The Rise and Fall of LTL

Moshe Y. Vardi

Rice University

Thread |: Entscheidungsproblem

Entscheidungsproblem (The Decision Problem)
[Hilbert-Ackermann, 1928]. Decide if a given first-
order sentence is valid (dually, Satisfiable).

Church-Turing Theorem , 1936: The Decision
Problem is unsolvable.

Classification Project : Identify decidable
fragments of first-order logic.

e Monadic Class

e Bernays-Schonfinkel Class

e Ackermann Class

e GoOdel Class (w/o =)

Monadic Logic

Monadic Class : First-order logic with = and
monadic predicates — captures syllogisms.

o (Vo)P(z),(Vz)(P(z) — Q(x)) = (Vr)Q(x)

[LOwenheim, 1915]: The Monadic Class is
decidable.

e Proof: Bounded-model property — if a
sentence Is satisfiable, it is satisfiable in a
structure of bounded size.

e Proof technique: quantifier elimination.

Monadic Second-Order Logic : Allow second-
order quantification on monadic predicates.

[Skolem, 1919]: Monadic Second-Order Logic
IS decidable — via bounded-model property and
guantifier elimination.

Question : What about <?

Thread II: Logic and Automata

Two paradigms in logic:

e Paradigm | : Logic — declarative formalism

— Specify properties of mathematical objects,
e.g., (Vo,y,z)(mult(x,y,z) < mult(y,z,z)) —
commutativity.

e Paradigm Il : Machines — imperative formalism

— Specify computations, e.g., Turing machines,
finite-state machines, etc.

Surprising Phenomenon : Intimate connection
between logic and machines

Nondeterministic Finite Automata

A=(%,85,50,p F)

e Alphabet: X

e States: S

e Initial states: Sp C S

e Nondeterministic transition function:
PS8 XY —2°

e Accepting states: ' C S

Input word : ag,a1,...,a,—1
Run: sg,s1,...,8n
® 5o € .5y

® s;11€ p(s;,a;)fori >0
Acceptance : s, € F
Recognition : L(A) — words accepted by A.

1
* 5 () —ends with 1's
0 1

Fact: NFAs define the class Reg of regular
languages.

Example :

Logic of Finite Words

View finite word w = ay, ..., a,_1 over alphabet
Y’ as a mathematical structure:
e Domain: 0,...,n—1

e Binary relation: <
e Unary relations: {P, : a € X}

First-Order Logic (FO)

e Unary atomic formulas: P,(x) (a € X)

e Binary atomic formulas: = < y

Example : (3x)((Vy)(—(x < y)) A Py(x)) — last letter
IS a.

Monadic Second-Order Logic (MSO)
e Monadic second-order quantifier: 4¢)

e New unary atomic formulas: Q(x)

NFA vs. MSO

Theorem [Bichi, Elgot, Trakhtenbrot, 1957-8
(independently)]: MSO = NFA
e Both MSO and NFA define the class Reg.

Proof : Effective

e From NFA to MSO (A — ¢ 4)
— Existence of run — existential monadic quantification
— Proper transitions and acceptance - first-order
formula

e From MSO to NFA (¢ — A,): closure of NFAs
under
— Union — disjunction
— Projection — existential quantification

— Complementation — negation

NFA Complementation

Run Forest of A on w:

e Roots: elements of 5.

e Children of s at level i: elements of p(s, a;).
e Rejection: no leaf is accepting.

Key Observation : collapse forest into a DAG — at
most one copy of a state at a level; width of DAG is
|S].

Subset Construction Rabin-Scott, 1959:
o A°= (Zo 287 {50}7 /007 FC)
Fe={T:TnNnF=0}

pe(T,a) = UteT p(t, a)
LA®) = 3 — L(A)

Complementation Blow-Up

A= (2,5 5,p F), |S|=n
A = (27257{50}7p67Fc)

Blow-Up : 2™ upper bound

Can we do better?

Lower Bound : 2"
Sakoda-Sipser 1978, Birget 1993

L,=0+1*1(0+1)""t00+1)*
e L, Is easy for NFA
e [is hard for NFA

NFA Nonemptiness

Nonemptiness : L(A) # ()

Nonemptiness Problem : Decide if given A is
nonempty.

