
1

Thread level parallelism:
It’s time now !

André Seznec
IRISA/INRIA
CAPS team

2

Focus of high performance computer
architecture

� Up to 1980
Î Mainframes

� Up to 1990
Î Supercomputers

� Till now:
Î General purpose microprocessors

� Coming:
Î Mobile computing, embedded computing

3

Uniprocessor architecture has
driven performance progress so far

The famous “Moore’s law” ☺

4

“Moore’s Law”:
predict exponential growth

� Every 18 months:

ÎThe number of transistors on chip doubles
ÎThe performance of the processor doubles
ÎThe size of the main memory doubles

30 years IRISA = 1,000,000 x

5

Moore’s Law:
transistors on a processor chip

1

100

10000

1000000

100000000

10000000000

1970 1980 1990 2000 2010

year

tr
an

si
st

or
s

4004
80486

HP8500

MontecitoIRISA
80 persons

IRISA
550 persons

IRISA
200 persons

IRISA
350 persons

6Moore’s Law: bits per DRAM chip

1
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

year

1K
64K

1M

1Gbit

64M

M. Métivier

G. Ruget L. Kott

J.P. Verjus

J.P. Banatre

C. Labit

and the IRISA directors

7

Moore’s Law:
Performance

1970 1980 1990 2000 2010

year

M
IP

S

0.06
16

20,000

3,000

J. Lenfant

A. Seznec

P. Michaud

F. Bodin

I. Puaut

and the CAPS group ☺

8

And parallel machines, so far ..

� Parallel machines have been built from every processor
generation:
Î Hardware coherent shared memory processors:

• Dual processors board
• Up to 8-processor server
• Large (very expensive) hardware coherent NUMA

architectures

Î Distributed memory systems:
• Intel iPSC, Paragon
• clusters, clusters of clusters ..

9

Parallel machines have not been mainstream so
far

But it might change

But it will change

10

What has prevented parallel machines
to prevail ?

� Economic issue:
Î Hardware cost grew superlinearly with the number of processors
Î Performance:

• Never been able to use the last generation micropocessor:
Î Scalability issue:

• Bus snooping does not scale well above 4-8 processors

� Parallel applications are missing:
Î Writing parallel applications requires thinking “parallel”
Î Automatic parallelization works on small segments

11

What has prevented parallel machines
to prevail ? (2)

� We (the computer architects) were also guilty☺:
Î We just found how to use these transistors in a

uniprocessor

� IC technology brought the transistors and the frequency

� We brought the performance ☺:
Î Compiler guys also helped a little bit ☺

12

Up to now, what was
microarchitecture about ?

� Memory access time is 100 ns
� Program semantic is sequential
� Instruction life (fetch, decode,..,execute, ..,memory access,..) is

10-20 ns

� How can we use the transistors to achieve the
highest performance as possible?
ÎSo far, up to 4 instructions every 0.3 ns

13

The architect tool box for uniprocessor
performance

� Pipelining

� Instruction Level Parallelism

� Speculative execution

� Memory hierarchy

14

Pipelining

� Just slice the instruction life in equal stages and launch
concurrent execution:

IF … DC … EX M … CTI0
I1

I2

IF … DC … EX M … CT
IF … DC … EX M … CT

IF … DC … EX M … CT

time

15

+ Instruction Level Parallelism

IF … DC … EX M … CT
IF … DC … EX M … CT

IF … DC … EX M … CT
IF … DC … EX M … CT

IF … DC … EX M … CT
IF … DC … EX M … CT

IF … DC … EX M … CT
IF … DC … EX M … CT

16

+ out-of-order execution

To optimize resource usage:
Executes as soon as operands are valid

IF DC EX M CTwait wait
IF DC EX M

IF DC EX M CT
IF DC EX M CT

IF DC EX M CT
IF DC EX M CT

CT

17

+ speculative execution

� 10-15 % branches:
Î On Pentium 4: direction and target known at cycle 31 !!

� Predict and execute speculatively:
Î Validate at execution time
Î State-of-the-art predictors:

• ≈2 misprediction per 1000 instructions

� Also predict:
Î Memory (in)dependency
Î (limited) data value

18

+ memory hierarchy

Processor

Main memory

I $ D$

300 cycles ≈ 1000 instL2 cache: 10 cycles

Small
1-2 cycles

19

+ prefetch

� On a miss on the L2 cache:
Îstops for 300 cycles ! ?!

� Try to predict which memory block will be
missing in the near future and bring it in the
L2 cache

20

Can we continue to just throw
transistors in uniprocessors ?

