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Problem Setting

® Solution space x CHh"
= continuous or discrete (combinatorial)
® Objective function H(:): y — R
® Objective: find optimal x' € such that

X €argmax H (x)

XEx

- Assumptions: existence, unigueness (but possibly
many local minima)
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Figure 1: 2-D Rosenbrock function, where —5 < z; <5, i = 1,2.
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Figure 2: 2-D Trigonometric function, where —5 < 2; <5, 1 = 1,2. 4



Overview of Global Optimization Approaches

® Instance-based approaches: search for new solutions
depends directly on previously generated solutions

- simulated annealing

- genetic algorithms
- tabu search
- nested partitions



Overview of Global Optimization Approaches (cont.)

® Model-based search methods: new solutions generated
via an intermediate probability distribution (model) updated
from previous generated solutions (indirect dependence).

- ant colony optimization
- cross-entropy method (CE)
- estimation of distribution algorithms (EDAS)

= At each iteration of the algorithm

1. Generate population of candidate solutions (random
samples) according to probability distribution (model) over
the solution space

2. Update parameters of model on basis of data in previous
step in a way that will concentrate future search in regions
containing high quality solutions



Brief Review of Genetic Algorithms (GAs)

® works with population of solutions

® update population (generate new
generation):

® operators, e.g., crossover, mutation,
- often probabilistic
- produces new candidates

® selection (from old and new)



Estimation of Distribution Algorithms (EDAS)

® works with sequence of probability distributions
over solution space (continuous pdf, discrete pmf)

Malin Steps of typical procedure:
® initialization: starting distribution g,
® until stopping rule satisfied, iterate the following:
® generate population from current distribution

® cvaluate newly generated solutions
and select some subset
to update distribution



EDASs (continued)

similarities to GAS
® uses a population
® selection process

® randomized algorithm,
but uses “model” (distribution) instead of operators

aka
® probabilistic model building genetic algorithms (PmBGAs)
® distribution estimation algorithms (DEAS)

® |terated density estimation algorithms (IDEAS)



Model-based Search Methods

KEY QUESTION: how to update probability distributions?

® Traditional EDAs use an explicit construction, can be
difficult and computationally expensive, particularly for
Infinite solution spaces

® Alternative: use parameterized family of distributions, and
minimize distance to desired distributions (use projection)

® Cross-Entropy (CE) method uses optimal importance
sampling reference distribution

® MRAS approach: general sequence of model reference
distributions (don’t actually need to be computed)
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MRAS

® Main characteristics

- Given sequence of reference distributions {g,()}

- works with a family of parameterized probability
distributions {f (-,6)} over the solution space

- fundamental steps at iteration k :

* generate candidate solutions according to the current
probability distribution f (-, 6,)

* calculate 6,,, using data collected in previous step to

bias future search toward promising regions, by
minimizing distance between f (-,6) and g,.,(:)

- Algorithm converges to optimal if {g,(:)} does

11



MRAS: specific instantiation

® Main idea: Next distribution obtained by tilting previous

alCRE
E, [H(X)]'
E, [H(X)]= E, [H(X)], and

8 k+1

lim E,, [H(X)] = H(x).

gk+1(x)= XEX

Properties:

® Related to recursions found in EDAs, learning
automata, “multiplicative weights”

® Other choices of {g,(:)} result in other algorithms
(e.g., cross-entropy)--this choice leads to global
convergence
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MRAS: specific instantiation

® Obvious Difficulties
- requires enumerating all points in solution space
- g, (x) may not be computationally tractable

® Proposed Approach
- Monte Carlo (sampling) version
- use parameterized distributions {f(:,0)}
- projection of g,(-), which are implicitly generated
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MRAS (deterministic version) Components

® positive continuous strictly increasing function S(-)

® parameterized family of distributions {f (-,60)}

® selection parameters o and non-decreasing {y,},

affecting distribution updates
® o determines the proportion of solutions used

® |n iteration k, only solutions better than y, are in

updating 6,,,

14



MRAS Parameter Updating

® (1- p) quantiles w.r.t. f (-,6,)

Yisr =supil: Pek (HX)=1)=p}
* update 6,,, 85

0, =argmax_ [[S(H (XNIIFH () > 7,3 f (x, 0)dx

00 XEy,

Lemma : 6,,, minimizes the KL-distance between g, .,
andf (-,0), i.e.,

0. =argminD(g,,, | f(-,0)):=argminE, |In 9 (X) , Where
e <o o f(X,0)
S(H (X))I{H(x)zyk+1}gk (X) SOl

gl(x) =

G (X) = E, [S(H) g (xy2, 3] | EHO[I{H(X)Zyl}/ T(X,6,)]
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MRAS Basic Algorithm (deterministic version)

