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Outline 

 Origins 
 Definition, causes, distance concentration, real data, 

dimensionality reduction, large neighborhoods  
 

 Applications 
 Approach 1: Getting rid of hubness 

 Approach 2: Taking advantage of hubness 

 Software 
 

 Challenges 
Outlier detection, kernels, causes – theory, kNN 

search, dimensionality reduction, others… 
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The Hubness Phenomenon 

[Radovanović et al. ICML’09, Radovanović et al. JMLR’10] 

 

 Nk(x), the number of k-occurrences of point x  Rd, is the number 
of times x occurs among k nearest neighbors of all other points in a 
data set 
 Nk(x) is the in-degree of node x in the kNN digraph 

 

 Observed that the distribution of Nk can become skewed, resulting in 
hubs – points with high Nk, and anti-hubs – points with low Nk 
 Music retrieval [Aucouturier & Pachet PR’07] 

 Speaker verification (“Doddington zoo”) [Doddington et al. ICSLP’98] 

 Fingerprint identification [Hicklin et al. NIST’05] 

 

 Cause remained unknown, attributed to the specifics of data or 
algorithms 
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Causes of Hubness 

  
Std = √Var 

E 

  

 Related phenomenon: concentration of distance / similarity 
 High-dimensional data points approximately lie on a sphere centered at 

any fixed point [Beyer et al. ICDT’99, Aggarwal & Yu SIGMOD’01] 

 The distribution of distances to a fixed point always has non-negligible 
variance [François et al. TKDE’07] 

 As the fixed point we observe the data set center 

 

 

 

 

 

 

 

 

 Centrality: points closer to the data set center tend to be closer to 
all other points (regardless of dimensionality) 

Centrality is amplified by high dimensionality 
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Standard normal distribution of data 

Distribution of Euclidean distances of points to data set 

center (0) = Chi distribution with d degrees of freedom 

Causes of Hubness 

||X|| 
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Standard normal distribution of data 

Distribution of Euclidean distances of points to: 

- Point at expected distance from 0: E(||X||) (dashed lines) 

- Point 2 standard deviations closer: E(||X||) – 2·Std(||X||) (full lines) 

= Noncentral Chi distribution with d degrees of freedom 

Causes of Hubness 
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Causes of Hubness 

Theorem [Radovanović et al. JMLR’10]: The ascending behavior holds 

for iid normal data and any two points at distances E + c1·Std and 

E + c2·Std, for c1, c2 ≤ 0,  c1 < c2 

In the above example: c1 = –2, c2 = 0 

[Suzuki et al. EMNLP’13] discuss similar result for dot-product similarity 

and more arbitrary data distribution 
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Important to Emphasize 

 Generally speaking, concentration does not CAUSE hubness 

 

 Causation might be possible to derive under certain assumptions 

 

 Example settings with(out) concentration and with(out) hubness: 
 C+, H+: iid uniform data, Euclidean dist. 

 C–, H+: iid uniform data, squared Euclidean dist. 

 C+, H–: iid normal data (centered at 0), cosine sim. 

 C–, H–: spatial Poisson process data, Euclidean dist. 

 

 Two “ingredients” needed for hubness: 
1)    High dimensionality 

2)    Centrality (existence of centers / borders) 
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Hubness in Real Data 

 Important factors for real data 
1)    Dependent attributes 

2)    Grouping (clustering) 

 

 50 data sets 
 From well known repositories (UCI, Kent Ridge) 

 Euclidean and cosine, as appropriate 

 

 Conclusions [Radovanović et al. JMLR’10]: 
1)    Hubness depends on intrinsic dimensionality 

2)    Hubs are in proximity of cluster centers 
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Hubness in Real Data 

Existence of hubness in real data and dependence on dimensionality verified: 
 

 Various UCI, microarray and text data sets [Radovanović et al. JMLR’10] 

 

