Sparse Signal Processing

Parcimonie en Traitement du Signal

Rémi Gribonval
INRIA Rennes - Bretagne Atlantique, France

remi.gribonval@inria.fr
Two inverse problems in audio processing

- **Source localization**
 - S. Nam

- **Audio inpainting**
 - A. Adler, N. Bertin, V. Emiya, M. Elad, C. Guichaoua, M. Jafari, M. Plumbley
Source localization
with S. Nam
Localization with few microphones

- Possible goals
 - localize emitting sources
 - reconstruct emitted signals
 - extrapolate acoustic field

- Linear inverse problem
 \[y = Mx \]
 - time-series recorded at sensors \(\in \mathbb{R}^m \)
 - (discretized) spatio-temporal acoustic field \(\in \mathbb{R}^N \)

- Need a model
Localization with few microphones

• Possible goals
 ✓ **localize** emitting sources
 ✓ **reconstruct** emitted signals
 ✓ **extrapolate** acoustic field

• Linear inverse problem
 \[y = Mx \]
 time-series recorded at sensors \(\in \mathbb{R}^m \)
 (discretized) spatio-temporal acoustic field \(\in \mathbb{R}^N \)

• Need a model
Physics-driven design of model

- **Pressure field** \(p(\vec{r}, t) \)

- **Wave equation on a domain**

\[
(\Delta p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2})(\vec{r}, t) = s(\vec{r}, t), \quad \vec{r} \in \mathcal{D}
\]

- **Boundary + initial conditions**, e.g.

\[
\frac{\partial p}{\partial n}(\vec{r}, t) = 0, \quad \vec{r} \in \partial\mathcal{D}
\]
Physics-driven design of model

- **Pressure field** $p(\vec{r}, t)$

- **Wave equation on a domain**

\[(\Delta p - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} p)(\vec{r}, t) = s(\vec{r}, t), \ \vec{r} \in \mathcal{D}\]

- **Boundary + initial conditions**, e.g.

\[\frac{\partial p}{\partial n}(\vec{r}, t) = 0, \ \vec{r} \in \partial\mathcal{D}\]
Group sparse source model

- Few non-moving sources = spatially sparse
Group sparse regularization

- Inverse problem \(y = Mx \)

- Regularization with mixed norm

\[\hat{x} = \arg \min_x \frac{1}{2} \| y - Mx \|_2^2 + \lambda \| \Omega x \|_{1,2} \]

- Convex optimization: efficient & provably convergent algorithms

Sparse Field Reconstruction

Setting
- 2D+t vibrating plate 77x77
- 2 sources, random location
- 6 microphones, random location
- known complex boundaries
- ground truth generated with naive discretization

Results

Ground truth

Sparse reconstruction

Sparse Field Reconstruction

Setting
- 2D+t vibrating plate 77x77
- 2 sources, random location
- 6 microphones, random location
- Known complex boundaries
- Ground truth generated with naive discretization

Results

Ground truth

Sparse reconstruction

Localizing the source next door

- Domain, Source and Microphones
Localizing the source next door

- Domain, Source and Microphones
- Sparse source localization
Localizing the source next door

- Domain, Source and Microphones
- Sparse source localization

Reasons of success
- sparsity of sources
- known room shape
- known boundaries
Localizing the source next door

- Domain, Source and Microphones
- Sparse source localization

Reasons of success
- sparsity of sources
- known room shape
- known boundaries

What if shape is unknown?
Audio inpainting
with A. Adler, V. Emiya, M. Elad, M. Jafari, M. Plumbley
Declipping as a linear inverse problem

- Original (unknown) samples x
- Clipped (observed) samples y
- Subset of reliable samples y_{reliable}

Linear inverse problem

$$y_{\text{reliable}} = M$$
Sparse audio models

- Time domain
- Time-frequency domain

\[x \approx Dz \]
Audio Declipping

Model
✓ sparsity in time-frequency dictionary \(x = Dz \)

