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Brief introduction to Game Theory

= Discipline aiming at modeling situations in which actors have
to make decisions which have mutual, possibly conflicting,
consequences

= (Classical applications: economics, but also politics and
biology

= Example: should a company invest in a new plant, or enter a
new market, considering that the competition may make
similar moves?

= Most widespread kind of game: non-cooperative (meaning
that the players do not attempt to find an agreement about
their possible moves)
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Classification of games

Non-cooperative

Cooperative

Static

Dynamic (repeated)

Strategic-form

Extensive-form

Perfect information

Complete information

Perfect info: each player knows the identity of other players and, for each

of them, the payoff resulting of each strategy.

Complete info: each player can observe the action of each other player.
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Cooperation in self-organized wireless networks
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Usually, the devices are assumed to be cooperative.
But what if they are not?
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Example 1: The Forwarder’s Dilemma
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From a problem to a game

= users controlling the devices are rational = try to

maximize their benefit

= game formulation: G = (P,S,U)

— P: set of players

— S: set of strategy functions
— U: set of payoff functions

= strategic-form representation

* Reward for packet reaching

the destination: 1

* Cost of packet forwarding:

c(0<c<<l)

Green
Blue Forward Drop
Forward | (1-c, 1-c) | (-c, 1)
Drop (1, -¢) (0, 0)
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Solving the Forwarder’s Dilemma (1/2)

Strict dominance: strictly best strategy, for any strategy of the other player(s)

Strategy S; strictly dominates if
U.(S.,S;)<u.(s,s;), Vs, €S, Vs eS

where: LIi cU payoff function of player i
S—i < S—i strategies of all players except player i

In Example 1, strategy Drop strictly dominates strategy Forward

Green
Blue Forward Drop

Forward | (1-c, 1-c) | (-c, 1)
Drop (1, 'C) (OI O)
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Solving the Forwarder’s Dilemma (2/2)

Solution by iterative strict dominance:

Green
Bm Forward Drop

Forward

Drop

Drop strictly dominates Forward
}Dilemma

1

1

1

1

r BUT _
: Forward would result in a better outcome
1

Result: Tragedy of the commons ! (Hardin, 1968)
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Example 2: The Joint Packet Forwarding Game

?
SOurce/‘\Alue /\Gree Dest
—
%n
* Reward for packet reaching Blue Forward Drop
the destination: 1
« Cost of packet forwarding: Forward (l'C, 1_C) ('C, O)
c(0<c<<]) DI’Op (O, O) (O, O)

No strictly dominated strategies !
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Weak dominance

Weak dominance: strictly better strategy for at least one opponent strategy
Strategy s’ is weakly dominated by strategy s; if
U; (S;,8.) <U;(s;,8,), Vs €S

with strict inequality for at least one s

? ?
Source/—\ﬁlue o = Gree Dest
— — — —
Green
Bm Forward
lterative weak dominance —
Forward

BUT

The result of the iterative weak DI’Op

dominance is not unique in general !
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Nash equilibrium (1/2)

Nash Equilibrium: no player can increase its payoff by deviating unilaterally

Green
Blue Forward Drop
E1: The Forwarder’s

Dilemma Forward (1'C/ 1'C) ('C/ 1)
Drop (11 _C) (OI 0)

Green
Blue Forward Drop
E2: The Joint Packet

Forwarding game  Forward (1-c, 1-c) ‘ (-c, 0)

Drop (OI O) ‘ (OI O) \
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Nash equilibrium (2/2)

Strategy profile s* constitutes a Nash equilibrium if, for each player i,
U, (S, 85) 2U;(s;,S), Vs €5

where: U, € U payoff function of player i
S, €S, strategy of player i

The best response of player i to the profile of strategies s is
a strategy s; such that:

b (s;) =argmaxu;(s; ,s ;)

Si ESi

Nash Equilibrium = Mutual best responses

Caution! Many games have more than one Nash equilibrium
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Example 3: The Multiple Access game

§§N§A

” _ Time-division channel

Green
Reward for successful Blue Quiet Transmit

transmission: 1
Quiet (0,0) | (0, 1-c)

Cost of transmission: ¢
(O<c<<1) Transmit “ (1-c, 0) \ (-c, -0)

