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Problem SettingProblem Setting

•• Solution spaceSolution space

-- continuous or discrete (combinatorial) continuous or discrete (combinatorial)

•• Objective function Objective function HH(·):(·):

•• ObjectiveObjective: : find optimal              such thatfind optimal              such that

-- Assumptions: existence, uniqueness (but possibly Assumptions: existence, uniqueness (but possibly

many local minima)many local minima)
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Overview of Global Optimization ApproachesOverview of Global Optimization Approaches

•• Instance-based approaches:Instance-based approaches:  search for new solutionssearch for new solutions

depends depends directlydirectly on previously generated solutions on previously generated solutions

--    simulated annealingsimulated annealing

--    genetic algorithmsgenetic algorithms

--    tabu tabu searchsearch

--    nested partitionsnested partitions
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Overview of Global Optimization Approaches (cont.)Overview of Global Optimization Approaches (cont.)

•• Model-based search methods:Model-based search methods:  new solutions generatednew solutions generated

via an intermediate via an intermediate probability distribution (model)probability distribution (model) updated updated
from previous generated solutions from previous generated solutions (indirect(indirect  dependence)dependence)..

--    ant colony optimizationant colony optimization

--    cross-entropy methodcross-entropy method  (CE)(CE)

--    estimation of distribution algorithmsestimation of distribution algorithms  ((EDAsEDAs))

--    At each iteration of the algorithmAt each iteration of the algorithm

 1. Generate population of candidate solutions (random 1. Generate population of candidate solutions (random

samples) according to samples) according to probability distribution (model) probability distribution (model) overover

the solution spacethe solution space

  2. Update parameters of model on basis of data in previous2. Update parameters of model on basis of data in previous

step in a way that will step in a way that will concentrate future search in regionsconcentrate future search in regions

containing high quality solutionscontaining high quality solutions
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Brief Review of Genetic Algorithms (GAs)

• works with population of solutions

•  update population (generate new

generation):

• operators, e.g., crossover, mutation,

- often probabilistic

- produces new candidates

• selection (from old and new)
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Estimation of Distribution Algorithms (EDAs)

• works with sequence of probability distributions

  over solution space (continuous pdf, discrete pmf)

Main Steps of typical procedure:

• initialization: starting distribution g0

• until stopping rule satisfied, iterate the following:

• generate population from current distribution

• evaluate newly generated solutions

and select some subset

to update distribution
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EDAs (continued)

similarities to GAs

• uses a population

• selection process

• randomized algorithm,

 but uses “model” (distribution) instead of operators

aka

• probabilistic model building genetic algorithms (PMBGAs)

• distribution estimation algorithms (DEAs)

• iterated density estimation algorithms (IDEAs)
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Model-based Search MethodsModel-based Search Methods

••   KEY QUESTIONKEY QUESTION: how to update probability distributions?: how to update probability distributions?

•• Traditional  Traditional EDAs EDAs use an use an explicit explicit construction, can beconstruction, can be

difficult and computationally expensive, particularly fordifficult and computationally expensive, particularly for

infinite solution spacesinfinite solution spaces

•• Alternative: use parameterized family of distributions, and Alternative: use parameterized family of distributions, and

minimize distance to desired distributions (use projection)minimize distance to desired distributions (use projection)

•• Cross-Entropy (CE) method uses  Cross-Entropy (CE) method uses optimal importanceoptimal importance

sampling sampling reference distributionreference distribution

••  MRAS approach: MRAS approach: general sequence general sequence of of model referencemodel reference

distributions (dondistributions (don’’t actually need to be computed)t actually need to be computed)
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MRASMRAS

•• Main characteristicsMain characteristics

-- Given sequence of reference distributions {Given sequence of reference distributions {gk(··)}

-- works with a family of parameterized probabilityworks with a family of parameterized probability

distributions {distributions {f f (·,(·, )} )} over the solution spaceover the solution space

-- fundamental steps at iteration fundamental steps at iteration k k ::

**  generate candidate solutions according to the current  generate candidate solutions according to the current

probability distribution probability distribution f f (·, (·, kk))

**  calculate   calculate k+1k+1  using data collected in previous step to  using data collected in previous step to

bias future search toward promising regions, bybias future search toward promising regions, by

minimizing distance between minimizing distance between f f (·,(·, ) and ) and gk+1(··)