Directed Graph G4 = (S,E) of NFA A =
(E,S, S(),p, F)

e Nodes: S

e Edges: E = {(s,t) : t € p(s,a) for some a €
X}

Lemma: A is nonempty iff there is a path in G 4 from
So to F'.

e Decidable in time linear in size of A, using
breadth-first search or depth-first search.

MSO Satisfiability — Finite Words

Satisfiability : models(v)) # 0

Satisfiability Problem : Decide if given 1 Is
satisfiable.

Lemma: v Is satisfiable iff A, Is nonnempty. I

Corollary : MSO satisfiability is decidable.

e Translate i to A,.

e Check nonemptiness of A,.

Complexity :

e Upper Bound: Nonelementary Growth

27’L

(tower of height O(n))

e Lower Bound [Stockmeyer, 1974]. Satisfiability of
FO over finite words is nonelementary (no bounded-
height tower).

10

Thread Ill: Sequential Circuits

Church, 1957: Use logic to specify sequential
circuits.

Sequential circuits : C = (1,0, R, f, g, Ry)
e [: Input signals

e (O: output signals

R: sequential elements

f 20 x 2% — 28 transition function

g : 2% — 29 output function

Ry € 2% initial assignment

Trace: element of (27 x 2% x 20«
t = (Ip, Ro, Op), (I1, R1,01), ...

e R = f(I; Ry)

e O =y(R))

11

Specifying Traces

View infinite trace ¢t = (Iy, Ry, Oy), (11, R1,01),. ..
as a mathematical structure:

e Domain: N

e Binary relation: <

e Unary relations: T URUO

First-Order Logic (FO)

e Unary atomic formulas: P(z) (P € IURUO)
e Binary atomic formulas: =z < y

Example : (Vx)(Jy)(x < y A P(y)) — P holds i.o.
Monadic Second-Order Logic (MSO)

e Monadic second-order quantifier: 3¢

e New unary atomic formulas: Q(x)

Model-Checking Problem : Given circuit C and

formula ¢; does ¢ hold in all traces of C'?

Easy Observation : Model-checking problem
reducible to satisfiability problem — use FO to
encode the “logic” (i.e., f, g) of the circuit C.

12

Blchi Automata

Buchi Automaton : A = (3,5, Sy, p, F)
e Alphabet: X

e States: S

e Initial states: Sp C S

e Transition function: p: S x ¥ — 2°

e Accepting states: ' C S

Input word : ag, a1, ...
Run: sg, s1,...

e s0 €5

® 5,11 € p(ss,a;)fori >0

Acceptance : F' visited infinitely often
1
O ﬁ

o

0 1

Fact: Buchi automata define the class w-Reg of w-
regular languages.

— infinitely many 1's

13

Logic vs. Automata Il

Paradigm : Compile high-level logical specifications
Into low-level finite-state language

Compilation Theorem : [Buchi,1960] Given an
MSO formula ¢, one can construct a Buchi
automaton A, such that a trace o satisfies ¢
If and only if o is accepted by A.,.

MSQO Satisfiability Algorithm

1. o is satisfiable iff L(A,) # 0

2. L(X,S, Sy, p, F) # 0 iff there is a path from S to
a state f € F' and a cycle from f to itself.

Corollary [Church, 1960]: Model checking sequential
circuits wrt MSO specs is decidable.

Church, 1960: “Algorithm not very efficient”
(nonelementary complexity, [Stockmeyer, 1974]).

14

Catching Bugs with A Lasso

Figure 1. Ashutosh’s Blog, November 23, 2005

15

Blchi Complementation

Problem : subset construction fails!

9.5 Q-0

p({s},0) = {s,t}, p({s,1},0) = {s,1}

History

e Blchi'62: doubly exponential construction.

e SVW85: 16™ upper bound

e Safra’88: n?" upper bound

e Michel'88: (n/e)™ lower bound

e KV'97: (6n)™ upper bound

e FKV'04: (0.97n)™ upper bound

e Yan'06: (0.76n)" lower bound

e Schewe’09: (0.76n)™ upper bound

16

Thread IV: Temporal Logic

Prior, 1914-1969, Philosophical Preoccupations:

e Religion: Methodist, Presbytarian, atheist,
agnostic

e Ethics: “Logic and The Basis of Ethics”, 1949
e Free WIll, Predestination, and Foreknowledge:

— “The future is to some extent, even if it is only
a very small extent, something we can make for
ourselves”.

