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 Outline of the talk

• What is NMR and and how is it used in the determination 
of the structure of proteins? 

2. What is the mathematical description of the NMR system?

3. What makes the system identification problem hard and how does 
“2-D” signal processing help?

4. A new theorem that describes the optimal effect that control 
can have on the identification process via the Cramer-Rao bound 
associated with system identification.



 Why this topic for this occasion?

1. Alan has a long interest in signal processing and control and 
they are entwined here.

• Alan cut (some of his) teeth on Lie algebraic methods and they 
play a role here. 

3. The  material makes contact with a number of areas of scientific
 inquiry and seems suitable for a broad audience.

4. I like it!



An unfolded alpha

helix structure.

A folded structure

NMR can help
determine the
geometry.



Part 1:The Concept of Quantum Mechanical Spin

First postulated as property of the electron for the purpose of 
explaining aspects of fine structure of spectroscopic lines, (Uhlenbeck-
Gouldsmit).  Electron spin was first incorporated into  a Schrodinger-
like description of physics by Pauli and then treated in a definitive way 
by Dirac. Spin itself is measured in units of angular momentum as 
is Plank’s constant.  The gyromagnetic ratio links the angular 
momentum to an associated magnetic moment which, in turn,  
accounts for some of the measurable  aspects of spin. Protons were 
discovered  to have spin in 1927 (Dennison) and in 1932 Heisenberg 
wrote a paper on nuclear structure in which the recently discovered 
neutron was postulated to have spin and a magnetic moment. 

In this talk it is the net spin of the nucleus that plays the basic  role,
although there is an important indirect effect (the chemical shift) 
involving electronic spin also playing a role.



Angular Momentum and Magnetic Moment
Spin (angular momentum)  relative to a fixed direction in space is
quantized. The number of possible quantization levels depends
on the total momentum.  In the simplest cases (spin one-half
systems) the total momentum is such that the spin can be only plus
or minus h/4π.  Systems that consist of a collection of n such states
give rise to a Hermitean density matrix of dimension 2n .by   2n.
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The Hilbert space which occurs in quantum mechanics is a space of
square integrable functions mapping the set of possible
configurations into the complex numbers. For pure spin systems,
unlike, say, the quantum description  of a harmonic oscillator,  the
Hilbert space is finite dimensional.

The Hilbert Space for Spin
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Boltzmann Distribution for a Physical System
in Equilibrium at Temperature T

Because magnetic moments  that are 
aligned with the magnetic field have a 
little less energy than those opposing it, 
the Boltzmann distribution implies they
are favored.

E(x)

density

ρ(x)=(1/Z)exp-(E(x)/2kT)



Part II: The Mathematical description of the System

Bloch 
Nuclear Induction Purcell

Absorption

dM/dt = BXM+R(M-M0 )

Bloch constructed and important 
phenomenological equation, valid 
in a rotating coordinate system, 
which applies to a particular type of 
time varying magnetic field.   
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Possible Input-Output Response

Radio Frequency Pulse input

Free Induction
Decay response

The frequency of the decaying oscillation reveals the strength of the 
effective magnetic field felt by the spinning nucleus.  



The Linearization Dilemma

Small input makes linearization valid but gives small 
signal-to-noise ratio.  Large input give higher signal-to-noise
ratio but makes nonlinear analysis necessary.
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An input-output  description of the system

Let x be the net angular momentum vector. Let w and  n be white
noise.  The spectroscopic problem is to choose u to reduce the
uncertainty in f, given the observation y.

Observe that there is a constant bias term. Intuitively
speaking, one wants to transfer the bias present in
x1 to generate a bias for the signal x2 which then shows up in y.
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Qualitative Analysis Based on the Mean

x
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If we keep u at zero there is no signal.  If we apply a pulse, rotating
the equilibrium state from x1 = 1, x2=0,x3=0 to x1 = 0, x2=1,x3=0, 
Then we get a signal that reveals the size of f. The actual signal with 
noise present can be expected to have similar behavior. 



Controlling an Ensemble with a Single Control

dx1/dt = A(u)x1+Bw1    

dx2/dt = A(u)x2+Bw2

…………..

dxn/dt = A(u)xn+Bwn

y=(cx1 + cx2+ …+xn )  + n

The system is not controllable or observable.  There are something 
like 1023 copies of the same, or nearly the same, system. We can write 
an equation for the sample mean of the x’s, for the sample covariance, 
etc.  Multiplicative control is qualitative different from additive.

