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Magnetized plasmas

ITER project

International Thermonuclear Experimental Reactor, ITER project:
thermonuclear fusion in a hot hydrogen plasma (more than 100
millions of °C). Energy of the future. 20 billions euros.
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Magnetized plasmas

Tokamak

tokamak: magnetic plasma confinement in a torus. Poloidal coils
= toroidal field. Plasma current = poloidal field = plasma
stability. Tamm-Sakharov in the 50's.
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Magnetized plasmas

Vlasov-Maxwell model

@ Unknown: the distribution function f(x,v,t). Number of ions
at point x and time t having velocity v. The problem is
time-dependent in a six-dimensional phase space.

@ Vlasov equation with weak collisions

of +v-Vyf+(E+vxB)-V,f=C(f)~0.

@ Poisson equation (or Maxwell equations) on the electric
potential ®. The magnetic field is given.

V-E=p—po, E=-VO.

The charge p is given by
p(x,t):/f(x,v,t)dv.

e Boundary conditions.
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Magnetized plasmas

Vlasov-Maxwell simulation

Simplified case: 2D X-ray generator. Particle-In-Cell (Vlasov)
Discontinuous Galerkin (Maxwell). GPU implementation (A.
Crestetto)
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Magnetized plasmas

Vlasov-Maxwell simulation
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Challenges

Tokamak simulation challenges

Solving the full Vlasov-Poisson or Vlasov-Maxwell model in a
tokamak is too much expensive, even for supercomputers.

@ Rigorous asymptotic simplifications or adapted mathematical
representation of the solution.

@ Adapted numerical schemes.

@ Implementation in useful software.
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Challenges

1) Gyrokinetic modeling

In the gyrokinetic model, the Vlasov equation is replaced by a
transport equation of the guiding centers.
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The Poisson equation is replaced by the quasineutrality equation for
the electric potential. Acting fields are obtained by gyroaveraging
the real fields on the particles trajectories. Theoretical justification
of such models.
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Challenges

2) Field anisotropy in tokamak simulations

Fluctuations and anisotropy of the electric field (CERF project flyer,
A. Koniges LBNL).
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Challenges

3) Aligned meshes

® @
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Stretching of the mesh along the toroidal direction.

(G. Latu)

Some mathematical and numerical challenges around ITER



Challenges

4) Real magnetic configuration

Coupling with magnetic solver, control.
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Challenges

5) Precise numerical method
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The PIC methods are noisy. Eulerian or Semi-Lagrangian
approaches are more reliable, while more expensive.



Challenges

6) High Performance Computing (HPC)

e GYSELA, CEA gyrokinetic simulation tool. Recent 500,000
cores run.

@ electron effects simulation possible within 10 years.

o Exascale computing. C2S@EXA IPL (S. Lanteri). Peta=10%,
Exa=10'8. Exaflops=10'® operations/second. 1 GPU~ 10'?
flops.

@ Hot subject: Co-design for Exascale Research in Fusion CERF
project in the US. Physicists, mathematicians, computers
scientists of several institutions working on tokamak
simulations “=" Fusion IPL + C2SO@EXA IPL.
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Sandbox, Toolbox

Selalib

Transport equation, characteristic method, directional
splitting, parallel transposition.
R. Blanchard, E. Chacon-Golcher, P. Navaro, M. Mehrenberger, E.
Sonnendriicker
@ Selalib is an acronym for Semi-Lagrangian Library. It is
supported by an Inria ADT.
@ It is a collection of tools, written in Fortran 2003, for solving
plasma physics problems.
@ As of June 2013 it contains: high order semi-Lagrangian
solvers, Poisson FFT-based solvers, parallel tools.

@ "“Anteroom” of GYSELA...
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Sandbox, Toolbox

Semi-Lagrangian solvers

M. Mehrenberger
e Conservative scheme (P. Glanc)
@ High order scheme (C. Steiner)

@ Vlasov on curvilinear meshes (A. Hamiaz)
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Sandbox, Toolbox

Gyroaverage operator

M. Mehrenberger
@ Padé approximation on curvilinear meshes

@ Quadrature on circle (C. Steiner)
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Sandbox, Toolbox

Software: CLAC

Hyperbolic system of conservation laws, reduced modeling,
fine grain OpenCL parallelism, coarse grain MPI sub-domain
parallelism.