— “Of what will be, it has now been the case that it
will be.”

— “There is a deity who infallibly knows the entire
future.”

Mary Prior: “I remember his waking me one
night [in 1953], coming and sitting on my bed,
.., and saying he thought one could make a
formalised tense logic.”

e 1957: “Time and Modality”

17

Linear vs. Branching Time, A

e Prior's first lecture on tense logic, Wellington
University, 1954: linear time.

e Prior's “Time and modality”, 1957: relationship
between linear tense logic and modal logic.

e Sep. 1958, letter from Saul Kripke: “[ljn an
Indetermined system, we perhaps should not regard
time as a linear series, as you have done. Given
the present moment, there are several possibilities
for what the next moment may be like — and
for each possible next moment, there are several
possibilities for the moment after that. Thus the
situation takes the form, not of a linear sequence,
but of a 'tree”. (Kripke was a high-school student,
not quite 18, in Omaha, Nebraska.)

18

Linear vs. Branching Time, B

e Linear time : a system induces a set of traces

e Specs: describe traces

e Branching time : a system induces a trace tree

e Specs: describe trace trees

19

Linear vs. Branching Time, C

e Prior developed the idea into Ockhamist and
Peircean theories of branching time (branching-time
logic without path quantifiers)

Sample formula: CKMpMqAM KpMqM K qMp

e Burgess, 1978: “Prior would agree that the
determinist sees time as a line and the indeterminist
sees times as a system of forking paths.”

20

Linear vs. Branching Time, D

Philosophical Conundrum

Prior:

Nature of course of time — branching
Nature of course of events — linear
Rescher:

Nature of time — linear

Nature of course of events — branching

“We have ’branching in time’, not ’branching of

time™.

Linear time : Hans Kamp, Dana Scott and others
continued the development of linear time during the
1960s.

21

Temporal and Classical Logics

Key Theorem :

e Kamp, 1968: Linear temporal logic with past
and binary temporal connectives (“until” and
“since”), over the integers, has precisely the
expressive power of FO.

22

The Temporal Logic of Programs

Precursors :

e Prior: “There are practical gains to be had from
this study too, for example in the representation of
time-delay in computer circuits”

e Rescher & Urquhart, 1971: applications to
processes (“a programmed sequence of states,
deterministic or stochastic”)

“Big Bang 1” [Pnueli, 1977]:

e Future linear temporal logic (LTL) as a
logic for the specification of non-terminating
programs

e Temporal logic with “eventually” and “always
(later, with “next” and “until”)

e Model checking via reduction to MSO and
automata

Crux: Need to specify ongoing behavior rather than
iInput/output relation!

23

Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli, 1977)

Main feature: time is implicit

e next ¢: ¢ holds in the next state.
e eventually ¢: ¢ holds eventually

e always ¢: o holds from now on

e o until ¢»: ¢ holds until ¢ holds.

o T,wEnNnext pifwe__e o« o o

o T, w = puntil P ifwe o .o o
oo p

24

Examples

e always not (CS; and CS,): mutual exclusion
(safety)

e always (Request implies eventually Grant):
liveness

e always (Request implies (Request until Grant)):
liveness

25

Expressive Power

e Gabbay, Pnueli, Shelah & Stavi, 1980:
Propositional LTL over the naturals has
precisely the expressive power of FO.

e Thomas, 1979 FO over naturals has
the expressive power of star-free w-regular
expressions

Summary : LTL=FO=star-free w-RE < MSO=w-RE

Meyer on LTL, 1980, in “Ten Thousand and One
Logics of Programming”:

“The corollary due to Meyer — | have
to get in my controversial remark — is
that that [GPSS’80] makes it theoretically
uninteresting.”

26

Computational Complexity

Recall: Satisfiability of FO over traces is non-
elementary

Contrast with LTL :

e Wolper, 1981: LTL satisfiability is in
EXPTIME.

e Halpern&Relf, 1981, Sistla&Clarke, 1982:
LTL satisfiability is PSPACE-complete.

