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Birth of Relational Databases

A Short History of Databases:

e 1950s: Data scattered — each user to herself.
e 1960s. Databases — central data repository.
e 1970: E.F. Codd — relational model

— Data stored in tables (relations)

— First-order logic used to query data

e 1970s: Development of relational database systems,
with SQL as query language.

e 1980s: Relational databases become dominant.



Database Query Languages

Standard database query languages (e.g., SQL 2.0)
are essentially 1st-order.

Aho and Ullman, 1979: 1st-order languages are
weak; add recursion

Gallaire and Minker, 1978: add recursion via logic
programs

SQL 3.0, 1999: recursion added



A Theory of Database Query Language

e Chandra-Harel, 1979: A theory of computable
relational queries.

e Chandra-Harel,  1980: Expressiveness  and
computational complexity of relational queries.

Expressiveness costs money!!!

e Ist-order queries: LOGSPACE

e Recursive queries: PTIME



Datalog

Datalog: Chandra-Harel, 1982

e Function-free logic programs
e Existential, positive fixpoint logic

e Select-project-join-union-recur queries

Example: Transitive Closure
Path(zx,y) : — Edge(x,y)
Path(xz,y) : — Path(x,z), Path(z,y)

Definition: A program P is bounded if it is equivalent
to a non-recursive program.

Example: Impressionable Shopper
Buys(x,y) : — Trendy(x), Buys(z,y)
Buys(x,y) : — Likes(x,y)



Data Complexity

Definitions:

e The stage function sp(n) of a program P is the
least m such that P™(D) = P*°(D) for each D
with at most n elements.

e A query Q is in STAGE(f(n)) if it is expressible
by a program P such that sp(n) is in O(f(n)).

Database complexity and computational complexity:
e STAGE(polylogn) C NC

o STAGE(poly n) C PTIME

Gap Theorem [Kanellakis, 1992]:

e P is bounded iff it defines a query in STAGE(1)

e P is unbounded iff it does not define a query in
STAGE(f(n)), for f(n) in o(logn).

Gaifman, Mairson, Sagiv, V., 1987: Boundedness is
undecidable.



Research Program - Study Boundary

Parameters:

e Number of derived predicates

e Arity of derived predicates

e Number of rules

e Nonlinear vs. linear (one recursive call per rule)

e |/O convention

GMSV: undecidability holds for linear programs with a
single 4-ary derived predicate.



Binary Programs

Binary programs: binary derived predicates.

Theorem [Hillebrand, Kanellakis, Mairson, V., 1995]:
Boundedness is undecidable for programs with a single
binary derived predicate.

Proof: Reduction from halting problem for Turing
machines:

e >.: tape alphabet

e Base predicates: Zero(x), Succ(x,y),Q.(x) for
a € X

e Derived predicates:  Fing(x,y)— pointers to
corresponding positions in successive configurations

Cosmadakis,  Gaifman, Kanellakis, V., ~ 1988:
Boundedness is decidable for unary programs.



Query Containment

Query Optimization: Given @, find )’ such that:
e Q=@

e () is "easier’ than @)

Query Containment: 1 C Qs if Q1(B) C Q2(B)
for all databases B.

Fact: Q=Q' iff QC Q" and Q' C

Consequence: Query containment is a key
database problem.



Query Containment

Other applications:

® query reuse
e query reformulation

e information integration

e cooperative query answering

e integrity checking

Consequence: Query containment
fundamental database problem.
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Decidability of Query Containment

e SQL: undecidable
— Folk Theorem
— Poor theory and practice of optimization
e SPJU: decidable
— Chandra&Merlin—=1977, Sagiv& Yannakakis—1982
— Rich theory and practice of optimization

e Datalog: undecidable

— Shmueli-1977
— Difficult theory and practice of optimization

Unfortunately, most decision problems involving
Datalog are undecidable - almost no interesting,
well-behaved fragments.
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1990s: Back to Binary Relations

WWW:

e Nodes
e Edges

e Labels

Semistructured Data: WWW, SGML documents,
library catalogs, XML documents, Meta data, .. ..

Formally: (D, E, A, \)
e D - nodes

o [ C D? - edges

e A, — labels

e \: FF— A, —labeling (alt., also node labels)
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Path Queries

Active Research Topic: What is the right query
language for semistructured data?

