
Automatic verification of safety critical softwares

Xavier Rival

INRIA Paris Rocquencourt

Nov, 8th. 2012

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 1 / 20



Why to verify embedded softwares ?

Outline

Potential impact of bugs in safety critical softwares:
◮ disastrous, not theoretical

State of the art in industry:
◮ mostly testing, need for better techniques

Abstract interpretation based static analysis:
◮ sound, automatic
◮ successful verification of synchronous softwares

towards the verification of wider families of softwares

verification of programs
manipulating complex data-structures

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 2 / 20



Why to verify embedded softwares ?

The Ariane 501 flight failure (1996)

The failure:
◮ at T0 + 30 s, an arithmetic overflow (float -> short int)

both Inertial Reference Systems to return negative error codes
◮ the on-board computer misinterprets those as physical data
◮ loss of control of the trajectory

A long list of design issues:
1 failure to assess the range of inputs: reuse of legacy code
2 wrong settings of hardware interruptions: crash the system !
3 the faulty computation was useless after takeoff...
4 main and back-up systems running the same faulty software

A very expensive failure: more than $ 300 000 000 cost

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 3 / 20



Why to verify embedded softwares ?

Issues in critical embedded softwares

Ariane 501 flight is not the only occurrence:

Patriot missile Dahran failure:
◮ imprecisions in fixed-point computation (0.1 not representable)
◮ 28 fatalities

Loss of a Mars explorer vehicle:
◮ wrong use of units: no conversion between meters and yards
◮ crash on the surface of Mars

Saab Grippen fighter jet:
◮ unstability issues in control sofwares
◮ two crashes, due to “Pilot Induced Oscillations”

Many others...

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 4 / 20



Verification in avionics

State of the art in industry

Defined per area, “good industrial practices”:

DO 178 standards in avionics:
1 assess level of criticality

flight-by-wire level A highly critical
flight warning system level C medium
passenger IFE level E irrelevant

2 address qualification requirements depending on criticality level

Examples of certification tasks
◮ documentation, traceability of software
◮ testing, from unit testing to iron bird

Expensive processes; e.g., test: about 90 % of the cost

No guarantee of safety, test does not cover all executions

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 5 / 20



Verification in avionics

The undecidability barrier

Automatic verification is a very desirable goal
Cheaper, better guarantee on software...

Absence of runtime errors
e.g., no crashes on arithmetic or memory errors

Functional properties
e.g., the program transmits accurate orders to actuators

But interesting semantic properties are all undecidable
when onsidering Turing complete languages

Proof by reduction to the halting problem

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 6 / 20



Verification in avionics

Static analysis and verification

Verification using abstraction

Retain only relevant properties of the concrete semantics
Derive a computable, abstract semantics

Sound: forgets no concrete behavior

Generally incomplete: may fail to capture desired properties

Example: attempt to verify that semantics JSK satisfies property P
using over-approximate semantics JSKupper

Successful verification:

JSK
JSKupper

P

Unsuccessful analysis:

JSK
JSKupper

P

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 7 / 20



Static analysis fundamental principles

Abstraction of properties

Abstract domains

Families of abstract predicates adapted to static analysis

Compact and efficient representations

Operations for the static analysis of concrete operations

Example: abstraction of sets of pairs of integers

concrete set

x

y

bC

bC

bC

bC

bC

bC bC

bC bC

interval domain

x

y

bC

bC

bC

bC

bC

bC bC

bC bC

octagon domain

x

y

bC

bC

bC

bC

bC

bC bC

bC bC

polyedra domain

x

y

bC

bC

bC

bC

bC

bC bC

bC bC

In static analyses: various cost / precision ratios

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 8 / 20



Static analysis fundamental principles

Abstraction of execution steps

Computing sound abstract transformer

Conservative analysis of concrete execution steps in the abstract
e.g., assignments, condition tests...

May lose precision, will never forget any behavior

Balance between cost and precision

Example: analysis of a translation with octagons

concrete transformation

x

y

bC

bC

bC

bC

bC

bC

bC

bC

abstract transformation

x

y

bC

bC

bC

bC

Soundness: all concrete behaviors are accounted for !

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 9 / 20



Static analysis fundamental principles

Abstraction of infinite computations

Computing invariants about infinite executions with widening ▽

Loops may induce executions of unbounded length

Analyses should compute inductive invariants

Widening ▽ over-approximates ∪: soundness guarantee

Widening ▽ guarantees the termination of the analyses

Example: iteration of the translation (2, 1), with octagons

initial

x

y

X0

iteration 1

x

y

X0

F (X0)

X1 = X0▽F (X0)

iteration 2:
stable !

x

y

X1

F (X1)

Soundness: all concrete behaviors are accounted for !