- Algorithm converges to optimal if {{gk(··)} does
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MRAS: specific instantiation

• Main idea: Next distribution obtained by tilting previous

Properties:

• Related to recursions found in EDAs, learning

automata, “multiplicative weights”

• Other choices of {{gk(··)} result in other algorithms

(e.g., cross-entropy)--this choice leads to global

convergence
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MRAS: specific instantiation

• Obvious Difficulties

- requires enumerating all points in solution space

-  gk(x) may not be computationally tractable

• Proposed Approach

- Monte Carlo (sampling) version

- use parameterized distributions {f(., )}

- projection of gk(·), which are implicitly generated
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MRAS (deterministic version) ComponentsMRAS (deterministic version) Components

•• positive continuous strictly increasing function positive continuous strictly increasing function SS(·)(·)

•• parameterized family of distributions parameterized family of distributions {{f f (·,(·, )})}

•• selection parameters selection parameters   and non-decreasing and non-decreasing { k},

affecting distribution updates

•   determines the proportion of solutions useddetermines the proportion of solutions used

••  In iteration k, only solutions better than k are inin

updating updating k+1k+1
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MRAS Parameter UpdatingMRAS Parameter Updating

k+1 = sup
l
{l :P

k
(H(X) l) }

•• (1- (1- ) ) quantiles quantiles w.r.t. w.r.t. f f (·,(·, kk))

•• update update k+1k+1  asas
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and and f f (·,(·, ) ,) ,  i.e.,i.e.,

,  
),(

)(
lnminarg :)) , (|(minarg 1

11 1
== +

++ + Xf

Xg
EfgD k

gkk k

  
)],([

:)(   ,
]))(([

)())((
)(

0})({

})({

1

})({

})({

1

10

1

1

1

XfIE

I
xg

IXHSE

xgIxHS
xg

XH

xH

XHg

kxH

k

kk

k

+ ==

+

+

where



16

MRAS Basic Algorithm (deterministic version)

Initialization: specify               ,  S(·):             ,

• Repeat until a specified stopping rule is satisfied:

- Calculate (1- )-quantile

- Update parameter
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Theory

• Restriction to natural exponential family (NEF)

• covers broad class of distributions

Examples: Gaussian, Poisson, binomial, geometric

• Global convergence can be established

under some mild regularity conditions

• multivariate Gaussian

• univariate independent components

 0lim   ,lim
*

nnk
k

k
k

x ==µ

.][lim
*

xXE
kk

=



18

Cross-Entropy (CE) Method

• pioneered by Rubinstein et al. (www.cemethod.org)

• originally for finding optimal

parameterized importance sampling measure

• found that it could be applied to

combinatorial optimization problems

• like EDAs and MRAS, updates distribution iteratively

• drawbacks: no proof of global convergence in general
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MRASMRAS  Interpretation of CE MethodInterpretation of CE Method

k+1 = sup
l
{l :P

k
(H(X) l) }

•• (1- (1- ) ) quantiles quantiles w.r.t. w.r.t. f f (·,(·, kk))

•• update update k+1k+1  asas

k+1 = argmaxE
k
[ (H(X)I{H (X ) k+1 }

ln f (X, )]

Lemma Lemma : k+1k+1 minimizes the KL-distance between minimizes the KL-distance between

and and f f (·,(·, ) ,) ,  wherewhere
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Relationship of MRAS with CE

• MRAS has general sequence of implicit reference

models {gk}, whereas CE uses the optimal importance

sampling measure at each iteration

• MRAS provides general framework: CE can be

interpreted by defining appropriate {gk},

but the sequence depends on {f(., kk)} sequence

• Stronger theoretical convergence results for MRAS

 (global convergence for Monte Carlo version)

• Uses the fact that {gk}converge to optimal, which is

not in general true for CE

• Computational comparison results reported later
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MRAS1 (Monte-Carlo version)

changes from deterministic version

• finite number of samples, say Nk, at each iteration

• replace the true            -quantiles by sample quantiles

• replace the integrals (expected values) by sample averages

•  k adaptively decreasing and Nk adaptively increasing

Global convergence can be established

•• multivariate normal casemultivariate normal case

•• independent independent univariate univariate casecase
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Some Numerical ExamplesSome Numerical Examples