Initialization: Specify p€(0,1], S(-):R - R*, f(x,6,) >0 VxEy

® Repeat until a specified stopping rule is satisfied:
- Calculate (1-p)-quantile

Vi = SUPLL Ry (H(X) = 1) = o}

- Update parameter

0. =argmax [[S(H ONTHH (X) > 74,30 £ (x, 0)dx

0O XEx
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Theory

® Restriction to natural exponential family (NEF)

® covers broad class of distributions
Examples: Gaussian, Poisson, binomial, geometric

® Global convergence can be established
under some mild regularity conditions

® multivariate Gaussian
limu, =x", limX, =0_

k—o0 k—o0

® univariate independent components
limE, [X]=x.

k —o

n
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Cross-Entropy (CE) Method

pioneered by Rubinstein et al. (www.cemethod.org)

originally for finding optimal
parameterized importance sampling measure

found that it could be applied to
combinatorial optimization problems

like EDAs and MRAS, updates distribution iteratively

drawbacks: no proof of global convergence in general
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MRAS Interpretation of CE Method

® (1- p) quantiles w.r.t. f (-,6,)

Yisr =supil: Pek (HX)=1)=p}
* update 6,,, 85

0., =argmax E, [@(H(X)I,

0 €0

In £(X,0)]

H(X)zy;}

ce

Lemma : 6,,, minimizes the KL-distance between g,.,
and f (-,6) , where

PH N 1202y, ] (X:.0,)
Ey Lo(HX yx )y, ]

g/ii1(x) =

19



Relationship of MRAS with CE

MRAS has general sequence of implicit reference
models {g, }, whereas CE uses the optimal importance
sampling measure at each Iteration

MRAS provides general framework: CE can be
Interpreted by defining appropriate {g,},
but the sequence depends on {f(-,6,)} sequence

Stronger theoretical convergence results for MRAS
(global convergence for Monte Carlo version)

® Uses the fact that {g, }converge to optimal, which is
not in general true for CE

Computational comparison results reported later
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MRAS, (Monte-Carlo version)

changes from deterministic version
® finite number of samples, say N,, at each iteration
replace the true (1- p)-quantiles by sample quantiles

o
® replace the integrals (expected values) by sample averages
* p. adaptively decreasing and N, adaptively increasing

Global convergence can be established

® multivariate normal case
lima, =x, and limX, =0__ w.p.1.

k—-o0 k—o0

® independent univariate case
lim Eék[X] =X w.p.l.

k —o
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Some Numerical Examples

® Implementation issues

- parameter smoothing 6, , < w6, , +(1- )6,
® Numerical examples (minimization, not max)

= Continuous optimization
* Trigonometric function

20
1+ Y 8sin®(7(x; =0.9)*) + 6sin*(14(x, = 0.9)*) + (x, = 0.9)"

* RosenbrociTé function o
Y 100(x,,, - x7)7 + (x, = 1)
=1

* Powell singular function
18
W[y +10x,)7 +5(x,,, = X6,)7 +(x, = 2x,)* +10(x,, — x,,,)"]
i=2

* Pinter, DeJong, Griewank functions

* Compared with CE (Kroese, Rubinstein, & Porotsky)

22
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Figure 1: 2-D Rosenbrock function, where —5 < z; <5, i = 1,2.
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Figure 2: 2-D Trigonometric function, where —5 < 2; <5, i =1,2.



2-D Griewank
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Figure 3: 2-D Griewank function, where —10 < z; < 10, i =1, Figure 4: 2-D Pinter function, where —10 < z; < 10, i =1,
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Dejong’s 5th function, where -50 < X, < 50, 1=1,2
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function value

Dejong’s 5th

total sample size x10°
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function value
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20-D Pinter
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Preliminary Comparisons

® MRAS, performs well on wide variety of continuous
optimization problems

®* MRAS, better adapted to optimization of badly scaled
problems

® CE works best on problems that are well scaled and
with many local optima
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Combinatorial Optimization

®* Numerical Results for Asymmetric Travelling
Salesman Problems (ATSPs)