There is no strictly dominating strategy

There are two Nash equilibria
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Mixed strategy Nash equilibrium

p: probability of transmit for Blue
g: probability of transmit for Green

Uye = P(L—0)(1—C) - pgc = p(l-c—q)

ugreen = Q(l—C— p)

9
objectives 1¢

— Blue: choose p to maximize v, i e = ®---

— Green: choose g to maximize U, :

__________________________________________________ E

|

p=1-c, g=1-c i

|

|

is a Nash equilibrium i
e— P

-------------------------------------------------- 1-c 1



Example 4: The Jamming game

transmitter transmitter:

s two channels: . reward for successful
_» Ciand G, transmission: 1
jam mer * loss for jammed
transmission: -1
Green . |
jammer:
Blue C, C, » reward for successful
jamming: 1
Cl ('1, 1) (1, ‘1) * loss for missed
jamming: -1
C, (11 _1) (_11 1)

There Is no pure-strategy p: probability of transmit

Nash equilibrium on C, for Blue
1 1 . probability of transmit
P = E, J = — is a Nash equilibrium:  on C, for Green
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Theorem by Nash, 1950

Theorem:
Every finite strategic-form game has a mixed-
strategy Nash equilibrium.
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Efficiency of Nash equilibria

Green
Bm Forward Drop

E2: The Joint
Packet Forwarding Forward (1-c, 1-c) ‘ (-c, 0)

Jame Drop 0,0) | (0,0) |

How to choose between several Nash equilibria ?

Pareto-optimality: A strategy profile is Pareto-optimal if it is not

possible to increase the payoff of any player without decreasing the
payoff of another player.
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How to study Nash equilibria ?

Properties of Nash equilibria to investigate:
= uniqueness

= efficiency (Pareto-optimality)

= emergence (dynamic games, agreements)
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Extensive-form games

= usually to model sequential decisions
= game represented by a tree

= Example 3 modified: the Sequential Multiple Access game:
Blue plays first, then Green plays.

¥ _ Time-division channel

Blue
Reward for successful T Q
transmission: 1 Green Green
Cost of transmission: ¢ T Q T Q
(0O<c<<1)

(-C1_C) (1-C10) (O11-C) (010)



Strategies in dynamic games

= The strategy defines the moves for a player for every
node in the game, even for those nodes that are not

reached if the strategy is played.
Blue

strategies for Blue: T
T,Q Green Q Green

T/ \Q T Q

strategies for Green:
TT, TQ, QT and QQ

(-c,-c) |(1-¢,0){(0,1-¢)|(0,0)

TQ means that player p2 transmits if p1 transmits and remains quiet if p1 remains quiet.

B.3 Dynamic games 23/37



Backward induction

= Solve the game by reducing from the final stage
= Eliminates Nash equilibria that are /increadible threats

Blue

-
Incredible threat: (Q, TT)  Green
T/ \Q

(-c,-c) |(1-c,0)

Backward induction solution: h={T, Q}

B.3 Dynamic games

Q

Green
T Q
(0,1-c) (0,0)
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Subgame perfection

= Extends the notion of Nash equilibrium

One-deviation property: A strategy s; conforms to the one-deviation
property if there does not exist any node of the tree, in which a player
| can gain by deviating from s; and apply it otherwise.

Subgame perfect equilibrium: A strategy profile s constitutes a
subgame perfect equilibrium if the one-deviation property holds for
every strategy s; in s.

Blue
Finding subgame perfect T
equilibria using backward Green 3 Green
iInduction T Q T Q
Subgame perfect equilibria:
(T, QT) and (T, QQ) (-c,-¢) |(1-¢,0))(0,1-c) (0,0)

Stackelberg games have one leader and one or several followers
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Repeated games

= repeated interaction between the players (in stages)
= move: decision in one interaction

= strategy: defines how to choose the next move, given the
previous moves

= history: the ordered set of moves in previous stages

— most prominent games are history-1 games (players consider only
the previous stage)

= jnitial move: the first move with no history
= finite-horizon vs. infinite-horizon games
= stages denoted by t (or k)
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Utilities: Objectives in the repeated game