• Implementation issues

- parameter smoothing

•• Numerical examples Numerical examples (minimization, not max)

--  Continuous optimizationContinuous optimization

**   Trigonometric functionTrigonometric function

**   Rosenbrock Rosenbrock functionfunction

**  Powell singular function Powell singular function

** Pinter, Pinter, DeJongDeJong, Griewank, Griewank  functionsfunctions

** Compared with CE (Compared with CE (KroeseKroese, Rubinstein, & , Rubinstein, & PorotskyPorotsky))
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Preliminary ComparisonsPreliminary Comparisons

••  MRASMRAS11 performs well on wide variety of continuous performs well on wide variety of continuous

   optimization problems   optimization problems

•• MRAS MRAS1 1 better adapted to optimization of badly scaledbetter adapted to optimization of badly scaled

   problems   problems

•• CE works best on problems that are well scaled and  CE works best on problems that are well scaled and 

   with many local optima   with many local optima
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Combinatorial OptimizationCombinatorial Optimization

•• Numerical Results for Asymmetric Numerical Results for Asymmetric TravellingTravelling

Salesman Problems (Salesman Problems (ATSPsATSPs  ))

  (http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95)(http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95)

--   Performance similar to CE Performance similar to CE

--    Very good performance with modest number of tours generatedVery good performance with modest number of tours generated

file Nc Ntotal (std err) H* H* Hbest avg (std err) 

ftv33 34 7.95e+4(3.25e+3) 1364 1286 1286 0.023(0.008) 

ftv35 36 1.02e+5(3.08e+3) 1500 1475 1473 0.008(0.002) 

ftv38 39 1.31e+5(4.90e+3) 1563 1530 1530 0.008(0.003) 

p43 43 1.02e+5(4.67e+3) 5637 5620 5620 0.001(2.5e-4) 

ry48p 48 2.62e+5(1.59e+4) 14810 14446 14422 0.012(0.003) 

ft53 53 2.94e+5(1.58e+4) 7236 6973 6905 0.029(0.005) 

ft70 70 4.73e+5(2.91e+4) 39751 38744 38673 0.017(0.003) 
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Extension to Stochastic OptimizationExtension to Stochastic Optimization

•• ObjectiveObjective: : find optimal              such thatfind optimal              such that

-- Assumptions: existence, uniqueness (but possibly Assumptions: existence, uniqueness (but possibly

many local minima)many local minima)

•• Idea: sample average approximationIdea: sample average approximation
-- At each iteration  At each iteration k, k, approximate                        byapproximate                        by
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••  Parameter updatingParameter updating

--  (1- (1- ) ) quantiles quantiles w.r.t. w.r.t. f f (·,(·, kk))  

-- update  update k+1k+1 as as

Extension to Stochastic OptimizationExtension to Stochastic Optimization
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••  Convergence issueConvergence issue  

--  kM
k

  as  

Extension to Stochastic OptimizationExtension to Stochastic Optimization

••  Can prove global convergence w.p. 1 under Can prove global convergence w.p. 1 under 

    reasonable conditions    reasonable conditions

••  Practical efficiencyPractical efficiency  
--    increase increase MMk k adaptively, i.e., small adaptively, i.e., small MMk k value at initialvalue at initial

 search phase, use large  search phase, use large MMk k when precise estimateswhen precise estimates

 are required are required

-  performs well on initial simple examples-  performs well on initial simple examples



34

Conclusions and Future WorkConclusions and Future Work

• SummarySummary

- generic approach; algorithm performs well

- guaranteed theoretical convergence  (for NEFs)

- alternative framework to design optimization algorithms

• Work in ProgressWork in Progress

- stochastic optimization problems

•• Future Work Future Work

--  high dimensional problemshigh dimensional problems

-- variety of applications variety of applications

-- more new algorithms in this framework more new algorithms in this framework

--  combinationcombination  with other algorithmswith other algorithms
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Formal Definition of NEFs

• Definition: A family                                     is said to belong

to the natural exponential family (NEF) if there exist

                ,                           , and                            such that

Global convergence: if                                      belongs to

NEFs, then under some mild regularity conditions, we have

- multivariate normal case

- independent univariate case
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