 Collaborative filtering data [Nanopoulos et al. RecSys’09, Knees et al. ICMR’14] 
 

 Vector space models for text retrieval [Radovanović et al. SIGIR’10] 
 

 Time series data and “elastic” distance measures (DTW) [Radovanović et al. SDM’10] 
 

 Content-based music retrieval data [Karydis et al. ISMIR’10, Flexer et al. ISMIR’12] 
 

 Doddington zoo in speaker verification [Schnitzer et al. EUSIPCO’13] 

 

 Image data with invariant local features (SIFT, SURF, ORB) [Tomašev et al. ICCP’13] 

 

 Oceanographic sensor data [Tomašev and Mladenić IS’11] 

 

 … 
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There Are Also Critics 

[Low et al. STUDFUZZ’13] 

 

 “The Hubness Phenomenon: Fact or Artifact?” 

 

 “we challenge the hypothesis that the hubness phenomenon is an 
effect of the dimensionality of the data set and provide evidence that 
it is rather a boundary effect or, more generally, an effect of a 
density gradient” 

 

 The “challenge” is easy to overcome by referring to more careful 
reading of [Radovanović et al. JMLR’10], where boundaries are also 
discussed in detail (and found to be a dual notion to centrality) 

 

 Nevertheless, the paper articulates the notion of density gradient 
(empirically), which could prove valuable 
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Hubness and Large Neighborhoods 
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Hubness and Large Neighborhoods 
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Hubness and Large Neighborhoods 
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[Radovanović et al. TKDE’15] 
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Outline 

 Origins 
 Definition, causes, distance concentration, real data, 

dimensionality reduction, large neighborhoods  
 

 Applications 
 Approach 1: Getting rid of hubness 

 Approach 2: Taking advantage of hubness 

 Software 
 

 Challenges 
Outlier detection, kernels, causes – theory, kNN 

search, dimensionality reduction, others… 
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Approaches to Handling Hubs 

1. Hubness is a problem – let’s get rid of it 

2. Hubness is OK – let’s take advantage of it 

 

 Hubness is present in many kinds of real data 

and application domains 

 We will review research that actively takes 

hubness into account (in an informed way) 

 But first… 
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Hubness and Classification 

Based on labels, k-occurrences can be 
distinguished into: 

“Bad” k-occurrences, BNk(x) 

“Good” k-occurrences, GNk(x) 

Nk(x) = BNk(x) + GNk(x) 

 

 “Bad hubs” can appear 

How do bad hubs originate? 
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How Do “Bad” Hubs Originate? 

 The cluster assumption [Chapelle et al. 2006]: 
Most pairs of points in a cluster should be of the same class 

 Observations and answers [Radovanović et al. JMLR’10]: 
 High dimensionality and skewness of Nk do not automatically 

induce “badness” 

 Bad hubs originate from a combination of 
1)   high (intrinsic) dimensionality 

2)   violation of the cluster assumption 

 Low 

violation 

 High 

violation 

Inria, Rennes November 20, 2014 



 

 
 
 

24 

In More General Terms 

 General notion of “error” 
 Classification error (accuracy) 

 Retrieval error (precision, recall, F-measure) 

 Clustering error (within/between cluster distance) 

 

 Models make errors, but the responsibility for error is 
not evenly distributed among data points 

 

 Important to distinguish: 
 Total amount of (responsibility for) error in the data 

 E.g. Σx BNk(x) / Σx Nk(x) 

 Distribution of (responsibility for) error among data points 
 E.g. distribution of BNk(x), i.e. its skewness 
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In More General Terms 

 Hubness generally does not increase the total amount of error 

 

 Hubness skews the distribution of error, so some points will be 
more responsible for error than others 

 

 Approach 1 (getting rid of hubness) 

 May reduce (but also increase) total amount of error in the data 

 Will make distribution of error more uniform 

 

 Approach 2 (taking advantage of hubness) 