Basic Technique : tableau (influenced by branching-
time technigues)

27

PLTL

Lichtenstein, Pnueli,&Zuck, 1985: past-time connectives
are useful in LTL:

e Yyesterday ¢: ¢ was true in the previous state
e past p: g was true sometime in the past
e p since ¢: p has been true since p was true

Example : always (rcv — past snt)

Theorem

e EXpressively equivalentto LTL [LPZ’'85]

e Satisfiability of PLTL is PSPACE-complete
[LPZ’85]

e PLTL is exponentially more succinct than LTL
[Markey, 2002]

28

Model Checking

“Big Bang 2” [Clarke & Emerson, 1981, Queille
& Sifakis, 1982]: Model checking programs of
size m wrt CTL formulas of size n can be done
In time mn.

Linear-Time Response [Lichtenstein & Pnueli,
1985]. Model checking programs of size m wrt LTL
formulas of size n can be done in time m2°™)
(tableau-based).

Seemingly :
e Automata: Nonelementary

e Tableaux: exponential

29

Back to Automata

Exponential-Compilation Theorem

[V. & Wolper,1983-1986]

Given an LTL formula ¢ of size n, one can construct
a Buchi automaton A, of size 2°(") such that a trace
o satisfies ¢ if and only if o is accepted by A,,.

Automata-Theoretic Algorithms
1. LTL Satisfiability:
o is satisfiable iff L(A,) # 0 (PSPACE)
2. LTL Model Checking:
M = @iff L(M x A_,) =0 (m2°™)

Vardi, 1988: Also with past.

30

Reduction to Practice

Practical Theory :

e Courcoubetis, V., Yannakakis & Wolper, 1989:
Optimized search algorithm for explicit model
checking

e Burch, Clarke, McMillan, Dill & Hwang, 1990:
Symbolic algorithm for LTL compilation

e Clarke, Grumberg & Hamaguchi, 1994: Optimized
symbolic algorithm for LTL compilation

e Gerth, Peled, V. & Wolper, 1995: Optimized
explicit algorithm for LTL compilation

Implementation

e COSPAN [Kurshan, 1983]: deterministic automata
specs

e Spin [Holzmann, 1995]. Promela w. LTL:
e SMV [McMillan, 1995]: SMV w. LTL

Satisfactory solution to Church’'s problem?

Almost, but not quite, since LTL<MSO=w-RE.

31

Enhancing Expressiveness

e Wolper, 1981: Enhance LTL with grammar
operators, retaining EXPTIME-ness (PSPACE [SC’82])

e V. & Wolper, 1983: Enhance LTL with automata,
retaining PSPACE-completeness

e Sistla, V. & Wolper, 1985: Enhance LTL with 2nd-
order quantification, losing elementariness

e V., 1989: Enhance LTL with fixpoints, retaining
PSPACE-completeness

Bottom Line : ETL (LTL w. automata) = uTL
(LTL w. fixpoints) = MSO, and has exponential-
compilation property.

32

Thread V: Dynamic and
Branching-Time Logics

Dynamic Logic [Pratt, 1976]:

e The Oy of modal logic can be taken to mean
“© holds after an execution of a program step”.
e Dynamic modalities:

— |lajy — ¢ holds after all executions of a.

— 9 — [a]p corresponds to Hoare triple

{¢}afp}.

Propositional Dynamic Logic [Fischer & Ladner,
1977]. Boolean propositions, programs — regular
expressions over atomic programs.

Satisfiability [Pratt, 1978]: EXPTIME - using
tableau-based algorithm

Extensions to nonterminating programs [Streett
1981, Harel & Sherman 1981] — awkward compared
to linear temporal logic.

33

Branching-Time Logic

From dynamic logic back to temporal logic
The dynamic-logic view is clearly branching;
what is the analog for temporal logic?

e Emerson & Clarke, 1980: correcteness properties
as fixpoints over computation trees

e Ben-Ari, Manna & Pnueli, 1981: branching-time
logic UB; saistisfiability in EXPTIME using tablueax

e Clarke & Emerson, 1981: branching-time logic
CTL,; efficient model checking

e Emerson & Halpern, 1983: branching-time logic
CTL* — ultimate branching-time logic

Key Idea: Prior missed path quantifiers
o V eventually p: on all possible futures, p
eventually happen.