= finite-horizon vs. infinite-horizon games
= myopic vs. long-sighted repeated game

myopic: U =U. (t +1)

.
long-sighted finite: U, = ZUi ('[)
t=0
long-sighted infinite: U, = iui (t)
t=0
t

payoff with discounting: U, = Zui (t) X0,
t=0

0 < w <1 is the discounting factor
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Strategies in the repeated game

= usually, history-1 strategies, based on different inputs:

— others’ behavior: m. (t-|—1)

— others’ and own behavior:

~ payoff: m; (t+1) =S, [ui

s,[m

m, (t +1)I

)]

(1))
- [ (t),m i(t)]

Example strategies in the Forwarder’s Dilemma:

Blue (t) initial F D strategy name
move
Green (t+1) F F F AllC
F F D Tit-For-Tat (TFT)
D D D AlID
F D F Anti-TFT
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The Repeated Forwarder’s Dilemma

Green
Blue Forward Drop

Forward | (1-c, 1-c) | (-c, 1)
Drop /'(11 _C) (Ol O)

stage payoff
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Analysis of the Repeated Forwarder’s Dilemma (1/3)

T =Sy (t) o

Infinite game with discounting: U.

t=0
Blue strategy | Green strategy Blue payoff Green payoff

AlID AlID 0 0

AlID TFT 1 C

AlID AllC 1/(1-w) -¢/(1-w)
AllC AllC (1-0)/(1-w) | (1-¢)/(1-w)
AlIC TFT (1-0)/(1-w) | (1-0)/(1-w)
TFT TFT (1-0)/(1-w) | (1-0)/(l-w)
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Analysis of the Repeated Forwarder’s Dilemma (2/3)

Blue strategy | Green strategy
AlID AlID
AlID TFT
AlID AlIC
AlIC AlIC
AlIC TFT
TFT TFT

AlIC receives a high payoff with itself and TFT, but

AlID exploits AlIC
AlID performs poor with itself

TFT performs well with AlIC and itself, and
TFT retaliates the defection of AlID

TFT Is the best strategy If w is high'!

Blue payoff Green payoff
0 0
1 -C
1/(1-w) -¢/(1-w)
(1-¢)/(1-w) (1-c)/(1-w)
(1-¢)/(1-w) (1-c)/(1-w)
(1-c)/(1-w) (1-0)/(1-w)
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Analysis of the Repeated Forwarder’s Dilemma (3/3)

Blue strategy | Green strategy Blue payoff Green payoff
AlID AlID 0 0
TFT TFT (1-0)/(1-w) (1-c)/(1-w)

Theorem: In the Repeated Forwarder’s Dilemma, if both
players play AlID, it is a Nash equilibrium.

Theorem: In the Repeated Forwarder’s Dilemma, both
players playing TFT is a Nash equilibrium as well.

The Nash equilibrium sg; . = TFT and s, = TFT IS
Pareto-optimal (but sg, . = AllID and s;,.., = AllD Is not) !
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Experiment: Tournament by Axelrod, 1984

= any strategy can be submitted (history-X)

= strategies play the Repeated Prisoner’s Dilemma
(Repeated Forwarder’s Dilemma) in pairs

= number of rounds is finite but unknown

!

= TFT was the winner
= second round: TFT was the winner again

R. Axelrod The Evolution of Cooperation
Basic Books, 1984
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An Example beyond Engineering

Country 2

Reduce military Increase military

Country 1 investment investment
Reduce
military (1, 1) (-1, 2)
Investment

Increase

military (2, _]_) (O, O)
Investment

Payoffs:

2: | have weaponry superior to the one of the opponent
1: We have equivalent weaponry and managed to reduce it on both sides
0: We have equivalent weaponry and did not managed to reduce it on both sides

-1: My opponent has weaponry that is superior to mine



Discussion on game theory

= Rationality
= Payoff function and cost

= Pricing and mechanism design (to promote
desirable solutions)

= Infinite-horizon games and discounting
= Reputation

» Cooperative games

= Imperfect / incomplete information

—
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Conclusions

= Game theory can help modeling greedy behavior in wireless
networks

= Discipline still in its infancy
= Alternative solutions

— Ignore the problem
— Build protocols in tamper-resistant hardware
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