The actual problem involves many copies with almost the same 
dynamics



In a Stationary (Laboratory) Coordinate System

dx/dt = Ax + b
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Why are Radio Frequency Pulses Effective

Let z be exp(-At)x  so that the equation for z takes the form

If Ax(0)=0 and if the frequency of u is matched to the frequency of
exp(At) there will be  secular terms and the solution for z will be
approximated by z(t) = exp(Ft)x(0).  Thus x is nearly exp(At)exp
(Ft)x(0).

dx/dt = (A+u(t)B)x

dz/dt = u(t)e-At BeAtz(t)



The Meaning of the Density Matrix, Decoherence

Each ψ has a phase angle but only |ψ | is related to probability,
Thus for a single particle phase is not detectable.  However for two
noninteracting particles the relative phase angle matters.  The
size of the off-diagonals in ρ measures the consistency of the
relative phase angles.

Spin (angular momentum)  relative to a fixed direction in space is
quantized. The number of possible quantization levels depends
on the total momentum. In the simplest cases the total momentum is
such that the spin can be only plus or minus 1/2.  Systems that
consist of a collection of such states give rise to a density matrix of
dimension 2n .



The Density Equation from Statistical Mechanics

The density matrix satisfies a
linear equation derived from the
wave equation.  In studying NMR
it is almost always simplified by
eliminating many of the degrees of
freedom. The resulting equation
looks more complicated but it is
more easily related to
measurements.

The Bloch equation might be
regarded as an extreme
simplification of a reduced
equation of this form
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Part III:  Why is the identification problem so hard?

Gespard De Prony



Prony’s problem

Suppose we are given y(tk) + κn(tk) with the
n(tk) being zero mean Gaussian random vari-

ables of unit variance and wish to find (pos-
sibly complex) vectors b = [b1, b2, ...bn]

T and

λ = [λ1, λ2, ..., λn]
T such that

y(tk) =
n∑

i=1

bie
λitk ; k = 1, 2, 3, ...

As suggested by the Cramer-Rao bound, a key
role is played by the linear term in the Taylor



 The Taylor series gives important insight

series expansion
n∑

i=1

(bi+δi)e
(λi+γi)tk =

n∑
i=1

bie
λitk+

n∑
i=1

δie
λitk+

n∑
i=1

biγitke
λitk+...

It is convenient to adopt a vector-matrix nota-
tion. Let Λ and b be defined as

Λ =


λ1 0 ... 0

0 λ2 ... 0
... ... ... ...
0 0 ... λn

 ; b =


b1

b2

...
bn


and let η denote a row vector whose entries
are all ones. Then, in a notation in which the



 There is a structured matrix involved

derivative is expressed as a row vector, we have[
∂ηeΛtb

∂b
∂ηeΛtb

∂Λ

]
=

[
ηeΛt tbT eΛt

]
Observe that if the real parts of λi and λj are

negative then for all nonnegative integers k∫ ∞

0
tkeλ̄iteλjtdt =

(−1)k+1k!

(λ̄i + λj)k+1

so that ∫ ∞

0
tkeΛ̄teΛtdt = Wk+1(Λ)



Here it is

with Wk being the Hermitean matrix

(−1)k(k − 1)!
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(λ̄2+λ2)k ... 1

(λ̄2+λn)k

... ... ... ...
1

(λ̄n+λ1)k
1

(λ̄n+λ2)k ... 1
(λ̄n+λn)k


Lemma 1: Let η be the row vector [1, 1, ..., 1],

let Λ be a diagonal matrix whose diagonal en-
tries have negative real parts, and let b be a

column vector with complex entries. Consid-
ered as a mapping from (b, λ) to L2[0,∞), the



As a Fisher Information matrix

Jacobian of

φ(b, λ)(t) = ηeΛtb

is
J =

[
∂ψ
∂b

∂ψ
∂Λ

]
=

[
ηeΛt tbT eΛt

]
The Moore-Penrose inverse of J maps L2[0,∞)
to C2n and is given by

J#(·) = F−1
∫ ∞

0

[
eΛ̄tηT

teΛ̄tb̄

]
(·)dt

where

F =

[
W1 W2 ∗ (ηT bT )

W2 ∗ (b̄η) W3 ∗ (b̄bT )

]



It is nonsingular if the eigenvalues are distinct

The matrix F is positive definite if and only if

the λi are distinct and all the components of b

are nonzero.