 Will not change total amount of error in the data 

 Will identify points more responsible for error and adjust models 
accordingly 
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Mutual kNN Graphs 

[Ozaki et al. CoNLL’11] 

 Graph-based semi-supervised text classification 

 kNN graphs 

Mutual kNN graphs + maximum spanning trees 

 b-matching graphs [Jebara et al. ICML’09] 

 Gaussian random fields (GRF) algorithm 

 Mutual kNN graphs perform better than kNN 

graphs (and comparably to b-matching graphs) 

due to reduced hubness 
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Regular Graphs 

[Vega-Oliveros et al. JoP’14] 

 Graph-based semi-supervised classification 

 kNN graphs 

 Undirected regular graphs constructed from kNN 

graphs (regular graph = graph with all degrees equal) 

 Local and global consistency (LGC) label 

propagation algorithm 

 Regular graphs perform better than kNN graphs  

due to non-existing hubness 
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Centering and Hub Reduction 

[Suzuki et al. AAAI’12] 

 Ranking (IR), multi-class and multi-label kNN classification 

 Laplacian-based kernels tend to make all points equally similar to 
the center, thus reducing hubness (compared to plain cosine 
similarity) 

 When hubness is reduced, the kernels work well 

 

[Suzuki et al. EMNLP’13] 

 Text classification 

 Centering reduces hubness, since it also makes all points equally 
similar to the center, using dot-product similarity 
 I would add, centering reduces centrality (the existence of centers in the 

data) w.r.t dot-product similarity 

 For multi-cluster data, weighted centering which moves hubs closer 
to the center achieves a similar effect 
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Local and Global Scaling 

[Schnitzer et al. JMLR’12] 
 

 Content-based music retrieval 
 

 Idea: rescale distances between x and y so that distance is small only if x is 
a close neighbor to y and y is a close neighbor to x 

 

 Local scaling: non-iterative contextual dissimilarity measure 
 
   LS(dx,y) = dx,y / (μx μy)

½  
 
where μx (μy) is the avg. distance from x (y) to its k NNs 
 

 Global scaling: mutual proximity 
 
             MP(dx,y) = P(X > dx,y ∩ Y > dy,x) 
 
where X (Y) follows the distribution of distances from x (y) to all other points 
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Mutual Proximity Visualized 
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Properties of LS and MP 

 Both LS and MP reduce hubness, improving kNN classification 
accuracy 

 MP easier to approximate for large data, successfully applied to 
music retrieval 

 Methods do not reduce intrinsic dimensionality of data 

 Hubs/anti-hubs remain as such, but to a lesser degree 

 Regarding error (“badness”), the methods: 
 Reduce badness of hubs 

 Introduce badness to anti-hubs 

 Badness of regular points stays roughly the same, but less than for both 
hubs and anti-hubs 

 LS can benefit from varying neighborhood size based on class 
labels or clustering [Lagrange et al. ICASSP’12] 

 MP successfully applied to neighbor-based collaborative filtering 
[Knees et al. ICMR’14] 
 MP improves data point coverage in NN graph 
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Shared Nearest Neighbors 

[Flexer & Schnitzer HDM’13] 

 Classification 

 Consider shared neighbor similarity: 
 
  SNN(x,y) = |Dk(x) ∩ Dk(y)| / k 
 
where Dk(x) is the set of k NNs of x 

 Use this measure for computing the kNN graph 

 SNN reduces hubness, but not as much as LS and MP 

 SNN can improve kNN classification accuracy, but overall 
worse than LS and MP 
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A Case for Hubness Removal 

[Schnitzer et al. ECIR’14] 

Multimedia retrieval: text, images, music 

SNN, and especially LS and MP, in all 

above domains: 

Reduce hubness 

 Improve data point coverage (reachability) 

 Improve retrieval precision/recall 
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Choosing the Metric 

[Schnitzer & Flexer ESANN’14] 

