
Graphical Models, Distributed
Fusion, and Sensor Networks

Alan S. Willsky

October 2005

One Group’s Journey
The launch: Collaboration with Albert
Benveniste and Michele Basseville

Initial question: what are wavelets really
good for (in terms that a card-carrying
statistical signal processor would like)

What does optimal inference mean and look like
for multiresolution models (whatever they are)

The answer (at least our answer): Stochastic
models defined on multiresolution trees

MR tree models as a cash cow
MR models on trees admit really fast
and scalable algorithms that involve
propagation of statistics up and down
(more generally throughout the tree)

Generalization of Levinson
Generalization of Kalman filters and RTS
smoothers
Calculation of likelihoods
…

Milking that cow for all it’s worth
Theory

Old control theorists never die: Riccati
equations, MR system theory, etc.
MR models of Markov processes and fields
Stochastic realization theory and “internal
models”
MR internal wavelet representations
New results on max-entropy covariance
extension

Keep on milking…
Applications

Computer vision/image processing
Motion estimation in image sequences
Image restoration and reconstruction

Geophysics
Oceanography
Groundwater hydrology
Helioseismology (???)
Other fields I don’t understand and probably
can’t spell

One F’rinstance

Sadly, cows can’t fly (no matter
how hard they flap their ears)

The dark side of trees is the same as the bright
side: No loops
Try #1: Pretend the problem isn’t there

If the real objectives are at coarse scales, then fine-
scale artifacts may not matter

Try #2: Beat the dealer
Cheating: Averaging multiple trees
Theoretically precise cheating: Overlapping trees

Try #3: Partial (and later, total) surrender
Put the &#%!*@# loops in!!
Now we’re playing on the same field (sort of) as AI
graphical model-niks and statistical physicists

Graphical Models 101
G = (V, E) = a graph

V = Set of vertices
E ⊂ V×V = Set of edges
C = Set of cliques

Markovianity on G (Hammersley-Clifford)

 })

 })
C

CC

Vs|x({P
)x(P

)x(Vs|x({P

S

ss

S

∈

•

∝∈ ∏
⊂

max arg :onOptimizati
 Compute :Estimation

Objectives
C

ψ

For trees: Optimal algorithms
compute reparameterizations

)x(P)x(P
)x,x(P)x(P})s|x({P

)t,s(ttss

tsst
s

s
ss =∈ ∏∏

∈∈

V
EV

EstimationFor

}st|x{
})s|x({Pmax)x(P

)x(P)x(P
)x,x(P)x(P})s|x({P

t

sss

)t,s(ttss

tsst
s

s
ss

≠
∈=

∝∈ ∏∏
∈∈

V

V
EV

onOptimizatiFor

Algorithms that do this on trees
Message-passing algorithms for “estimation”
(marginal computation)

Two-sweep algorithms (leaves-root-leaves)
For linear/Gaussian models, these are the
generalizations of Kalman filters and smoothers

Belief propagation, sum-product algorithm
Non-directional (no root; all nodes are equal)
Lots of freedom in message scheduling

Message-passing algorithms for
“optimization” (MAP estimation)

Two sweep: Generalization of Viterbi/dynamic
programming
Max-product algorithm

What do people do when
there are loops?
One well-oiled approach

Belief propagation (and max-product) are algorithms
whose local form is well defined for any graph
So why not just use these algorithms?

Well-recognized limitations
The algorithm fuses information based on invalid
assumptions of conditional independence
Think Chicken Little, rumor propagation,…
Do these algorithms converge?
If so, what do they converge to?

Near trees can help cows at
least to hover…

Exact Covariance Tree Covariance Near-Tree Covariance

Tree

Near-Tree

Something else we’ve been
doing: Tree-reparameterization

For any embedded acyclic structure:

)x(T)x(T
)x,x(T)x(T})s|x({P

)t,s(ttss

tsst
s

s
ss ×=∈ ∏∏

∈∈

V
treeEV

Remainder

EstimationFor

}st|x{
})s|x({Tmax)x(T

)x(T)x(T
)x,x(T)x(T})s|x({P

t

sss

)t,s(ttss

tsst
s

s
ss

≠
∈=

×∝∈ ∏∏
∈∈

V

V
treeEV

Remainder

onOptimizatiFor

So what does any of this have to do with
distributed fusion and sensor networks?

