi/dynamic programming
 - Max-product algorithm
What do people do when there are loops?

* One well-oiled approach
 * Belief propagation (and max-product) are algorithms whose local form is well defined for any graph
 * So why not just use these algorithms?

* Well-recognized limitations
 * The algorithm fuses information based on invalid assumptions of conditional independence
 * Think Chicken Little, rumor propagation,…
 * Do these algorithms converge?
 * If so, what do they converge to?
Near trees can help cows at least to hover…
Something else we’ve been doing: Tree-reparameterization

For any embedded acyclic structure:

For Estimation

\[
P(\{x_s \mid s \in \mathcal{V} \}) = \prod_{s \in \mathcal{V}} T_s(x_s) \prod_{(s,t) \in \mathcal{E}_{\text{tree}}} \frac{T_{st}(x_s, x_t)}{T_s(x_s) T_t(x_t)} \times \text{Remainder}
\]

For Optimization

\[
P(\{x_s \mid s \in \mathcal{V} \}) \propto \prod_{s \in \mathcal{V}} \overline{T}_s(x_s) \prod_{(s,t) \in \mathcal{E}_{\text{tree}}} \frac{\overline{T}_{st}(x_s, x_t)}{\overline{T}_s(x_s) \overline{T}_t(x_t)} \times \text{Remainder}
\]

\[
\overline{T}_s(x_s) = \max_{\{x_t \mid t \neq s\}} T(\{x_s \mid s \in \mathcal{V} \})
\]
So what does any of this have to do with distributed fusion and sensor networks?

- Well, we *are* talking about passing messages and fusing information
- But there are special issues in sensor networks that add some twists and require some thought
 - And that also lead to new results for graphical models more generally
A first example: Sensor Localization and Calibration

- Variables at each node can include
 - Node location, orientation, time offset

- Sources of information
 - Priors on variables (single-node potentials)
 - Time of arrival (1-way or 2-way), bearing, and absence of signal
 - These enter as edge potentials
 - Modeling absence of signals may be needed for well-posedness, but it also leads to denser graphs
Even this problem raises new challenges

- BP algorithms require sending messages that are likelihood functions or prob. distributions
 - That’s fine if the variables are discrete or if we are dealing with linear-Gaussian problems
 - More generally very little was available in the literature (other than brute-force discretization)

- Our approach: Nonparametric Belief Propagation (NBP)
Nonparametric Inference for General Graphs

Belief Propagation
- General graphs
- Discrete or Gaussian

Particle Filters
- Markov chains
- General potentials

Problem: What is the product of two collections of particles?
Nonparametric BP

I. Message Product: Draw samples of x_s from the product of all incoming messages and the local observation potential

$$m_{ts}(x_s) = \alpha \int x_t \psi_{s,t}(x_s, x_t) \psi_t(x_t, y_t) \prod_{u \in \Gamma(t) \setminus s} m_{ut}(x_t) \, dx_t$$

Stochastic update of kernel based messages:

II. Message Propagation: Draw samples of x_s from the compatibility function, $\psi_{st}(x_s, x_t)$, fixing x_t to the values sampled in step I

Samples form new kernel density estimate of outgoing message (determine new kernel bandwidths)
NBP particle generation

- Dealing with the explosion of terms in products
 - How do we sample from the product without explicitly constructing it?
- The key issue is solving the label sampling problem (which kernel)
- Solutions that have been developed involve
 - Multiresolution Gibbs sampling using KD-trees
 - Importance sampling
Examples: Hand-tracking and contour tracking using level sets
Communications-sensitive message-passing

Objective:
- Provide each node with computationally simple (and completely local) mechanism to decide if sending a message is worth it
- Need to adapt the algorithm in a simple way so that each node has a mechanism for updating its beliefs when it doesn’t receive a full set of messages

Simple rule:
- Don’t send a message if the K-L divergence from the previous message falls below a threshold
- If a node doesn’t receive a message, use the last one sent (which requires a bit of memory: to save the last one sent)
Illustrating comms-sensitive message-passing dynamics

Organized network data association

Self-organization with region-based representation
Empirical observations

- Sharp transitions in performance as a function of message tolerance threshold
- Dynamics of messaging provides scenario-dependent adaptivity automatically

However:

- Where is the theory to explain this behavior and provide design guidelines?
- This approach bases censoring solely on the information as measured by the transmitting node, with no attention paid to the objectives of the receiving node
How different are BP messages?