 Examine lp norms for p ϵ {.25, .5, …, 4} 

 For a data set compare: 

 Percentage of anti-hubs (points with Nk = 0, k = 1) 

 Percentage of hubs (points with Nk > 2k, k = 1) 

 kNN classification accuracy (k = 5) 

 Values of p with lowest percentage of (anti-)hubs and highest kNN 

accuracy tend to coincide 
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Automatic Speech Recognition 

[Vincent et al. Interspeech’14] 

 Automatic speech recognition (ASR)  

 Speech units: hidden Markov models (HMM) with 

Gaussian mixture model (GMM) observation densities 

 Introduce various kinds of normalization to vector 

observation scores for different states 

 Two notions of hubness 

 Of states w.r.t. the k most likely feature vectors 

 Of feature vectors w.r.t. the k most likely states 

 Normalization reduces hubness and increases accurracy 
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Other Ways to Avoid Hubs 
[Murdock and Yaeger ECAL’11] 

 Using clustering to identify species in genetic algorithms 

 QT clustering algorithm uses ε-neighborhoods, where there is no hubness 

 

[Van Parijs et al. LSM’13] 

 Approaches to modify kNN graphs of users/items, improving recommendation: 
 Remove strongest hubs 

 Normalize similarities (then recompute graph) 

 Replace similarities with ranks (then recompute graph) 

 

[Lajoie et al. Genome Bilogy’12] 

 Regulatory element discovery from gene expression data 

 kNN graph between genes is first symmetrized 

 k neighbors sampled with probability inversely proportional to Nk  

 

[Schlüter MSc’11] 

 Overview and comparison of methods for hub reduction in music retrieval 

 Methods mostly unaware of the true cause of hubness 
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Extending the kNN Classifier 

 “Bad” hubs provide erroneous class information 
to many other points 

 

 hw-kNN [Radovanović et al. JMLR’10]: 
We introduce standardized “bad” hubness: 

 

hB(x, k) = (BNk(x) – μBNk
) / σBNk

  

 

 During majority voting, the vote of each neighbor x is 
weighted by 

exp(–hB(x, k)) 
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Extending the kNN Classifier 

 Drawbacks of hw-kNN: 
 Does not distinguish between classes when computing “badness” of a point 

 Still uses the crisp voting scheme of kNN 

 

 Consider class-specific hubness scores Nk,c(x): 
The number of k-occurrences of x in neighbor sets of class c 

 

 h-FNN, Hubness-based Fuzzy NN [Tomašev et al. MLDM’11, IJMLC]: 
Vote in a fuzzy way by class-specific hubness scores Nk,c(x) 

 NHBNN, Naïve Hubness Bayesian NN [Tomašev et al. CIKM’11]: 
Compute a class probability distribution based on Nk,c(x) 

 HIKNN, Hubness Information kNN [Tomašev & Mladenić ComSIS’12]: 
Information-theoretic approach using Nk,c(x) 

 ANHBNN, Augmented Naïve Hubness Bayesian NN 
[Tomašev & Mladenić ECML’13]: 
Extends NHBNN using the Hidden Naïve Bayes model to take into account hub co-
occurrences in NN lists 
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Why Hub-Based Classifiers Work 

[Tomašev & Mladenić KBS’13] 

 Data with imbalanced classes 

 “Bad” hubs from MINORITY classes usually responsible for 
most error 

 Favoring minority class data points (standard approach) makes the 
problem worse 

 Hubness-based classifiers improve precision on minority classes 
and recall on majority classes 

 May be beneficial to combine the hubness-aware voting approaches 
with the existing class imbalanced kNN classifiers 
 Realistically, minority classes need to be favored 

 Minority (bad) hubs need to be taken into account 

 

[Tomašev & Buza Neurocomputing’14] 

 Hub-based classifiers (especially h-FNN and NHBNN) are robust to 
different kinds of label noise 
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Clustering 