Well, we are talking about passing
messages and fusing information
But there are special issues in sensor
networks that add some twists and require
some thought

And that also lead to new results for graphical
models more generally

A first example: Sensor
Localization and Calibration

Variables at each node can include
Node location, orientation, time offset

Sources of information
Priors on variables (single-node potentials)
Time of arrival (1-way or 2-way), bearing, and absence of signal

These enter as edge potentials
Modeling absence of signals may be needed for well-posedness, but it
also leads to denser graphs

Even this problem raises new
challenges
BP algorithms require sending messages that
are likelihood functions or prob. distributions

That’s fine if the variables are discrete or if we are
dealing with linear-Gaussian problems
More generally very little was available in the
literature (other than brute-force discretization)

Our approach: Nonparametric Belief
Propagation (NBP)

Nonparametric Inference for General Graphs

Problem: What is the product of two
collections of particles?

Belief Propagation
• General graphs

• Discrete or Gaussian

Particle Filters
• Markov chains

• General potentials

Nonparametric BP
• General graphs

• General potentials

Nonparametric BP

I. Message Product: Draw samples of from the product of all incoming
messages and the local observation potential

II. Message Propagation: Draw samples of from the compatibility
function, , fixing to the values sampled in step I

Samples form new kernel density estimate of outgoing message
(determine new kernel bandwidths)

Stochastic update of kernel based messages:

NBP particle generation

Dealing with the explosion of terms in
products

How do we sample from the product
without explicitly constructing it?

The key issue is solving the label
sampling problem (which kernel)

Solutions that have been developed
involve

Multiresolution Gibbs sampling using KD-trees
Importance sampling

Examples: Hand-tracking and
contour tracking using level sets

Communications-sensitive
message-passing

Objective:
Provide each node with computationally simple (and
completely local) mechanism to decide if sending a
message is worth it
Need to adapt the algorithm in a simple way so that
each node has a mechanism for updating its beliefs
when it doesn’t receive a full set of messages

Simple rule:
Don’t send a message if the K-L divergence from the
previous message falls below a threshold
If a node doesn’t receive a message, use the last one
sent (which requires a bit of memory: to save the last
one sent)

Illustrating comms-sensitive
message-passing dynamics
Organized network

data association
Self-organization

with region-based representation

Empirical observations
Sharp transitions in performance as a function of
message tolerance threshold
Dynamics of messaging provides scenario-
dependent adaptivity automatically
However:

Where is the theory to explain this behavior and
provide design guidelines?
This approach bases censoring solely on the
information as measured by the transmitting
node, with no attention paid to the objectives of
the receiving node

Message “error” as ratio (or, difference of log-messages)

One (scalar) measure
Dynamic range
Equivalent log-form

How different are BP messages?

Why dynamic range?
Satisfies sub-additivity condition

Message errors contract under edge
potential strength/mixing condition

Results using this measure
Best known convergence results for
loopy BP

Result also provides result on relative
locations of multiple fixed points

Bounds and stochastic approximations
for effects of (possibly intentional)
message errors

Experiments
Relatively weak
potential functions

Loopy BP
guaranteed to
converge
Bound and estimate
behave similarly

Stronger potentials
Loopy BP not guaranteed to

converge
Estimate may still be

useful

Communicating particle sets
Problem: transmit N iid samples
Sequence of samples:

Expected cost is ¼ N*R*H(p)
H(p) = differential entropy
R = resolution of samples

Set of samples
Invariant to reordering

We can reorder to reduce the transmission cost
Expected cost is ¼ N*R*H(p) – log(N!)
Entropy reduced for any deterministic order

In 1-D, “sorted” order
In > 1-D, can be harder, but…

Trading off error vs
communications

KD-trees
Tree-structure successively divides point sets

Typically along some cardinal dimension
Cache statistics of subsets for fast
computation
Example: cache means and covariances

Can also be used for approximation…
Any cut through the tree is a density estimate
Easy to optimize over possible cuts

Communications cost
Upper bound on error (KL, max-log, etc)

Examples – Sensor
localization

Many inter-related aspects
Message schedule

Outward “tree-like” pass
Typical “parallel” schedule

of iterations (messages)
Typically require very few (1-3)
Could replace by msg stopping criterion

Message approximation / bit budget
Most messages (eventually) “simple”

unimodal, near-Gaussian
Early messages & poorly localized sensors

May require more bits / components…

How can we take objectives of
other nodes into account?
Rapprochement of two lines of inquiry

