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One Group’s Journey
The launch: Collaboration with Albert 
Benveniste and Michele Basseville

Initial question: what are wavelets really
good for (in terms that a card-carrying 
statistical signal processor would like)

What does optimal inference mean and look like 
for multiresolution models (whatever they are)

The answer (at least our answer): Stochastic 
models defined on multiresolution trees



MR tree models as a cash cow
MR models on trees admit really fast 
and scalable algorithms that involve 
propagation of statistics up and down 
(more generally throughout the tree)

Generalization of Levinson
Generalization of Kalman filters and RTS 
smoothers
Calculation of likelihoods
…



Milking that cow for all it’s worth
Theory

Old control theorists never die:  Riccati
equations, MR system theory, etc. 
MR models of Markov processes and fields
Stochastic realization theory and “internal 
models”
MR internal wavelet representations
New results on max-entropy covariance 
extension



Keep on milking…
Applications

Computer vision/image processing
Motion estimation in image sequences
Image restoration and reconstruction

Geophysics
Oceanography
Groundwater hydrology
Helioseismology (???)
Other fields I don’t understand and probably 
can’t spell



One F’rinstance



Sadly, cows can’t fly (no matter 
how hard they flap their ears)

The dark side of trees is the same as the bright 
side:  No loops
Try #1:  Pretend the problem isn’t there

If the real objectives are at coarse scales, then fine-
scale artifacts may not matter

Try #2: Beat the dealer
Cheating:  Averaging multiple trees
Theoretically precise cheating:  Overlapping trees

Try #3:  Partial (and later, total) surrender
Put the  &#%!*@#  loops in!!
Now we’re playing on the same field (sort of) as AI 
graphical model-niks and statistical physicists



Graphical Models 101
G = (V, E) = a graph

V = Set of vertices
E ⊂ V×V = Set of edges
C = Set of cliques

Markovianity on G (Hammersley-Clifford)
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For trees: Optimal algorithms 
compute reparameterizations
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Algorithms that do this on trees
Message-passing algorithms for “estimation” 
(marginal computation)

Two-sweep algorithms (leaves-root-leaves)
For linear/Gaussian models, these are the 
generalizations of Kalman filters and smoothers

Belief propagation, sum-product algorithm
Non-directional (no root; all nodes are equal)
Lots of freedom in message scheduling

Message-passing algorithms for
“optimization” (MAP estimation)

Two sweep: Generalization of Viterbi/dynamic 
programming
Max-product algorithm



What do people do when 
there are loops?
One well-oiled approach

Belief propagation (and max-product) are algorithms 
whose local form is well defined for any graph
So why not just use these algorithms?

Well-recognized limitations
The algorithm fuses information based on invalid 
assumptions of conditional independence
Think Chicken Little, rumor propagation,…
Do these algorithms converge?
If so, what do they converge to?



Near trees can help cows at 
least to hover…

Exact Covariance Tree Covariance Near-Tree Covariance

Tree

Near-Tree



Something else we’ve been 
doing:  Tree-reparameterization

For any embedded acyclic structure: 
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So what does any of this have to do with 
distributed fusion and sensor networks?

Well, we are talking about passing 
messages and fusing information
But there are special issues in sensor 
networks that add some twists and require 
some thought 

And that also lead to new results for graphical 
models more generally



A first example: Sensor 
Localization and Calibration

Variables at each node can include
Node location, orientation, time offset

Sources of information
Priors on variables (single-node potentials)
Time of arrival (1-way or 2-way), bearing, and absence of signal

These enter as edge potentials
Modeling absence of signals may be needed for well-posedness, but it 
also leads to denser graphs



Even this problem raises new 
challenges
BP algorithms require sending messages that 
are likelihood functions or prob. distributions

That’s fine if the variables are discrete or if we are 
dealing with linear-Gaussian problems
More generally very little was available in the 
literature (other than brute-force discretization)

Our approach: Nonparametric Belief 
Propagation (NBP)



Nonparametric Inference for General Graphs

Problem: What is the product of two 
collections of particles?