[Radovanović et al. JMLR’10] 

 

 Distance-based clustering objectives: 
 Minimize within-cluster distance 

 Maximize between-cluster distance 

 

 Skewness of Nk affects both objectives 
 Outliers do not cluster well because of high within-cluster 

distance 

 Hubs also do not cluster well, but because of low between-
cluster distance 
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Clustering 

 Silhouette coefficient (SC): For i-th point 

 ai = avg. distance to points from its cluster 

(within-cluster distance) 

 bi = min. avg. distance to points from other clusters 

(between-cluster distance) 

 SCi = (bi – ai) / max(ai, bi) 

 In range [–1, 1], higher is better 

 SC for a set of points is the average of SCi for every 

point i in the set 
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Clustering 

[Tomašev et al. PCA’14] 
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Using Hubs as Cluster Centers 

[Tomašev et al. PAKDD’11, TKDE’14] 
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Exploiting the Hubness of Points 
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Exploiting the Hubness of Points 
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Exploiting the Hubness of Points 

 Algorithm 3 HPKM 
The same as HPC, except for one line 
 
HPC:    HPKM: 

 “Kernelized” extension of HPKM 
[Tomašev et al. PCA’14] 
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Why Hub-Based Clustering Works 

Miss-America, Part 1 Miss-America, Part 2 

 Hub-based clustering more robust to noise 

 Improves between-cluster distance (b component of SC), 

especially for hubs 
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Outlier Detection 

[Radovanović et al. JMLR’10] 

 In high dimensions, points with low Nk – the anti-hubs 
can be considered distance-based outliers 
 They are far away from other points in the data set / their cluster 

 High dimensionality contributes to their existence 
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Outlier Detection 

Inria, Rennes November 20, 2014 

[Hautamäki et al. ICPR’04] 

 Proposed method ODIN (Outlier Detection using Indegree 
Number), which selects as outliers points with Nk below or 
equal to a user-specified threshold 

 Experiments on 5 data sets showed it can work better than 
various kNN distance methods 

 Not aware of the hubness phenomenon, little insight into 
reasons why ODIN should work, its strengths, 
weaknesses… 
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Outlier Detection 

[Radovanović et al. TKDE’15] 

 In method AntiHub, we use Nk(x) as the outlier score of x 

(same as ODIN, without the threshold) 

 Through experiments we identified its strengths and 

weaknesses with respect to different factors (properties): 

1. Hubness 

2. Locality vs. globality 

3. Discreteness of scores 

4. Varying density 

5. Computational complexity 
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Outlier Detection 

Property 1: Hubness 
 

 High (intrinsic) dimensionality, k << n: 

 Good overall correlation between Nk and distance to a center, but 

 Many Nk values of 0 – problem with discrimination 

 

 Low dimensionality, k << n 

 Low correlation between Nk and distance to a center, but 

 For a small number of points with low Nk, this correlation is better, 

so AntiHub/ODIN can be meaningful 
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Outlier Detection 
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[Radovanović et al. TKDE’15] 
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Outlier Detection 

Property 2: Locality vs. globality 

 For AntiHub and other methods based on kNN: 

 k << n: notion of outlierness is local 

 k ~ n: notion of outlierness is global 

 AntiHub in “local mode” can have problem with discrimination 

 Raising k can address this, but the notion of outlierness goes global 

 

Property 3: Discreteness of scores 

 Regardless of all of the above, Nk scores are integers, hence 

inherently discrete, which can also cause discrimination problems 
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Outlier Detection 

Property 4: Varying density 

 AntiHub is not sensitive to the scale of distances in the data 

 Can effectively detect (local) outliers in clusters of different 

densities without explicitly modeling density 

 