Basic Element of all proposals: path queries
¢ Q(z,y) 1~ Ly

e [: formal language over labels

o a- ... b p

o Q(a,b) holdsif Iy 1y € L

Example: Regular Path Query
Q(xz,y) : — x (Wing - Part™ - Nut) y

13



Path-Query Containment

Qi(z,y) :—x L1y
Q2(z,y) 1 —x Loy

Language-Theoretic Lemma 1:

Q1 C Q2 iff Ly C Lo

Proof: Consider a database

a2 e pwithly -1, € Ly

Corollary: Path-Query Containment is

e undecidable for context-free path queries

e decidable for regular path queries.
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Regular Path Queries

Observations:

e A fragment of Transitive-Closure Logic

e A fragment of binary Datalog

— Concatenation: E(xz,y) : — Fi(x,2), Fa(z,y)
— Union: E(x,y) : — Ei(z,y)
E(z,y) : — Eas(x,y)
— Transitive Closure: P(x,y) : — E(z,2)
P(xvy) - E(:U,Z),E(Z,y)
Consequence:

e Data complexity: NLOGSPACE

e Expression complexity: PTIME

Containment: PSPACE-complete, via nondeterministic
automata (Stockmeyer, 1973).
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Language Containment — Upper Bound

Lemma: L(E;) C L(Ey) iff L(E,) — L(E3)) = ()

Algorithm for checking whether L(E;) C L(E3):

1. Construct NFAs A; such that L(A;) = L(E;) -
linear blow-up.

2. Construct As such that L(43) = ¥* — L(4y) -
exponential blow-up.

3. Construct A = A; x Ay such that L(A) = L(E;) —
L(FEs) — quadratic blow-up.

4. Check if there is a path from start state to final
state in A — NLOGSPACE.

Bottom Line: PSPACE
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Two-Way RPQs

Extended Alphabet: A_ ={a_ : a € A}
A=A UA_

Inverse Roles:
Part(x,y): y part of =
Part_(x,y): x part of y

Example: Step Siblings

Q(ﬂf,y) .
x [(father_ - father) + (mother_ - mother)]* vy

Containment: Two-way nondeterministic automata

e Hopcroft and Ullman, 1979: 2DFA

e Hopcroft, Motwani and Ullman, 2000: 777
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2NFA

A=(%,85,50,p, F)

e > — finite alphabet

e S — finite state set

e Sop C S —initial states
o F'C S — final states

e p: 5 x Y — 291041} _ transition function

Theorem: Rabin&Scott, Shepherdson, 1959
2NFA = INFA
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2RPQ Containment

Difficulties:

e 2NFA — 1NFA: exponential blow-up

— Consequence: Doubly exponential complementation

e Difference between query and language containment

- Ql(flf,y) . — x Parent Y
Q2(x,y) : — x Parent - Parent_ - Parent y

— (1 C Q2 but
L(Parent) € L(Parent - Parent_ - Parent)
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Back to Basics: 2NFA—1NFA

Theorem: Vardi, 1988

Let A = (3,5, S0, p, F) be a 2NFA. There is a INFA
A€ such that

o [(A9) =X*—L(A)

o [|A°|| e 20014l

Proof: Guess a subset-sequence counterexample

ap---ap—1 ¢ L(A) iff there is a sequence
To,T1, -+, 1} of subsets of S such that

1. S CTypand TxNF = 0.

2. If s €T, and (t,+1) € p(s,a;), then t € T;,q, for
0<:<k.

3. If s € T; and (t,0) € p(s,a;), then t € T, for
0<1<k.

4. If s € T; and (t,—1) € p(s,a;), then t € T;_4, for
0<i<k.
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Foldings
Definition: Let u,v € A*. We say that v folds onto
u, denoted v ~» u, if v can be “folded” on u, e.g.,

abb_bc ~ abe.

. . a b b b c a b C
Pictorially, — - = -~ - =-S5~ —. > .5

Definition: Let £ be an RE over A. Then fold(F) =
{v : u~wv,ue L(F)}.

Language-Theoretic Lemma 2:

Let Qi(2,y) +— o By y
QQ(CIJ,Z/) X E2 Yy

be ZRPQS Then Ql E QQ Iff L(El) g fOld(E2>
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2RPQ containment

'I:heorem: Let £ be an RE over A. There is a 2NFA
Afg such that

o L(Ag) = fold(E)
o [|Ag|| € O(I|EI)

Containment Q:(z,y) : —x Fy y
QQ(:Evy) Y E2 Yy
TFAE

e Q1 C Qo

o L(E\) C fold(Es).
o L(E1) C L(Ag,).

o L(E))NL(A%) =0
o L(Ap, x A5 ) =10

Bottom-line: 2RPQ containment is PSPACE-
complete.
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View-Based Query Processing

Global database: B over A

Views: {V1,...,V,}, V;is a query

View extensions: {&1,...,Ex}, & C Vi(B)
Global query Q over A

Local query over V1,...,V,

Query Processing

1.

View-based query answering: approximate Q(B)
using view-extension information.