- Message “error” as ratio (or, difference of log-messages)

\[e_{ts}(x_s) = \frac{m_{ts}(x_s)}{\tilde{m}_{ts}(x_s)} \]

\[\log e_{ts}(x_s) = \log m_{ts}(x_s) - \log \tilde{m}_{ts}(x_s) \]

- One (scalar) measure
- Dynamic range
- Equivalent log-form

\[
d(e_{ts}) = \sup_{a,b} \sqrt{\frac{e_{ts}(a)}{e_{ts}(b)}}
\]

\[
\log d(e_{ts}) = \inf_{\alpha} \sup_x |\log \alpha m_{ts}(x) - \log \tilde{m}_{ts}(x)|
\]

\[
= \inf_{\alpha} \sup_x |\log \alpha - \log e_{ts}(x)|
\]
Why dynamic range?

- Satisfies sub-additivity condition

\[M_t(x) \propto m_{ut}(x) \cdot m_{st}(x) \quad \Rightarrow \quad \log d(E_t) = \log d\left(\frac{M_t}{\bar{M}_t}\right) \leq \log d(e_{ut}) + \log d(e_{st}) \]

- Message errors contract under edge potential strength/mixing condition
Results using this measure

- Best known convergence results for loopy BP
 - Result also provides result on relative locations of multiple fixed points
- Bounds and stochastic approximations for effects of (possibly intentional) message errors
Experiments

- Relatively weak potential functions
 - Loopy BP guaranteed to converge
 - Bound and estimate behave similarly

- Stronger potentials
 - Loopy BP not guaranteed to converge
 - Estimate may still be useful
Communicating particle sets

- Problem: transmit N iid samples $x_i \sim p(x)$
- Sequence of samples:
 - Expected cost is $\frac{1}{4} N R H(p)$
 - $H(p)$ = differential entropy
 - R = resolution of samples
- Set of samples
 - Invariant to reordering
 - We can reorder to reduce the transmission cost
 - Expected cost is $\frac{1}{4} N R H(p) - \log(N!)$
 - Entropy reduced for any deterministic order
 - In 1-D, “sorted” order
 - In > 1-D, can be harder, but…
Trading off error vs communications

- **KD-trees**
 - Tree-structure successively divides point sets
 - Typically along some cardinal dimension
 - Cache statistics of subsets for fast computation
 - Example: cache means and covariances

- Can also be used for approximation…
 - Any cut through the tree is a density estimate
 - Easy to optimize over possible cuts
 - Communications cost
 - Upper bound on error (KL, max-log, etc)
Examples – Sensor localization

- Many inter-related aspects
 - Message schedule
 - Outward “tree-like” pass
 - Typical “parallel” schedule
 - # of iterations (messages)
 - Typically require very few (1-3)
 - Could replace by msg stopping criterion

- Message approximation / bit budget
 - Most messages (eventually) “simple”
 - unimodal, near-Gaussian
 - Early messages & poorly localized sensors
 - May require more bits / components…
How can we take objectives of other nodes into account?

- Rapprochement of two lines of inquiry
 - Decentralized detection
 - Message passing algorithms for graphical models
- We’re just starting, but what we now know:
 - When there are communications constraints and both local and global objectives, optimal design requires the sensing nodes to organize
 - This organization in essence specifies a protocol for generating and interpreting messages
 - Avoiding the traps of optimality for decentralized detection for complex networks requires careful thought
A tractable and instructive case

