Thread level parallelism:
It’s time now !

André Seznec
IRISA/INRIA
CAPS team

Focus of high performance computer
architecture

Up to 1980
2> Mainframes

Up to 1990
> Supercomputers

Till now:
> General purpose microprocessors

Coming:
> Mobile computing, embedded computing

The famous “Moore’s law” ©

“Moore’s Law”:
predict exponential growth

= Every 18 months:
> The number of transistors on chip doubles

> The performance of the processor doubles
> The size of the main memory doubles

30 years IRISA = 1,000,000 x

Moore's Law:
transistors on a processor chip

100000000 3
&
S 1000000 -
%0
2
: 10000 -
100 -
1 . .
1970 1980 1990 2000 2010

year

Moore's Law: bits per DRAM chip

1000000000!

100000000
10000000 -
1000000 -
100000 -
10000 -
1000 -

100 -

10 -

1

19

Moore's Law:

performance _|@Nd e 'CAPS group ©

1970 1980 1990 2000 2010

year

And parallel machines, so far ..

= Parallel machines have been built from every processor
generation:

> Hardware coherent shared memory processors:
* Dual processors board
« Up to 8-processor server

« Large (very expensive) hardware coherent NUMA
architectures

> Distributed memory systems:
* Intel iPSC, Paragon
» clusters, clusters of clusters ..

Parallel machines have not been mainstream so
far

Butit smickicl

But it will change

10

What has prevented parallel machines
to prevail ?

= Economic issue:
> Hardware cost grew superlinearly with the number of processors
> Performance:
* Never been able to use the last generation micropocessor:
> Scalability issue:
» Bus snooping does not scale well above 4-8 processors

= Parallel applications are missing:
> Writing parallel applications requires thinking “parallel”
> Automatic parallelization works on small segments

What has prevented parallel machines
to prevail ? (2)

= We (the computer architects) were also guilty©:

> We just found how to use these transistors in a
uniprocessor

= |C technology brought the transistors and the frequency

= We brought the performance ©:
> Compiler guys also helped a little bit ©

11

12

Up to now, what was
microarchitecture about ?

= Memory access time is 100 ns
= Program semantic is sequential

= Instruction life (fetch, decode,..,execute, ..,memory access,..) is
10-20 ns

= How can we use the transistors to achieve the
highest performance as possible?

> So far, up to 4 instructions every 0.3 ns

The architect tool box for uniprocessor
performance

= Pipelining
= |nstruction Level Parallelism
= Speculative execution

= Memory hierarchy

Pipelining

= Just slice the instruction life in equal stages and launch
concurrent execution:

time

14

+ Instruction Level Parallelism

15

16

+ out-of-order execution

To optimize resource usage:

Executes as soon as operands are valid

+ speculative execution

= 10-15 % branches:
> On Pentium 4: direction and target known at cycle 31 !!

= Predict and execute speculatively:
> Validate at execution time
> State-of-the-art predictors:
« =2 misprediction per 1000 instructions

= Also predict:
> Memory (in)dependency
> (limited) data value

17

+ memory hierarchy

Small
1-2 cycles

r Processor]

Y

L2 cache: 10 cycles

18

+ prefetch

= On a miss on the L2 cache:
> stops for 300 cycles ! ?!

= Try to predict which memory block will be
missing in the near future and bring it in the
L2 cache

19

Can we continue to just throw
transistors in uniprocessors ?

*Increasing inst. per cycles?
Larger caches ?
*New prefetch mechanisms ?

20

21

One billion transistors now !!

The uniErocessor road seems over

= 16-32 way uniprocessor seems out of reach:
> just not enough ILP

2 quadratic complexity on a few key components:
register file, bypass, issue logic,..

- to avoid temperature hot spots:

* very long intra-CPU communications would be
needed

> 5-7 years to design a 4-way superscalar core:
* How long to design a 16-way ?

One billion transistors:
Process/Thread level parallelism..

S T <0 40 1 —

= Simultaneous multithreading:
> TLP on a uniprocessor !