Remark 1: The matrix F provides a mea-

sure of the linear independence of the effects
of changing the parameter vectors b and λ and

as such might be thought of as an identifiably
Gramian, akin to the controllability and observ-

ability Gramians of linear control theory.
Proof: The derivatives evaluated at (b,Λ)

can be identified with the vectors having L2[0,∞)



…more

components

∂ψ

∂b
=

[
eλ1t eλ2t ... eλnt

]
;

∂ψ

∂Λ
=

[
b1te

λ1t b2te
λ2t ... bnte

λnt
]

Form the 2n-dimensional vector

J(t) =
[

∂ψ
∂b

∂ψ
∂λ

]
and observe that if we regard J as defining a
map from C2n to L2[0,∞) then the adjoint is

the integral operator

J∗(·) =

∫ ∞

0
J†(t)(·)dt



…more

Thus the role of A†A in the Moore-Penrose in-
verse is played by the matrix

F =

∫ ∞

0

∫ ∞

0

[
eΛ̄tηT

teΛ̄tb̄

] [
ηeΛt tbT eΛt

]
dt

identified in the lemma. The evaluation of F

requires only the properties of Wk established
above, together with the observation that W1 ∗
(ηTη) = W1 By construction, F is Hermitean
and nonnegative definite. It will be positive def-
inite unless there is a linear combination of the



…more

functions

{eλ1t, eλ2t, ..., eλnt, b1te
λ1t, b2te

λ2t, ..., bnte
λnt}

that vanishes. It is a familiar fact from the

theory of ordinary linear differential equations
that these functions are linearly dependent if
and only if λi = λj for some i 6= j, assuming
that the bi are all nonzero.



An  Example worth considering

 

For example, if the Gramian of ψ(b, λ)(t) =
b1e

λ1t + b2e
λ2t is evaluated at ψ(t) = e−t + e−2t

then F is the four-by-four matrix

F =


1
2

1
3

1
4

1
9

1
3

1
4

1
9

1
16

1
4

1
9

2
8

2
27

1
9

1
16

2
27

2
64


The eigenvalues of this matrix range from about

5 × 10−5 to about .88. The smallest eigenvalue

has an associated eigenvector vT ≈ [.60,−.58,−.18,−.52].
If we observe ẏ(t) = b1e

−λ1t + b2e
−λ2t + κẇ on

[0,∞) the rms error in determining b1 − b2 −



…continued

 

.5λ1 − λ2 is about 244κ for the given values

of the parameters. Clearly, even in such an
unexceptional situation, reasonable identifica-
tion of b and λ requires a very small value of
κ. Marginalizing the probability distribution
for the error by eliminating the dependence on

b increases the size of the smallest eigenvalue,
reducing the rms error associated with its eign-

evector to about 33κ. This ill conditioning is
consistent with, and even to be expected, given

the well documented difficulties with Prony’s
problem.



The 2-D technique modal mixing for better identification 

 

y(t,τ)

real time

feedback signal
applied

k(t)

u(t)
system

The recorded
signal on this side



The 2-D technique modal mixing for better identification 

 

Postponing for now some details, this ap-

proach leads to a modified problem of the Prony

type, now involving the fitting a function of two

variables y(t, τ) with an exponential approxi-
mation. The exponents used in the expansion
must be shared so the problem takes the form

y(t, τ) ≈
n,n∑

i=1,j=1

bije
λiteλjτ

Moreover, there are constraints on the bij limit-

ing the number of independent variables to 2n
as above. This will become clear in the devel-



 

opment below.

The measure of the improvement in the ac-
curcy is reflected in the Fisher information ma-
trix which, as we will see, is expressible using
Schur products. As noted above, if Q and H are
Hermitian and nonnegative definite their Schur

product is also nonnegative definite. This is
easily shown by expanding one of the factors,

say H, as a sum of the form
∑

bib
†
i and ob-

serving that for an arbitrary vector x, x†(Q ∗
b1b1†)x = (x∗ b1)

TQ(x∗ b1) ≥ 0 or by observing
that bb† ∗ Q is actually congruent to to Q.