View-based query rewriting: approximate global
query by a local query based on view definitions

. View-based query losslessness: Compare global

query with its view-based approximation.

View-based query containment. Compare view-
based approximations of two global queries.
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View-Based Query Rewriting

e Global database: B over Ay

o Views: {V1,...,V,,}, V;is a query

o View extensions: {&1,...,E0}, & C Vi(B)
o Global query () over A

e Local query over Vi,...,V,

Query Rewriting

AL =Avy,...,v,}
A=A UA_

e Find regular expression £ over A such that
Elv; — Vi, v, — rev(V;)] E Q.

—rev(v) = v_, rev(v_ = v), rev(e; + ez) =
rev(ey)+rev(es), rev(er;es) = rev(es);rev(ey),
rev(e*) = rev(e)*

e Find maximal such €&.

Example: () = abcd, Vi = ab, Vo =cd: (Q = V1 V5
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Counterexample Method

Candidate Rewriting: w =a; ...a; € AF

e w is a bad rewriting if

wlv; — Vi, v, - —rev(V;)] £ Q.

e w is a bad rewriting if there are witnesses
Wi, ..., wr € A* such that wi...wp Z L(Q),
where

- Ww; € L(V}) If Ay = Vy.
— w; € L(rev(Vj)) if a; = vj _.

® a Wi ...apwWg: counterexample word
Example: () = abed, V7 = ab, V5 = cd

e v1v1: bad rewriting, v1v2: good rewriting
e wi = ab, wo = ab: witnesses

® VjwiviWs: counterexample word
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Regular Counterexamples

Counterexample Word: ajw; ... apwy
1. w; € L(V}) if a; = Vj.
2. w; € L(rev(V;)) if a; = v, _.

3. wy...w £ L(Q)

Checking counterexample words with 2NFA:

e Check (1) and (2) with 2NFA for V;

e Use folding technique to construct 2NFA to check
w1 ... wi C L(Q) and then complement.

Complexity: exponential
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From Counterexamples to Rewritings

Constructing Good Rewritings

1. Construct 1INFA A; for counterexample words
(exponential).

2. Project out witness words to get 1INFA A, for bad
rewritings (aqwq .. .agwy — az .. .ay) (linear).

3. Complement As to get INFA Az for good rewritings
(exponential).

Theorem:

e Construction yields maximal rewriting (represented
by a 1DFA).

e Doubly expoential complexity is optimal.

e Checking whether the rewriting is equivalent to ()
is 2EXPSPACE-complete.
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Conjunctive Queries

Conjunctive Query: Existential, conjunctive, positive
first-order logic, i.e., first-order logic without V,V, —;
written as a rule

Q(ajla I 7xn) - Rl(x?)) Y2, 5134), ceey Rk(ﬂ?g, y3)

Significance:
e Most common SQL queries (Select-Project-Join)

e Core of Datalog

Example:

Triangle(x,y, z) : — Edge(x,y), Edge(y, z), Edge(z, )
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Conjunctive Query Containment

Canonical Database BY:

e Each variable in () is a distinct element

e Each subgoal R(x3,y2,x4) of Q) gives rise to a tuple
R(x3,y2,24) in B9

Fact: (Chandra and Merlin, 1977)
For conjunctive queries ()1 and ()2, TFAE:

e The containment ()1 C ()5 holds

e There is a homomorphism h : B9?2 — B@! that is
the identity on distinguished variables.
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Conjunctive 2RPQ

C2RPQ: Core of all semistructured query languages

QT1,...,Tn) = niliz1, . Ym B em

® Ez - 2RPQ

Intuition:

e C2RPQs are obtained from CQ by replacing atoms
with REs over A.

e C2RPQs are Select-Project- “Regular Join" queries.

Example:

Q(z,y) : — z (Wing- Partt - Nut) =,
z (Wing - Part™ - Nut) y
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C2RPQ Containment

Difficulty: Earlier techniques do not apply

e No canonical database

e No language-theoretic lemma

Solution: Combine and extend earlier ideas

e [nfinite family of canonical databases

— Each variable in () is a distinct element
— Each subgoal y; E;z; of () is replaced by a simple
path labeled by a word in L(E;).

e Represent canonical databases as words over a larger
alphabet

e Develop automata-theoretic characterization of
C2RPQ containment.

Bottom-line: C2RPQ containment is EXPSPACE-
complete.
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In Conclusion

Regular queries:

e A rich but well-behaved fragment of Datalog
e Of special interest for semistructured data

e Beautiful application of classical formal-language
theory

e Novel theory of regular paths in labeled graphs

Research Question: What is the ultimate class of
regular queries?

o RPQs
o 2RPQs
o (C2RPQs

o UC2RPQs
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