= Chip multiprocessor

22

Simultaneous Multithreading (SMT):
parallel processing on a uniprocessor

= functional units are underused on superscalar
Processors

= SMT:

> Sharing the functional units on a superscalar
processor between several process

= Advantages:
> Single process can use all the resources

> dynamic sharing of all structures on
parallel/multiprocess workloads

23

SN

Superscalar

HE
N
_ N
anus
=

SMT

HEN
I el
HENN

HEN
RN
EEEN
N
HENE
HENE

N B 8 Bl

Unused

Thread 1
Thread 2
Thread 3

Thread 4

24

The Chip Multiprocessor

= Put a shared memory multiprocessor on a
single die:

> Duplicate the processor, its L1 cache, may
be L2,

> Keep the caches coherent

> Share the last level of the memory
hierarchy (may be)

> Share the external interface (to memory
and system)

25

General purpose Chip MultiProcessor (CMP):
why it did not (really) appear before 2003

= Till 2003 better (economic) usage for transistors:
> Single process performance is the most important
> More complex superscalar implementation
> More cache space:
* Bring the L2 cache on-chip
« Enlarge the L2 cache
* Include a L3 cache (now)

Diminishing return !!

26

27

General Purpose CMP:
why it should not still appear as mainstream

= No further (significant) benefit in complexifying single
processors:
> Logically we shoud use smaller and cheaper chips
> or integrate the more functionalities on the same chip:

« E.g. the graphic pipeline

= Very poor catalog of parallel applications:
> Single processor is still mainstream
> Parallel programming is the privilege (knowledge) of a few

General Purpose CMP:
why they appear as mainstream now !

The economic factor:
-The consumer user pays 1000-2000 euros for a PC
-The professional user pays 2000-3000 euros for a PC

A constant:
The processor represents 15-30 % of the PC price

Intel and AMD will not cut their share

28

Chip multiprocessor:
what Is the situation (2005) ?

= PCs : Dual-core Pentium 4 and Amdo4

= Servers:
> Iltanium Montecito: dual-core
> |IBM Power 5: dual-core
> Sun Niagara: 8 processor CMP

29

General Purpose Multicore SMT-:
an industry reality Intel and IBM

= [ntel Pentium 4 was developped as a 2-context SMT-:
> Coined as hyperthreading by Intel
> Dual-core SMT ©

= |ntel ltanium Montecito: dual-core 2-context SMT

= |BM Power5 : dual-core 2-context SMT

30

a 4-core 4-thread SMT:
think about tuning for performance !

PO
4 threads

Pl

31

P2

P3

HUGE MAIN MEMORY

a 4-core 4-thread SMT:
think about tuning for performance ! (2)

= Write the application with more than 16 threads

= Take in account first level memory hierarchy sharing !

= Take in account 2nd level memory hierarchy sharing !

= Optimize for instruction level parallelism

32

Hardware TLP iIs there !!

But where are the
threads/processes ?

A unique opportunity for the software industry:

hardware parallelism comes for free

33

Waiting for the threads (1)

= Generate threads to increase performance of single
threads:

> Speculative threads:
* Predict threads at medium granularity
— Either software or hardware

> Helper threads:

« Run ahead a speculative skeleton of the
application to:

— Avoid branch mispredictions
— Prefetch data

34

Waiting for the threads (2)

= Hardware transcient faults are becoming a concern:

> Runs twice the same thread on two cores and
check integrity

= Security:
> array bound checking is nearly for free on a out-
of-order core

35

Waiting for the threads (3)

= Hardware clock frequency is limited by:
> Power budget: every core running
> Temperature hot-spots

= On single thread workload:
> Increase clock frequency and migrate the process

36

Conclusion

= Hardware TLP is becoming mainstream for general-
purpose computing

= Moderate degrees of hardware TLPs will be available
for mid-term

= That is the first real opportunity for the whole
software industry to go parallel !

> But it might demand a new generation of
application developpers !

37