Algorithm:
✓ find sparse coefficients \(\hat{z} \) such that
✦ (Orthonormal) Matching Pursuit (Mallat & Zhang 93)

✓ estimate \(\hat{x} = D\hat{z} \)

Audio Declipping

- **Model**
 - ✓ sparsity in time-frequency dictionary
 \[x = Dz \]

- **Algorithm:**
 - ✓ find sparse coefficients \(\hat{z} \) such that
 - ✦ (Orthonormal) Matching Pursuit (Mallat & Zhang 93)
 - ✓ ensure compatibility with clipping constraint
 - ✦ Convex optimization
 - ✓ estimate \(\hat{x} = D\hat{z} \)

Audio Declipping

• Model
 ✓ sparsity in time-frequency dictionary $\mathbf{x} = \mathbf{Dz}$

• Algorithm:
 ✓ find sparse coefficients $\hat{\mathbf{z}}$ such that $\mathbf{y} = \mathbf{MD}\hat{\mathbf{z}}$
 ✦ (Orthonormal) Matching Pursuit (Mallat & Zhang 93)
 ✓ + ensure compatibility with clipping constraint
 ✦ Convex optimization
 ✓ estimate $\hat{\mathbf{x}} = \mathbf{D}\hat{\mathbf{z}}$

Audio Declipping

- **Model**
 - ✓ sparsity in time-frequency dictionary \(x = Dz \)

- **Algorithm:**
 - ✓ find sparse coefficients \(\hat{z} \) such that \(y = MD\hat{z} \)
 - ✦ (Orthonormal) Matching Pursuit (Mallat & Zhang 93)
 - ✓ ensure compatibility with clipping constraint
 - ✦ Convex optimization
 - ✓ estimate \(\hat{x} = D\hat{z} \)

Audio Declipping

- **Model**
 - ✓ sparsity in time-frequency dictionary \(x = Dz \)

- **Algorithm:**
 - ✓ find sparse coefficients \(\hat{z} \) such that
 - ✦ (Orthonormal) Matching Pursuit (Mallat & Zhang 93)
 - ✓ + ensure compatibility with clipping constraint
 - ✦ Convex optimization
 - ✓ estimate \(\hat{x} = D\hat{z} \)

Summary & next challenges
Inverse problems ...
Inverse problems ... and sparse models
Choosing a model

• **Expert knowledge (Fourier / wavelets)**
 - Harmonic analysis / physics
 - *Evolution of species*

• **Training from corpus**
 - Dictionary learning
 - *Individual experience*

• «Online» *training / adaptivity* ?
 - Blind Calibration & Deconvolution
 - *Adaptation to new environment*
Data Jungle

• New data beyond signals and images

✓ Hyperspectral Satellite imaging
✓ Spherical geometry Cosmology, HRTF (3D audio)
✓ Graphs Social networks Brain connectivity
✓ Vector valued Diffusion tensor

Key problem
Versatile low-dimensional models
What’s next, please?

- **Unified efficient data processing**
 - Signal processing
 - *Machine Learning*

- **Ground-breaking advances**
 - Compressive acquisition and compressive learning
 - Sparse models beyond dictionaries

- **Upcoming applications**
 - Inpainting / super-resolution (image/video/audio)
 - Distributed video coding
 - Astronomical imaging (interferometry)
 - Low-dose biomedical imaging (CT & IRM)
 - Audio recording @ high spatial resolution
 - Low-power compressive-sensors
 - Dynamic high-resolution brain imaging
 - ...
P L E A S E
projection, learning and sparsity for efficient data processing
• Frédéric Bimbot
• Nancy Bertin, Emmanuel Vincent
• Current Docs & Postdocs:
 ✓ Alexis Benichoux, Anthony Bourrier, Srdjan Kitic, Lei Yu, Cagdas Bilen, ...
• Stéphanie Lemaile
• Jules Espiau