•Increasing inst. per cycles?
•Larger caches ?
•New prefetch mechanisms ?

21

One billion transistors now !!
The uniprocessor road seems over
� 16-32 way uniprocessor seems out of reach:

Î just not enough ILP
Î quadratic complexity on a few key components:

register file, bypass, issue logic,..

Î to avoid temperature hot spots:
• very long intra-CPU communications would be

needed
Î 5-7 years to design a 4-way superscalar core:

• How long to design a 16-way ?

22
One billion transistors:
Process/Thread level parallelism..
it’s time now !

� Simultaneous multithreading:
ÎTLP on a uniprocessor !

� Chip multiprocessor

Combine both !!

23

Simultaneous Multithreading (SMT):
parallel processing on a uniprocessor

� functional units are underused on superscalar
processors

� SMT:
ÎSharing the functional units on a superscalar

processor between several process
� Advantages:

ÎSingle process can use all the resources
Î dynamic sharing of all structures on

parallel/multiprocess workloads

24

Superscalar SMT

Tim
e

Unused

Thread 1
Thread 2
Thread 3

Thread 4

25

The Chip Multiprocessor

� Put a shared memory multiprocessor on a
single die:
ÎDuplicate the processor, its L1 cache, may

be L2,
ÎKeep the caches coherent
ÎShare the last level of the memory

hierarchy (may be)
ÎShare the external interface (to memory

and system)

26

General purpose Chip MultiProcessor (CMP):
why it did not (really) appear before 2003

� Till 2003 better (economic) usage for transistors:
Î Single process performance is the most important
Î More complex superscalar implementation
Î More cache space:

• Bring the L2 cache on-chip
• Enlarge the L2 cache
• Include a L3 cache (now)

Diminishing return !!

27

General Purpose CMP:
why it should not still appear as mainstream

� No further (significant) benefit in complexifying single
processors:
Î Logically we shoud use smaller and cheaper chips
Î or integrate the more functionalities on the same chip:

• E.g. the graphic pipeline

� Very poor catalog of parallel applications:
Î Single processor is still mainstream
Î Parallel programming is the privilege (knowledge) of a few

28

General Purpose CMP:
why they appear as mainstream now !

The economic factor:
-The consumer user pays 1000-2000 euros for a PC
-The professional user pays 2000-3000 euros for a PC

A constant:
The processor represents 15-30 % of the PC price

Intel and AMD will not cut their share

29

Chip multiprocessor:
what is the situation (2005) ?

� PCs : Dual-core Pentium 4 and Amd64

� Servers:
Î Itanium Montecito: dual-core
Î IBM Power 5: dual-core
ÎSun Niagara: 8 processor CMP

30
General Purpose Multicore SMT:
an industry reality Intel and IBM

� Intel Pentium 4 was developped as a 2-context SMT:
ÎCoined as hyperthreading by Intel
ÎDual-core SMT ☺

� Intel Itanium Montecito: dual-core 2-context SMT

� IBM Power5 : dual-core 2-context SMT

31

a 4-core 4-thread SMT:
think about tuning for performance !

P0

4 threads

P1 P2 P3

Shared L3 Cache

HUGE MAIN MEMORY

32

a 4-core 4-thread SMT:
think about tuning for performance ! (2)

� Write the application with more than 16 threads

� Take in account first level memory hierarchy sharing !

� Take in account 2nd level memory hierarchy sharing !

� Optimize for instruction level parallelism

33

Hardware TLP is there !!

But where are the
threads/processes ?

A unique opportunity for the software industry:
hardware parallelism comes for free

34

Waiting for the threads (1)

� Generate threads to increase performance of single
threads:
ÎSpeculative threads:

• Predict threads at medium granularity
– Either software or hardware

ÎHelper threads:
• Run ahead a speculative skeleton of the

application to:
– Avoid branch mispredictions
– Prefetch data

35

Waiting for the threads (2)

� Hardware transcient faults are becoming a concern:
ÎRuns twice the same thread on two cores and

check integrity

� Security:
Î array bound checking is nearly for free on a out-

of-order core

36

Waiting for the threads (3)

� Hardware clock frequency is limited by:
ÎPower budget: every core running
ÎTemperature hot-spots

� On single thread workload:
Î Increase clock frequency and migrate the process

37

Conclusion

� Hardware TLP is becoming mainstream for general-
purpose computing

� Moderate degrees of hardware TLPs will be available
for mid-term

� That is the first real opportunity for the whole
software industry to go parallel !

ÎBut it might demand a new generation of
application developpers !!