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 10 / 20



Application to control software

The Astrée analyzer

Goal: verify the absence of runtime errors
in synchronous embedded softwares

Answer: domain specific static analyzer

Group:
Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival

declare and initialize state variables;
loop forever

read volatile input variables,
compute output and state variables,
write to volatile output variables;
wait for next clock tick

end loop

Characteristics:

huge softwares: around 1 MLOC

huge states: ≈ 50 000 variables

complex algorithms:
boolean control, digital filtering,
interpolations...

very hard to verify
Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 11 / 20



Application to control software

A numerical abstraction: octagons

An invariant to prove in the
analysis of a real system:

assume(x ∈ [−10, 10])
if(x < 0)

y = −x;
else

y = x;
①if(y ≤ 5)

②assert(−5 ≤ x ≤ 5);

Relation between x, y needed

Relational numerical invariants

Convex polyedra:
∨

i

(

∑

j αijxj ≤ βi

)

high computational cost

Octagons (A. Miné):
◮ two variables per inequality
◮ αij ∈ {−1, 0, 1}
◮ reasonable cost

At ①:

{

0 ≤ y − x ≤ 10
∧ 0 ≤ x + y ≤ 20

At ②:







0 ≤ y − x ≤ 10
∧ 0 ≤ x + y ≤ 20
thus −5 ≤ x ≤ 5

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 12 / 20



Application to control software

A symbolic abstraction: trace partitioning

An interpolation routine
to analyze precisely:

assume(x ≥ 0);
int i = 0;
while(i < n&& t0[i] ≤ x)

i = i+ 1;
y = ((x − t0[i]) ⋆ t1[i] + t2[i]);

Disjunctions needed

concrete output

imprecise
interval invariant

input

Disjunctions in static analysis

Can be very costly,
if too many disjuncts

Trace partitioning:
link states to control history
(L. Mauborgne, X. Rival)

With no partitioning: y ≥ −1

With partitioning: y ∈ [−0.5, 2]






1 iter ⇒ y ∈ [−0.5, 0]
2 iters ⇒ y ∈ [0, 2]
3 iters ⇒ y ∈ [2, 2]

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 13 / 20



Application to control software

Results

Practical results

Proof of safety of industrial codes

Airbus A 340 FBW 70 kLOC 1h30 400 Mb 0 alarm
Airbus A 380 FBW 700 kLOC 12h 2 Gb 0 alarm

Industrialized by AbsInt since 2009

Customers in avionics, automotive, embedded systems

Continued research effort, driven by industrial examples:
◮ new abstract domains
◮ new analysis techniques
◮ . . .

Theoretical results: better understanding of static analysis techniques,
combination of many abstract domains

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 14 / 20



Beyond control software

Towards the verification of wider families of softwares

level of
criticality

very high

high

low

easier to analyze harder to analyze

static analysis
difficulty

fly-by-wire control internal command bus
flight warning system
communication/navigation software

in-flight entertainment system

numeric computations
synchronous structure
e.g., Astrée analyzer

complex data-structures
asynchronous structure
no satisfactory analysis

Many families of softwares not addressed by Astrée

Significant issues to analyze them: asynchrony, memory properties

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 15 / 20



Beyond control software

An example taken from a flight warning system

Cockpit application, reports aircraft systems status

Static message descriptors, dynamically linked at runtime

1

“high”
b

-

(old msg)

(invalid)

-

(old msg)

(invalid)

8

“middle”

0x0

-

(old msg)

(invalid)

msg_tab

msg_list

typedef struct msg{
int prio; message priority
char ⋆ txt; warning content
struct msg ⋆ next; dynamic link

} msg;
msg[] msg_tab; statically allocated region
msg ⋆ msg; list of active messages

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 16 / 20



Beyond control software

Possible sources of errors and consequences

Insertion of a message report (e.g., engine failure report):

void insert(msg ⋆ m){
msg ⋆ prev = search_pos(m);
msg ⋆ e = find_empty_cell(); possible data corruption if not empty
if(e 6= NULL) update(m, e, prev); . . . complex pointer operations

}

msg ⋆ search_pos(msg ⋆ m){
msg ⋆ c = msg_list;
while(c 6= NULL && c → prio < m → prio) non termination if cycle

c = c → next; abrupt crash if dangling pointer
return c; improper order if not sorted

}

1

“high”
b

7

“low”
b

-

(old msg)

(invalid)

8

“middle”
b

-

(old msg)

(invalid)

msg_list

presence of a cycle

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 17 / 20



Beyond control software

MemCAD ERC approach: design modular abstractions !

1

“high”
b

12

“low”

0x0

-

(old msg)

(invalid)

8

“middle”
b

-

(old msg)

(invalid)

other
data-structures

abstraction

contiguous region, sub-store

splitting into two sub-regions

sorted list
specific

abstraction

cells of the form
?

(old msg)
?

independent
abstraction

actual

memory
state















abstract
domains

combination























simple

abstract
domains















Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 18 / 20



Beyond control software

Hierarchical memory abstraction

Principle: use two memory abstractions (P. Sotin, X. Rival)

Main memory abstraction: array contents = one value v

Sub-memory abstraction: considers v a memory state

Concrete:

1

“high”
b b

7

“low”

8

“medium”

msg_tab

msg_list

Abstract:

Main memory:

&msg_list

α

&msg_tab

β
48bytes

Sub-memory:

β = δ
list

Analysis primitives:

assignment

test

widening

. . .

⇒ modular as well !

Other combination operators and domains:

Predicates conjunctions: reduced product

Array abstraction

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 19 / 20



Perspectives

Open problems in program verification

Good results obtained despite undecidability
Real applications certified safe !

A lot of research still to be done:

Verifying complex data-structures manipulations

Taking into account complex assumptions about the environment

Verifying asynchronous softwares

Proving functional properties

. . .

Xavier Rival (INRIA Paris Rocquencourt) Verify safety critical softwares Nov, 8th. 2012 20 / 20


	Why to verify embedded softwares ?
	Verification in avionics
	Static analysis fundamental principles
	Application to control software
	Beyond control software
	Perspectives