Property 5: Computational complexity 

 Using high k values can be useful 

 However, approximate kNN search/indexing methods typically assume 

k = O(1) 
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Outlier Detection 

 Notable weakness of AntiHub: discrimination of scores, contributed to 

by two factors: hubness and discreteness of scores 

 Therefore, we proposed method AntiHub2, which combines the Nk 

score of a point with Nk scores of it’s k nearest neighbors, so as to 

maximize discrimination 

 AntiHub2 improves discrimination of scores compared to AntiHub 

(always), as well as AUC (on many data sets) 

 With respect to different k values, AUC of AntiHub and AntiHub2 

behaves similarly to density-based methods (LOF, INFLO) 

 Very high k values can be useful (for all methods) 
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Instance Selection 

[Radovanović et al. JMLR’10] 

 Support vector machine classifier 

 Bad hubs tend to be good support vectors 

 

[Kouimtzis MSc’11] 

 Confirm and refine above observation 

 Observe ratio BNk(x) / GNk(x) 

 Two selection methods: 
 RatioOne: Prefer ratios closest to 1 in absolute value 

 BelowOne: Prefer ratios lower than 1 

 BelowOne performs better than random selection 

 RatioOne comparable to BelowOne only on larger sample sizes 

 BelowOne selects instances on the border, but closer to class 
centers 
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Instance Selection 

[Lazaridis et al. Signal Processing: Image Communication’13] 

 Multimodal indexing of multimedia objects (text, 2D image, sketch, 
video, 3D objects, audio and their combinations) 

 Select dimensionality of multimodal feature space (20) to maximize 
hubness while keeping computational cost reasonable 

 Select reference objects for indexing as strongest hubs 

 

[Buza et al. PAKDD’11] 

 Improve speed and accuracy of 1NN time-series classification 

 INSIGHT: Select a small percentage of instances x based on largest 
 GN1(x) 

 GN1(x) / (N1(x) + 1) 

 GN1(x) – 2BN1(x) 

 The approach using GN1 is optimal in the sense of producing the 
best 1NN coverage (label-matching) graph 
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Feature Construction 

[Tomašev et al. FSDPR’14] 

 Extension of the approach by [Buza et al. PAKDD’11] 

 Construct new features using DTW distances: 

 Split training set into two disjoint sets (T1 and T2) 

 Selest some instances from T1 

 Two approaches: by largest GN1 (HubFeatures) and randomly (RndFeatures) 

 Compute distances of instances from T2 to selected ones from T1 

 Use the distances as feature vectors for instances from T2 

 Train a classifier (logistic regression) on this 

 The two approaches HubFeatures and RndFeatures, and 

INSIGHT, work well for kNN time-series classification 
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Local Image Feature Selection 

[Wang et al. PR’11] 

 Improving image-to-class (I2C) distance 

 Image features extracted locally from each 
image, and thus have: 
 Vector descriptors (that can be compared) 

 Associated class information (of the image) 

 Reduce cost of NN search in testing phase by: 
 Removing features with low Nk 

 Keeping features with high GNk / BNk  
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Semi-Supervised Classification 

[Radovanović et al. JMLR’10] 

 Gaussian random fields (GRF) algorithm 

 Active learning scenario: request labels from hubs, 
random points, or anti-hubs first 
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Semi-Supervised Time-Series 

Classification 

[Marussy TDK’12] 

 SLINK classifier: 
1. Cluster all points with single-linkage agglomerative hierarchical 

clustering with: 

 Cannot link constraints (don’t link labeled points) 

 DTW distance 

2. Label top-level clusters with their “seeds” 

3. Use 1NN with produced labeling 

 Produces as many clusters as there are labeled points 

 Works well on many data sets 

 Assumption: almost all hubs are (transitively) good hubs 
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Cross-Lingual Document Retrieval 

[Tomašev et al. PAKDD’13] 

 Acquis aligned corpus data (labeled), focus on English and French 

 Frequent neighbor documents among English texts are usually also 
frequent neighbors among French texts 

 Good/bad neighbor documents in English texts are expected to be 
good/bad neighbor documents in French 

