

Protein polymerization simulation for amyloid diseases (Prion, Alzheimer's)

Marie Doumic

Outline

A brief overview:

- The mathematical context
- The biological motivation and main goal
- The reference model

□ 3 case studies

- A growth-nucleation model applied to Huntington's
- A growth-fragmentation model applied to Prion
- A new application of Lifshitz-Slyozov system

The mathematical context

Coagulation/fragmentation equations in physics
 Lifshitz-Slyozov / Bekker-Döring equations
 Application to dust formation, gelation, aerosols, etc.
 Ball, Carr & Penrose (1986), Niethammer & Pego (2000), etc.
 Probabilistic school: Bertoin (2006), Aldous & Pitman (1998), etc.

(Size-)structured populations in biology
 Applications for cancer cells, parasite infection etc.
 Metz & Diekmann (1986), Gyllenberg & Thieme (1984)
 Perthame & Ryzhik (2004), Escobedo, Laurençot & Mischler (2003) etc.

Common point between:

- Alzheimer's (illustrated)
- Prion (mad cow)
- Huntington's
- and some others (Parkinson's, etc)?

Neurodegenerative diseases characterized by abnormal accumulation of protein aggregates called AMYLOIDS

Healthy state: monomeric protein (PrP Prion, Aβ Alzheimer's, PolyQ Huntington's) Disease state: polymers

Main challenge:

Key polymerization mechanisms

Address quantitatively major biological questions: Transient species? Most infectious polymer size?

Application to several proteins

PrPc (Prion), Aβ (Alzheimer's), PolyQ (Huntington's)

In constant interaction with biologists

To design and validate model and experiments

Seeking direction in a Tangle of clues

ALZHEIME

The reference PDE model

A reference biologically-derived PDE model

u(t,x) concentration of polymers of size x at time t

V(t) concentration of monomers at time t

A reference biologically-derived PDE model

original derivation in D, Prigent, Rezaei et al, Plos One, 2012 Previous work: D, Goudon, Lepoutre, 2009, Laurençot-Mischler, 2005, Collet, Goudon, Poupaud, Vasseur 2004

About the reference PDE model

Present situation: Oversimplifications

Xue, Radford *et al*, PNAS (2008) - Knowles *et al*, Science (2009) Lack of physical justification Silveira *et al*, Nature (2005)

Our approach: keep the original system

- Nonlinear
- Nonlocal

Adapt it to specific biology-driven problems

- Nucleation
- Prion model

A simple nucleation problem for PolyQ polymerisation (Huntington's disease):

an identification question

(D, Prigent, Rezaei et al., Plos One, 2012)

Case 1: Huntington's disease (PolyQ)

No fragmentation & No coalescence - experimental proof:

A simple nucleation model

No coalescence nor fragmentation (experimental proof)
 Here a still simplified version for clarity

□ Nucleation – what is the value of i_0 ?

$$\frac{\partial u(t,x)}{\partial t} + V \frac{\partial}{\partial x} (\tau(x)u(t,x)) = 0,$$

$$\frac{dV}{dt} = -V \int_{0}^{\infty} \tau(x) u(t, x) dx, \qquad u(t, x = 0) = \frac{k_{\rm on} V^{i_0}}{k_{\rm off} + \tau(0) V},$$

In vitro PolyQ spontaneous polymerization

Comparison experiments & simulations (with A. Ballesta, post-doc)

In vitro PolyQ spontaneous polymerization

Comparison experiments & simulations (with A. Ballesta, post-doc)

Nucleus size i0=1 – global error: 10%: relevant

Open problems

- Sensitivity analysis (H.T. Banks)
 - Inverse problem: observability methodology (D. Chapelle, P. Moireau)
- Stochastic model for intrinsic variability (P. Robert)
- □ Test and validate our predictions on new experimental data

The growth-fragmentation equation and the nonlinear Prion model:

mathematical analysis

(Calvez, D, Gabriel, JMPA, 2012)

The Prion model

First studied by Greer, Pujo-Menjouet, Prüss, Webb et al. (2004-2006)

The growth-fragmentation / cell division equation:

A rich model

Diekmann, Gyllenberg & Thieme (1984) – Escobedo, Mischler (2004) – etc.

Recent inverse problem solution Doumic, Perthame, Zubelli *et al.* (2009 to 2012)

A counter-intuitive behaviour

Theorem. [Calvez, D, Gabriel, J. Math. Pures Appl. (2012)]

The Malthus coefficient (first eigenvalue) does not necessarily depend in a monotonous way on *V*.

To be more specific, under technical assumptions,

it behaves like the fragmentation rate β behaves:

 \Box around ∞ if V tends to ∞

or around 0 if V tends to 0

(+ eigenvector profile obtained by self-similarity)

Illustration: example with β vanishing at 0 and ∞

Open problems linked to the growth-frag. eq.

- Nonlinear behaviour, spectral gap
- Asymptotics when no steady profile
- Inverse Problem for general fragmentation kernels (PhD of T. Bourgeron, in progress)
- Adapt to different growth pathways Rezaei et al, PNAS (2008)
 Include the nucleation step & coagulation

Case study 3 (still in progress)

A data-driven problem and a new application for Lifshitz-Slyozov system:

Prion fibrils depolymerization

(PhD. Of H.W. Haffaf, in collaboration with P. Moireau, S. Prigent, H. Rezaei)

experiments by Human Rezaei and Joan Torrent

Third case: a data-driven problem Prion fibrils depolymerization

experiments by Human Rezaei and Joan Torrent

Third case: a data-driven problem Prion fibrils depolymerization

experiments by Human Rezaei and Joan Torrent

Simplest Model: the Lifshitz-Slyozov system (Becker-Döring : discrete in size)

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\left(V(t)\tau(x) - d(x) \right) u \right) = 0,$$

$$\frac{dV}{dt} = \int_{0}^{\infty} \left(d(x) - V\tau(x) \right) u(t,x) dx,$$

A seminal model – Lifshitz & Slyozov (1961) - **revisited** new problems:

□ inverse Problem solution (with P. Moireau)?

- □ How to modify it to understand the oscillations ?
- Dirac mass solutions and trend to equilibrium ?

In a nutshell

In Mathematics

- A new light on seminal models : many applications
- Inverse problem for fragmentation/coalescence
- A bridge between statistical and deterministic modelling of coalescence/fragmentation models

□ In Biology and in Society

- Bring mathematical and numerical research to biologists: analysis will motivate new experiments
- Find the key mechanisms of polymerization
- Identify targets for therapeutics

in the ERC starting grant

Simulation of the Kines for the Protein PolymERization in iseases (Prion, Alzheimer's)

roblem