PH, M. Massaro, T. Strub

@ CLAC is an acronym for Conservation Laws Approximation on
many Cores.

@ It is a generic 3D Discontinuous Galerkin (DG) solver for
system of hyperbolic conservation laws: Maxwell, MHD,
waterbags, reduced Vlasov, etc.

@ It is based on OpenCL and MPI and thus runs on clusters of
GPU’s. It allows arbitrary order and non conforming meshes.

@ It is developed with the company AxesSim in Strasbourg.

e Collaboration with the CAMUS team for multicore
optimizations.

@ It is being rewritten for better memory access.
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Sandbox, Toolbox

Example: Maxwell simulation (T. Strub)

CAD mesh
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Sandbox, Toolbox

FDTD mesh (provisional)
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Sandbox, Toolbox

100 millions of unknowns, second order approximation, 50 time

steps.
’ Arch. | time (s) | “speedup” |
1x core Intel Xeon 2.3 GHz 5980 1
12x cores Intel Xeon 2.3 GHz 389 15 (7)
1x GPU AMD Radeon HD7970 95 63
4x GPU AMD Radeon HD7970 42 142

@ “speedups’ have to interpreted with care. The classical MPI
implementation of ONERA is also efficient.

@ MPI| communications 10%, GPU-CPU transfers 30%

@ we are currently reorganizing CLAC.
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Sandbox, Toolbox

Gyrokinetic data analysis

Hatch et al. JCP 2012
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Phase space turbulence. Smaller in the velocity directions.
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Sandbox, Toolbox

Reduced models

We represent the distribution function as
f(x,v,t) = M(a(x,t),v),

where o is a vector of parameters that depends only on space and
time. Generally, a is solution of a first order hyperbolic system. The
model can be solved by an optimized solver for conservation laws.
The following techniques enter this framework:

@ waterbag approximations
o finite element approximations

e velocity-Fourier expansions (Eliasson)
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Sandbox, Toolbox

Comparison of methods

Two-stream instabilitythes.

]
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Sandbox, Toolbox

Reduced Vlasov: Lagrange + FV

FIGURE 16. The distribution function of the two-stream test case at time ¢t = 25. Left: reduced
Vlasov-Poisson method. Right: the PIC method.
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Sandbox, Toolbox

Reduced Vlasov: Lagrange + FV

FIGURE 18. The distribution function of the two-stream test case at time ¢ = 50 computed with
the reduced Vlasov-Poisson method. Left: with the centered flux. Right: with the slightly upwinded
flux.
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Sandbox, Toolbox

Reduced Vlasov: Fourier

(N. Pham, L. Navoret)

Two-stream instability, Fourier-velocity method
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Sandbox, Toolbox

Reduced Vlasov: waterbags

(A. Crestetto, N. Besse)
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FIGURE 2.8 — Instabilité double faisceau - Fonction de distribution : modéle MWB (a
gauche) comparé & la méthode PIC (& droite) aux temps t = 0, t = 15 et t = 20 (de haut
en bas).
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Sandbox, Toolbox

Ongoing works

PIC AP solvers;

4D reduced Vlasov-Poisson solver:
4D drift-kinetic solver;
Gyroaverage,;

SelalLib (curvilinear meshes), CLAC (rewriting, memory
optimizations).
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Sandbox, Toolbox

Fusion |PL

Coordinated by J. Blum. Teams: Castor, Kaliffe, Tonus, LJLL,

MIP, CEA IRFM.
@ kinetic and gyrokinetic models: 5D and 6D simulations.
SelalLib
@ fluid models, edge plasma turbulence, MHD instabilities.
PlaTo.

o reduced fluid-kinetic models, collision models.
o Electromagnetic waves: reflectometry, RF heating.

o Control.
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