 Canonical correlation analysis (CCA) is a dimensionality reduction 
technique similar to PCA, but: 
 Assumes the data comes from two views that share some information (such as a 

bilingual document corpus) 

 Instead of looking for linear combinations of features that maximize the variance 
it looks for a linear combination of feature vectors from the first view and a linear 
combination from the second view, that are maximally correlated 

 Introduce instance weights that (de)emphasize (bad) hubs in CCA 

 Emphasizing hubs gives most improvement in classification and retrieval 
tasks 
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Similarity Adjustment 

[Radovanović et al. SIGIR’10] 

 Document retrieval in the vector space model 
(TF-IDF + cosine sim., BM25, pivoted cosine) 

 For document x, query q, we adjust similarity sim(x, q) as follows: 
 

  sima(x, q) = sim(x, q) + sim(x, q) · (GNk(x) – BNk(x)) / Nk(x) 

 

[Tomašev et al. ITI’13] 

 Bug duplicate detection in software bug tracking systems 
(TF-IDF + cosine sim. over bug report text) 

 Similarity adjustment, observing only the past μ occurrences of x: 
 

  sima(x, q) = sim(x, q) + sim(x, q) · GNk,μ(x) / Nk,μ (x) 
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An Approach in Between 

[Tomašev & Mladenić, HAIS’12, KAIS’14] 
 

 Image classification 

 

 Consider shared neighbor similarity: 
 
   SNN(x,y) = |Dk(x) ∩ Dk(y)| / k 
 
where Dk(x) is the set of k NNs of x 
 

 Propose a modified measure simhub which 
 Increases the influence of rare neighbors 

 Reduces the influence of “bad” hubs (considering class-specific hubness Nk,c(x) from an 
information-theoretic perspective) 

 

 simhub: 
 Reduces total amount of error (badness) 

 Reduces hubness 

 Bad hubs no longer correlate with hubs (distribution of error is changed) 
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Outline 

 Origins 
 Definition, causes, distance concentration, real data, 

dimensionality reduction, large neighborhoods  
 

 Applications 
 Approach 1: Getting rid of hubness 

 Approach 2: Taking advantage of hubness 

 Software 
 

 Challenges 
Outlier detection, kernels, causes – theory, kNN 

search, dimensionality reduction, others… 
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Hub Miner: Hubness-

aware Machine Learning 

• Java-based library for developing and evaluating 

hubness-aware machine learning approaches 

• About 100k lines of code 

• Author: Nenad Tomašev 

• GitHub link: https://github.com/datapoet/hubminer 

• Project page: http://ailab.ijs.si/tools/hub-miner/ 

• User Manual: 

https://github.com/datapoet/hubminer/blob/master/HubMi

nerManual.pdf 

https://github.com/datapoet/hubminer
https://github.com/datapoet/hubminer
http://ailab.ijs.si/tools/hub-miner/
http://ailab.ijs.si/tools/hub-miner/
http://ailab.ijs.si/tools/hub-miner/
http://ailab.ijs.si/tools/hub-miner/
https://github.com/datapoet/hubminer/blob/master/HubMinerManual.pdf
https://github.com/datapoet/hubminer/blob/master/HubMinerManual.pdf
https://github.com/datapoet/hubminer/blob/master/HubMinerManual.pdf


Machine learning support 

• kNN, CBWkNN, NWKNN, AKNN, FNN, dw-kNN, hw-kNN, h-
FNN, dwh-FNN, HIKNN, NHBNN, ANHBNN, Naive Bayes, 
LWNB, KNNNB, ID3 

Classification 

• K-means variants, DBScan, LKH, GKH, GHPC, LHPC, GHPKM, 
Kernel-GHPKM Clustering 

• Local scaling, NICDM, mutual proximity, simcos, simhub Metric learning 

• ENN, CNN, GCNN, RT3, RNNR.AL1, INSIGHT Instance Selection 

• Genetic algorithms, simulated annealing, differential evolution, 
predator-prey particle swarm optimization 