(http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95)
- Performance similar to CE
- Very good performance with modest number of tours generated

file | N. Niotar (Std err) H- H™ | Hpest | 6%avg(std err)
ftv33 | 34 | 7.95e+4(3.25e+3) | 1364 | 1286 | 1286 | 0.023(0.008)
ftv35 | 36 | 1.02e+5(3.08e+3) | 1500 | 1475 | 1473 | 0.008(0.002)
ftv38 | 39 | 1.31e+5(4.90e+3) | 1563 | 1530 | 1530 | 0.008(0.003)
p43 | 43 | 1.02e+5(4.67e+3) | 5637 | 5620 | 5620 |0.001(2.5e-4)
ry48p | 48 | 2.62e+5(1.59%e+4) | 14810 | 14446 | 14422 | 0.012(0.003)
ft53 | 53 | 2.94e+5(1.58e+4) | 7236 | 6973 | 6905 | 0.029(0.005)
ft70 | 70 | 4.73e+5(2.91e+4) | 39751 | 38744 | 38673 | 0.017(0.003)
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Extension to Stochastic Optimization

® Objective: find optimal x €y such that

x €argmax E, [H (x,y)]

XEx

- Assumptions: existence, uniqueness (but possibly
many local minima)

® |dea: sample average approximation

- At each Iteration k, approximate E [H(X,y)] by
1 &

I:k(x): M Hlk(X)

where H,, (x) are I.1.d. random observations at x.

31



Extension to Stochastic Optimization

® Parameter updating
- (1- p) quantiles w.r.t. f (:,6,)

Tk = SlIJp{| P (H (X)=z1)= p}

- update 6, as

6. =argmax [TS(H, O I{H, (X) > 74,30 £ (x, 0)dx

b0 o2
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Extension to Stochastic Optimization

® Convergence Issue

- Mkeoo as k — o

® Can prove global convergence w.p. 1 under
reasonable conditions

® Practical efficiency
- Increase M, adaptively, i.e., small M, value at initial
search phase, use large M, when precise estimates
are required
- performs well on initial simple examples
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Conclusions and Future Work

® Summary

- generic approach; algorithm performs well
- guaranteed theoretical convergence (for NEFs)

- alternative framework to design optimization algorithms

® Work in Progress

- stochastic optimization problems

® Future Work

- high dimensional problems
- variety of applications
- more new algorithms in this framework

- combination with other algorithms
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Formal Definition of NEFs

® Definition: A family {f (-,8),06 €6 C R} is said to belong
to the natural exponential family (NEF) if there exist
h():R" =R T():R" =R and K(): R" — Jisuch that

f(x,0) =exp{0'T(x)-K(O)I(x), VOEBO.
Global convergence: if {f(-,8),0€0 C%R™} belongs to

NEFs, then under some mild regularity conditions, we have
lim Et9k [T(X)]=T(x).

k—o0
- multivariate normal case
limu, =x, and liImZ,_=0__ .

k—o0 k—o0

- independent univariate case
limE, [X]=x.

k —o
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For all test problems, the same set of parameters is used to test MRAS,: £ = 107°, initial sample size
Ny = 1000, p, =0.1, A=0.01, a = 1.1, » = 10~*, smoothing parameter v = 0.2, and N,,;, = 5d, where d is
the dimension of the problem. The initial mean vector ug is a d-by-1 vector with each component randomly
selected from the interval [—50, 50] according to the uniform distribution, and X is a d-by-d diagonal matrix
with all diagonal elements equal to 500.

For comparison purposes, we also applied the CE method and the SA algorithm to the above test
functions. For CE, we have used the univariate normal p.d.f. with parameter values suggested in Kroese
et al. (2004): sample size N = 2000, p = 0.01, smoothing parameter v = 0.7. Again, the initial mean
vector pp is randomly selected from [—50,50]d according to the uniform distribution, and %, is a d-by-d
diagonal matrix with all elements equal to 500. We found empirically that the above parameters work well
for some functions, but in some other cases, the variance matrices in CE may converge too quickly to the zero
matrix, which freezes the algorithm at some low quality solutions. To address this issue, for each problem,
we also tried CE with different values of the smoothing parameter. In the numerical results reported below,
we have used a smaller smoothing parameter value v = 0.2, which gives reasonable performance for all
test cases. For SA, we have used the parameters suggested in Corana et al. (1987): initial temperature
T = 50000, temperature reduction factor rr = 0.85, the search neighborhood of a point z is taken to be
N(z) =1y : |z — Yyl = 1}, where ||2| .. = max;<;<q |2;|, and the initial solution is uniformly selected
from [—50, 50]¢.
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