- Directed set of sensing/decision nodes
 - Each node has its local measurements
 - Each node receives one or more bits of information from its “parents” and sends one or more bits to its “children”
 - Overall cost is a sum of costs incurred by each node based on the bits it generates and the value of the state of the phenomenon being measured
 - Each node has a local model of the part of the underlying phenomenon that it observes and for which it is responsible
 - Simplest case: the phenomenon being measured has graph structure compatible with that of the sensing nodes
Person-by-person optimal solution

- Iterative optimization of local decision rules: A message-passing algorithm!
- Each local optimization step requires:
 - A pdf for the bits received from parents (based on the current decision rules at ancestor nodes)
 - A cost-to-go summarizing the impact of different decisions on offspring nodes based on their current decision rules
Two algorithmic structures

- Gauss-Seidel, e.g. sweeping from one end to the other and then back
 - Convergence guaranteed, as cost reduced at each stage
 - Very particular message scheduling

- Jacobi—Everyone updates at the same time
 - No convergence guarantees, but has same equilibria
 - Corresponds to the simplest message passing structure in BP: Everyone sends and receives messages at each iteration
What happens with more general networks?

- **Basic answer:** We’ll let you know
- **What we do know:**
 - Choosing decision “rules” corresponds to specifying a graphical model consisting of
 - The underlying phenomenon
 - The sensor network *(the part of the model we get to play with)*
 - The cost
 - For this reason
 - There are nontrivial issues in specifying globally compatible decision “rules”
 - Optimization (and for that matter cost evaluation) is intractable, for exactly the same reasons as inference for graphical models
Alternate approach to approximate inference: Recursive Cavity Models

Comments

- Linear-Gaussian models
 - Graphical model specified by P^{-1}
 - Algorithm corresponds to *information form* of MR tree algorithms, with one additional step
 - Thinning approximations to maintain tractability
 - Leads to bounded errors under appropriate cross-boundary “mixing” conditions

- For sensor networks
 - Offers possibility of propagating information out from “seed” nodes
 - Computations at each stage involve information propagation around cavities
Recursive Cavity Modeling: Remote Sensing Application

Estimated SSHA (cm above Mean-Sea-Level)
Walk-sums, BP, and new algorithmic structures

- Focus (for now) on linear-Gaussian models
- For simplicity normalize variables so that $P^{-1} = I - R$
- R has zero diagonal
- Non-zero off-diagonal elements correspond to edges in the graph
 - Values equal to partial correlation coefficients
Walk-sums, Part II

- For “walk-summable” models
 \[P = (I - R)^{-1} = I + R + R^2 + \ldots \]
- For any element of P, this sum corresponds to so-called “walk-sums”
 - Sums of products of elements of R corresponding to walks from one node to another
- BP computes strict subseries of these walk sums for the diagonal elements of P
Walk-sums, Part III

- Dynamic systems interpretation and questions:
 - BP performs this computation via a distributed algorithm with local dynamics at each node with minimal memory
 - Remember the most recent set of messages
 - Full walk-sums are realizable with local dynamics only of very high dimension in general
 - Dimensions that grow with graph size
 - There are many algorithms with increased memory that calculate larger subseries
 - E.g., include one more path
 - State or “node” augmentation (e.g., Kikuchi, GBP)
 - What are the subseries that are realizable with state dimensions that don’t depend on graph size?
Dealing with Limited Power: Sensor Tasking and *Handoff*
So where are we going? - 1

- Graphical models
 - New classes of algorithms
 - RCM++
 - Algorithms based on walk-sum interpretations and realization theory for graphical computations
 - Theoretical analysis and performance guarantees
 - Model estimation and approximation
 - Learning graphical structure
 - From data
 - From more complex models
 - An array of applications
 - “Bag of parts” models for object recognition (and maybe structural biology)
 - Fast surface reconstruction and visualization
 - ...
So where are we going? - II

- Information science in the large
 - These problems are not problems in signal processing, computing, information theory
 - They are problems in *all* of these fields
- And we’ve just scratched the surface
 - Why should the graph of the phenomenon be the same as the sensing/communication network?
 - What if we send more complex messages with protocol bits (e.g. to overcome BP over-counting)
 - What if nodes develop protocols to *request* messages
 - In this case “no news” *IS* news…