Decentralized detection
Message passing algorithms for graphical models

We’re just starting, but what we now know:
When there are communications constraints and both
local and global objectives, optimal design requires the
sensing nodes to organize
This organization in essence specifies a protocol for
generating and interpreting messages
Avoiding the traps of optimality for decentralized
detection for complex networks requires careful
thought

A tractable and instructive case
Directed set of sensing/decision nodes

Each node has its local measurements
Each node receives one or more bits of
information from its “parents” and sends one or
more bits to its “children”
Overall cost is a sum of costs incurred by each
node based on the bits it generates and the value
of the state of the phenomenon being measured
Each node has a local model of the part of the
underlying phenomenon that it observes and for
which it is responsible

Simplest case: the phenomenon being measured has
graph structure compatible with that of the sensing nodes

Person-by-person optimal
solution

Iterative optimization of local decision
rules: A message-passing algorithm!
Each local optimization step requires

A pdf for the bits received from parents
(based on the current decision rules at
ancestor nodes)
A cost-to-go summarizing the impact of
different decisions on offspring nodes
based on their current decision rules

Two algorithmic structures
Gauss-Seidel, e.g. sweeping from one end to
the other and then back

Convergence guaranteed, as cost reduced at
each stage
Very particular message scheduling

Jacobi—Everyone updates at the same time
No convergence guarantees, but has same
equilibria
Corresponds to the simplest message passing
structure in BP: Everyone sends and receives
messages at each iteration

What happens with more
general networks?

Basic answer: We’ll let you know
What we do know:

Choosing decision “rules” corresponds to
specifying a graphical model consisting of

The underlying phenomenon
The sensor network (the part of the model we get to
play with)
The cost

For this reason
There are nontrivial issues in specifying globally
compatible decision “rules”
Optimization (and for that matter cost evaluation) is
intractable, for exactly the same reasons as inference for
graphical models

Alternate approach to approximate
inference: Recursive Cavity Models

Comments
Linear-Gaussian models

Graphical model specified by P-1

Algorithm corresponds to information form of MR
tree algorithms, with one additional step

Thinning approximations to maintain tractability
Leads to bounded errors under appropriate cross-
boundary “mixing” conditions

For sensor networks
Offers possibility of propagating information out
from “seed” nodes
Computations at each stage involve information
propagation around cavities

Recursive Cavity Modeling:
Remote Sensing Application

Walk-sums, BP, and new
algorithmic structures

Focus (for now) on linear-Gaussian
models

For simplicity normalize variables so that
P-1 = I – R

R has zero diagonal
Non-zero off-diagonal elements
correspond to edges in the graph

Values equal to partial correlation coefficients

Walk-sums, Part II
For “walk-summable” models

P = (I – R)-1 = I+R+R2+…
For any element of P, this sum
corresponds to so-called “walk-sums”

Sums of products of elements of R
corresponding to walks from one node to
another

BP computes strict subseries of these
walk sums for the diagonal elements of P

Walk-sums, Part III
Dynamic systems interpretation and questions:

BP performs this computation via a distributed
algorithm with local dynamics at each node with
minimal memory

Remember the most recent set of messages
Full walk-sums are realizable with local dynamics
only of very high dimension in general

Dimensions that grow with graph size
There are many algorithms with increased memory
that calculate larger subseries

E.g., include one more path
State or “node” augmentation (e.g., Kikuchi, GBP)

What are the subseries that are realizable with state
dimensions that don’t depend on graph size?

Dealing with Limited Power: Sensor
Tasking and Handoff

So where are we going? - I
Graphical models

New classes of algorithms
RCM++
Algorithms based on walk-sum interpretations and
realization theory for graphical computations
Theoretical analysis and performance guarantees

Model estimation and approximation
Learning graphical structure

From data
From more complex models

An array of applications
“Bag of parts” models for object recognition (and maybe
structural biology)
Fast surface reconstruction and visualization
…

So where are we going? - II
Information science in the large

These problems are not problems in signal
processing, computing, information theory
They are problems in all of these fields

And we’ve just scratched the surface
Why should the graph of the phenomenon be the
same as the sensing/communication network?
What if we send more complex messages with
protocol bits (e.g. to overcome BP over-counting)
What if nodes develop protocols to request
messages

In this case “no news” IS news…