Belief Propagation
• General graphs

• Discrete or Gaussian

Particle Filters
• Markov chains

• General potentials

Nonparametric BP
• General graphs

• General potentials



Nonparametric BP

I.  Message Product:  Draw samples of       from the product of all incoming 
messages and the local observation potential

II. Message Propagation:  Draw samples of       from the compatibility 
function,                      , fixing       to the values sampled in step I

Samples form new kernel density estimate of outgoing message 
(determine new kernel bandwidths)

Stochastic update of kernel based messages:



NBP particle generation

Dealing with the explosion of terms in 
products

How do we sample from the product 
without explicitly constructing it?

The key issue is solving the label 
sampling problem (which kernel)

Solutions that have been developed 
involve

Multiresolution Gibbs sampling using KD-trees
Importance sampling



Examples: Hand-tracking and 
contour tracking using level sets



Communications-sensitive 
message-passing

Objective:
Provide each node with computationally simple (and 
completely local) mechanism to decide if sending a 
message is worth it
Need to adapt the algorithm in a simple way so that 
each node has a mechanism for updating its beliefs 
when it doesn’t receive a full set of messages

Simple rule:
Don’t send a message if the K-L divergence from the 
previous message falls below a threshold
If a node doesn’t receive a message, use the last one 
sent (which requires a bit of memory: to save the last 
one sent)



Illustrating comms-sensitive 
message-passing dynamics
Organized network 

data association
Self-organization 

with region-based representation



Empirical observations
Sharp transitions in performance as a function of 
message tolerance threshold
Dynamics of messaging provides scenario-
dependent adaptivity automatically
However:

Where is the theory to explain this behavior and 
provide design guidelines?
This approach bases censoring solely on the 
information as measured by the transmitting 
node, with no attention paid to the objectives of 
the receiving node



Message “error” as ratio (or, difference of log-messages)

One (scalar) measure
Dynamic range
Equivalent log-form

How different are BP messages?



Why dynamic range?
Satisfies sub-additivity condition

Message errors contract under edge 
potential strength/mixing condition



Results using this measure
Best known convergence results for 
loopy BP

Result also provides result on relative 
locations of multiple fixed points

Bounds and stochastic approximations 
for effects of (possibly intentional) 
message errors



Experiments
Relatively weak 
potential functions

Loopy BP 
guaranteed to 
converge
Bound and estimate 
behave similarly

Stronger potentials
Loopy BP not guaranteed to 

converge
Estimate may still be 

useful



Communicating particle sets
Problem: transmit N iid samples 
Sequence of samples:

Expected cost is ¼ N*R*H(p)
H(p) = differential entropy
R = resolution of samples

Set of samples
Invariant to reordering

We can reorder to reduce the transmission cost
Expected cost is ¼ N*R*H(p) – log(N!)
Entropy reduced for any deterministic order

In 1-D, “sorted” order
In > 1-D, can be harder, but…



Trading off error vs 
communications

KD-trees
Tree-structure successively divides point sets

Typically along some cardinal dimension
Cache statistics of subsets for fast 
computation
Example: cache means and covariances

Can also be used for approximation…
Any cut through the tree is a density estimate
Easy to optimize over possible cuts

Communications cost
Upper bound on error (KL, max-log, etc)



Examples – Sensor 
localization

Many inter-related aspects
Message schedule

Outward “tree-like” pass
Typical “parallel” schedule

# of iterations (messages)
Typically require very few (1-3)
Could replace by msg stopping criterion

Message approximation / bit budget
Most messages (eventually) “simple” 

unimodal, near-Gaussian
Early messages & poorly localized sensors

May require more bits / components…



How can we take objectives of 
other nodes into account?
Rapprochement of two lines of inquiry

Decentralized detection
Message passing algorithms for graphical models

We’re just starting, but what we now know:
When there are communications constraints and both 
local and global objectives, optimal design requires the 
sensing nodes to organize 
This organization in essence specifies a protocol for 
generating and interpreting messages
Avoiding the traps of optimality for decentralized 
detection for complex networks requires careful 
thought