Stochastic 
Optimization 



Hub Miner 

Visualization 



Hub Miner Experimentation 
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Outline 

 Origins 
 Definition, causes, distance concentration, real data, 

dimensionality reduction, large neighborhoods  
 

 Applications 
 Approach 1: Getting rid of hubness 

 Approach 2: Taking advantage of hubness 

 Software 
 

 Challenges 
Outlier detection, kernels, causes – theory, kNN 

search, dimensionality reduction, others… 
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Outlier Detection 

Challenges [Radovanović et al. TKDE’15]: 
 

 High values of k can be useful, but: 

 Cluster boundaries can be crossed, producing meaningless 

results. How to determine optimal neighborhood size(s)? 

 Computational complexity is raised; approximate NN 

search/indexing methods do not work any more. Is it possible to 

solve this for large k? 

 

 AntiHub and AntiHub2 are no “rock star” methods 

 Can Nk scores be applied to outlier detection in a better way? 

Through outlier ensembles? 
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Kernels 

 Little is known about the effects of different kernels (and their parameters) 
on hubness 

 

 And vice versa, hubness can be a good vehicle for understanding the 
effects of kernels on data distributions 

 

 For given kernel function K(x,y) and norm distance metric D(x,y) in Hilbert 
space, 
  D2(Ψ(x),Ψ(y)) = K(x,x) − 2K(x,y) + K(y,y) 

 

 Preliminary investigation in [Tomašev et al. PCA’14], in the context of 
kernelized hub-based clustering 

 

 Other possible applications: kernelized clustering in general, kernel-kNN 
classifier, SVMs (with only a start given in [Kouimtzis MSc’11])… 
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Kernels 

[Tomašev et al. PCA’14]: polynomial kernel K(x,y) = (1 + <x,y>)p 
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Causes of Hubness: Theory 

 Theoretical contribution of [Radovanović et al. JMLR’10] only in terms of 
properties of distances 

 

 Good strides made in [Suzuki et al. EMNLP’13] for dot-product similarity 

 

 More needs to be done: 
 Explain the causes of hubness theoretically for a large class of distances and 

data distributions 

 Characterize the distribution of Nk based on the distribution of data, distance 
measure, number of data points, k 

 Explore the effects of different types of normalization 

 Understand the difference between kNN and ε-neighborhood graphs 

 

 Practical benefits: 
 Geometric models of complex networks (mapping graphs to Rd) 

 Intrinsic dimensionality estimation 

 … 
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(Approximate) kNN Search / Indexing 

 HUGE virtually untouched area, with great practical importance 

 

 We did some preliminary experiments, showing that hubness is not 
severely affected by method from [Chen et al. JMLR’09] 

 

 [Lazaridis et al. 2013] used hubness in a specific multimedia context 

 

 Need for comprehensive systematic exploration of: 

 Interaction between hubness and existing methods 

 Construction of new “hubness-aware” methods 

 

 Possible need for methods that do not assume k = O(1) 
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Dimensionality Reduction 

 Apart from simulations in [Radovanović et al. JMLR’10] 
and instance weighting for CCA in [Tomašev et al. 
PAKDD’13], practically nothing done 

 

 Many possibilities: 
  Improved objective functions for distance-preserving 

dimensionality reduction (MDS, PCA) 

 In order to better preserve kNN graph structure 

 Or break the kNN graph in a controlled way 

 Improve methods based on geodesic distances (Isomap, etc.) 

 … 
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Other (Possible) Applications 

 Information retrieval 
 Investigation of short queries, large data sets 

 Learning to rank 

 

 Local image features (SIFT, SURF…) 
 Hubness affects formation of codebook representations 

 Normalization plays and important role 

 

 Protein folding 

 

 Suggestions? 
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