34

Linear vs. Branching Temporal Logics

e Linear time : a system generates a set of
computations

e Specs: describe computations

e LTL: always(request — eventually grant)

e Branching time : a system generates a
computation tree

e Specs: describe computation trees

e CTL: Valways (request — Yeventually grant)

35

Combining Dynamic and Temporal
Logics

Two distinct perspectives
e Temporal logic: state based
e Dynamic logic: action based

Symbiosis :

e Harel, Kozen & Parikh, 1980: Process Logic
(branching time)

e V. & Wolper, 1983: Yet Another Process Logic
(branching time)

e Harel and Peleg, 1985: Regular Process Logic
(linear time)

e Henriksen and Thiagarajan, 1997: Dynamic LTL
(linear time)

Tech Transfer :

e Beer, Ben-David & Landver, IBM, 1998:
RCTL (branching time)

e Beer, Ben-David, Eisner, Fisman, Gringauze,
Rodeh, IBM, 2001: Sugar (branching time)

36

Thread V: From LTL to PSL

Model Checking at Intel
Prehistory:

e 1990: successful feasibility study using Kurshan’s
COSPAN

e 1992: a pilot project using CMU’s SMV

e 1995: an internally developed (linear time)
property-specification language

History:

e 1997: Development of 2nd-generation technology
started (engine and language)

e 1999: BDD-based model checker released
e 2000: SAT-based model checker released

e 2000: ForSpec (language) released

37

Dr. Vardi Goes to Intel

1997: (w. Fix, Hadash, Kesten, & Sananes)

V.: How about LTL?
F, H., K., & S.: Not expressive enough.

V.: How about ETL? yTL?
F, H., K., & S.: Users will object.

1998 (w. Landver)

V.: How about ETL?
L.: Users will object.
L.: How about regular expressions?
V.: They are equivalent to automata!

RELTL: LTL plus dynamic modaliies,
interpreted linearly — [e]p
E.g.: [true™, send, !cancel]sent

Easy: RELTL=ETL=w-RE

ForSpec: RELTL + hardware features (clocks and
resets) [Armoni, Fix, Flaisher, Gerth, Ginsburg,
Kanza, Landver, Mador-Haim, Singerman, Tiemeyetr,
V., Zbar]

38

From ForSpec to PSL

Industrial Standardization

e Process started in 2000

e Four candidates: IBM’s Sugar, Intel's
ForSpec, Mororola’s CBV, and Verisity's E.

e Fierce debate on linear vs. branching time

Qutcome :

e Big political win for IBM (see references to
PSL/Sugar)

e Big technical win for Intel
— PSL is LTL + RE + clocks + resets

— Branching-time extension as an acknowledgement
to Sugar

— Some evolution over time in hardware features

e Major influence on the design of SVA (another
Industrial standard)

Bottom Line : Huge push for model checking in
iIndustry.

39

Thread VI: What about the Past?

e Avoided in industrial languages due to implementation
challenges

e Less important in model checking; if past events
are important, then program would keep track of
them.

e But, the past is Important in specification
(LPZ’85)!

Dax, Klaedtke, &Lange, 2009: Reqular
Temporal Logic (RTL)

e PLTL

e Dynamic modalities: {e)¢

e Past Dynamic modalities: {(e) ¢

Theorem [DKL09]

e EXxpressively equivalent to RELTL.
e EXxponentially more succinct that RELTL.
e Satisfiability is PSPACE-complete

40

Linear Dynamic Logic (LDL)

Observations :

e Dynamic modalities subsume temporal connectives,
e.g., eventually ¢ is equivalent to (true*)q

e To capture past, add reverse operator to REs.
— a: “consume” a and move forward.
— a7 : “consume” a and move backward.

Inspiration
e PDL+converse [Pratt, 1976]
e Two-way navigation in XPath

Theorem :

e EXxpressively equivalent to RELTL.
e Exponentially more succinct than RELTL.
e Satisfiability is PSPACE-complete.

41

LTL is Dead, Long Live LDL!

What was important about PLTL ?

Linear time

Simple syntax
Exponential-compilation property
Equivalence to FO

What is important about LDL ?

e Linear time

e EXxponential-compilation property

e Equivalence to MSO

e Extremely simply syntax: REs (with reverse)
and dynamic modalities

Also : easy to pronounce :-)

42

Some Philosophical Points

Science is a cathedral; we are the masons.
There is no architect; outcome is unpredictable.

Most of our contributions are smaller than we’'d
like to think.

Even small contributions can have major impact.
Much is forgotten and has to be rediscovered.

Rediscovering the past helps us move into the
future.

43