A tractable and instructive case
Directed set of sensing/decision nodes

Each node has its local measurements
Each node receives one or more bits of 
information from its “parents” and sends one or 
more bits to its “children”
Overall cost is a sum of costs incurred by each 
node based on the bits it generates and the value 
of the state of the phenomenon being measured
Each node has a local model of the part of the 
underlying phenomenon that it observes and for 
which it is responsible

Simplest case: the phenomenon being measured has 
graph structure compatible with that of the sensing nodes



Person-by-person optimal 
solution

Iterative optimization of local decision 
rules:  A message-passing algorithm!
Each local optimization step requires

A pdf for the bits received from parents 
(based on the current decision rules at 
ancestor nodes)
A cost-to-go summarizing the impact of 
different decisions on offspring nodes 
based on their current decision rules



Two algorithmic structures
Gauss-Seidel, e.g. sweeping from one end to 
the other and then back

Convergence guaranteed, as cost reduced at 
each stage
Very particular message scheduling

Jacobi—Everyone updates at the same time
No convergence guarantees, but has same 
equilibria
Corresponds to the simplest message passing 
structure in BP: Everyone sends and receives 
messages at each iteration



What happens with more 
general networks?

Basic answer: We’ll let you know 
What we do know:

Choosing decision “rules” corresponds to 
specifying a graphical model consisting of 

The underlying phenomenon
The sensor network (the part of the model we get to 
play with)
The cost

For this reason
There are nontrivial issues in specifying globally 
compatible decision “rules”
Optimization (and for that matter cost evaluation) is 
intractable, for exactly the same reasons as inference for 
graphical models



Alternate approach to approximate 
inference: Recursive Cavity Models



Comments
Linear-Gaussian models

Graphical model specified by P-1

Algorithm corresponds to information form of MR 
tree algorithms, with one additional step

Thinning approximations to maintain tractability
Leads to bounded errors under appropriate cross-
boundary “mixing” conditions

For sensor networks
Offers possibility of propagating information out 
from “seed” nodes
Computations at each stage involve information 
propagation around cavities 



Recursive Cavity Modeling:
Remote Sensing Application



Walk-sums, BP, and new 
algorithmic structures

Focus (for now) on linear-Gaussian 
models

For simplicity normalize variables so that 
P-1 = I – R

R has zero diagonal 
Non-zero off-diagonal elements 
correspond to edges in the graph

Values equal to partial correlation coefficients



Walk-sums, Part II
For “walk-summable” models

P = (I – R)-1 = I+R+R2+…
For any element of P, this sum 
corresponds to so-called “walk-sums”

Sums of products of elements of R 
corresponding to walks from one node to 
another

BP computes strict subseries of these 
walk sums for the diagonal elements of P



Walk-sums, Part III
Dynamic systems interpretation and questions:

BP performs this computation via a distributed 
algorithm with local dynamics at each node with 
minimal memory 

Remember the most recent set of messages
Full walk-sums are realizable with local dynamics 
only of very high dimension in general

Dimensions that grow with graph size
There are many algorithms with increased memory 
that calculate larger subseries

E.g., include one more path
State or “node” augmentation (e.g., Kikuchi, GBP)

What are the subseries that are realizable with state 
dimensions that don’t depend on graph size?



Dealing with Limited Power: Sensor 
Tasking and Handoff



So where are we going? - I
Graphical models

New classes of algorithms
RCM++
Algorithms based on walk-sum interpretations and 
realization theory for graphical computations
Theoretical analysis and performance guarantees

Model estimation and approximation
Learning graphical structure

From data
From more complex models

An array of applications
“Bag of parts” models for object recognition (and maybe
structural biology)
Fast surface reconstruction and visualization
…



So where are we going? - II
Information science in the large

These problems are not problems in signal 
processing, computing, information theory
They are problems in all of these fields

And we’ve just scratched the surface
Why should the graph of the phenomenon be the 
same as the sensing/communication network?
What if we send more complex messages with 
protocol bits (e.g. to overcome BP over-counting)
What if nodes develop protocols to request 
messages

In this case “no news” IS news…