On to the Two-Dimensional Situation
Lemma 2: Let η, b and Λ be as in Lemma 1

and let T be a nonsingular matrix. Considered
as a mapping from (b, λ) to L2[0,∞) × [0,∞),

the Jacobian of

φ(b,Λ)(t, τ) = ηeΛtTeΛτb

is
J(t, τ) =

[
∂φ
∂b

∂φ
∂Λ

]
=[

ηeΛtTeΛτ , tbTeΛτT T eΛt + τηeΛτTeΛt ∗ bT
]

Assuming that the λi are distinct and all com-
ponents of b are nonzero, the Moore-Penrose



…and

inverse of this Jacobian maps L2[0,∞)× [0,∞)
to C2n and is given by

F−1
∫ ∞

0

∫ ∞

0

[
eΛ̄τT †eΛ̄tηT

teΛ̄tT̄ eΛ̄τ b̄ + τeΛ̄τT †eΛ̄tηT ∗ b̄

]
(·)dt dτ

where

F =

∫ ∞

0

∫ ∞

0
J †(t, τ)J(t, τ)dt dτ



Part IV: How Much Can Control Help in Identification?

Theorem 3: Let Q and H be n by n Her-

mitean matrices. Let Q have diagonal entries
d1 ≥ d2 ≥ ... ≥ dn and let H have eigenvalues

µ1 ≥ µ2 ≥ ... ≥ µn. The possible diagonals
of the matrix Q ∗ U †HU as U ranges over the
unitary matrices is the image of the Schur-Horn

polytope defined by the eigenvalues of H under

the linear transformation

Diag(Q) =


q11 0 ... 0

0 q22 ... 0
... ... ... ...
0 0 ... qnn





The best result is obtained by matching the biggest of Q
against the smallest of H, next biggest against the next

smallest…
Moreover, if Q and H are nonnegative definite
then

max
U

min
i

λi(Q ∗ U †HU) ≤ min
i

(diµn−i+1)

and there exists U such that equality is achieved.
Such a U can be chosen from the set of U that

diagonalize H while putting the eigenvalues of
U †HU in reverse order by size as compared with

the diagonals of Q.



Example

Example: To illustrate consider an example
which, however, captures many of the essen-
tial features of of 2D NMR. The system has

nine state variables and four resonant frequen-
cies; no simpler model captures all the signif-
icant points. The system is described by ẋ =

(A + uB1 + vB2)x + b with output y = cx. The
vector b is the

√
2e1 where e1 is the standard ba-

sis vector and (A+uB1 +vB2) is a nine-by-nine



matrix

A+uB1+vB2 =



−1 u 0 u 0 0 0 0 0
−u −σ f 0 0 v 0 0 0
0 −f −σ 0 0 0 0 0 0
−u 0 0 −σ f ′ 0 0 v 0
0 0 0 −f ′ −σ 0 0 0 0

0 −v 0 0 0 −σ g 0 0
0 0 0 0 0 −g −σ 0 0
0 0 0 −v 0 0 0 −σ g′

0 0 0 0 0 0 0 −g′ −σ


and y = x6 + x8. The identification procedure
can be described using a sequence of 5 vectors

Example: f and f’ are close, g and g’ are separated





√
2
0

0
0
0
0

0
0

0


→



0

−1
0
−1

0
0

0
0

0


→



0

−e−στ cos fτ
e−στ sin fτ

−e−στ cos f ′τ

e−στ sin f ′τ
0

0
0

0


→



0

0
e−στ sin fτ

0

e−στ sin f ′τ
−e−σt cos fτ

0
−e−σt cos f ′τ

0



With time evolution and feedback we effect the following



followed by

→



0

e−στ sin fτ · e−σt sin ft
e−στ sin fτ · e−σt cos ft

e−στ sin f ′τ · e−σt sin f ′t
e−στ sin f ′τ · e−σt cos f ′t

−e−στ sin fτ · e−σt cos gt
e−στ sin fτ · e−σt sin gt

−e−στ sin f ′τ · e−σt cos g′t

e−στ sin f ′τ · e−σt sin g′t


y(t) = −e−στ sin fτ ·e−σt cos gt−e−στ sin f ′τ ·e−σt cos g′t



2D Fourier Space

f

g

g'
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In spectroscopic applications the spreading is caused by the shielding 
of the magnetic field by nearby electronic spins.  The extent of the 
shielding is is measured by the frequency shift and this, in turn, is 
determined by the geometry.



2D Fourier Space
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In Conclusion…

 

Congratulations to the Honorees Alan and David.

Greetings to old friends here for the occasion.

Thanks to Albert and others involved in the organization process.

And, in affirmation of our chosen paths in life, let us hope that
we can contribute, at least a modest way, to making the  
present century  a worthy successor to the age of enlightenment. 


