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Brief introduction to Game Theory 

 Discipline aiming at modeling situations in which actors have 
to make decisions which have mutual, possibly conflicting, 
consequences 

 Classical applications: economics, but also politics and 
biology 

 Example: should a company invest in a new plant, or enter a 
new market, considering that the competition may make 
similar moves? 

 Most widespread kind of game: non-cooperative (meaning 
that the players do not attempt to find an agreement about 
their possible moves) 

B.1 Introduction 
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Classification of games 

Non-cooperative Cooperative 

Static Dynamic (repeated) 

Strategic-form Extensive-form 

Perfect information Imperfect information 

Complete information Incomplete information 

Cooperative 

Imperfect information 

Incomplete information 

Perfect info: each player knows the identity of other players and, for each 

of them, the payoff resulting of each strategy. 

 

Complete info: each player can observe the action of each other player. 

B.1 Introduction 
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Cooperation in self-organized wireless networks 

S1 

S2 

D1 
D2 

Usually, the devices are assumed to be cooperative.  

But what if they are not? 

B.1 Introduction 
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Example 1: The Forwarder’s Dilemma 

? 

? 

Blue Green 

B.2 Static games 
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From a problem to a game 

 users controlling the devices are rational = try to 
maximize their benefit 

 game formulation: G = (P,S,U) 

– P: set of players 

– S: set of strategy functions 

– U: set of payoff functions 

 

 strategic-form representation  

• Reward for packet reaching    

the destination: 1 

• Cost of packet forwarding:  

  c (0 < c << 1) 

(1-c, 1-c) (-c, 1) 

(1, -c) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

B.2 Static games 
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Solving the Forwarder’s Dilemma (1/2) 

' '( , ) ( , ), ,i i i i i i i i i iu s s u s s s S s S       

iu U

i is S 

Strict dominance: strictly best strategy, for any strategy of the other player(s)  

where: payoff function of player i 

strategies of all players except  player i 

In Example 1, strategy Drop strictly dominates strategy Forward 

(1-c, 1-c) (-c, 1) 

(1, -c) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

Strategy    strictly dominates if is

B.2 Static games 
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Solving the Forwarder’s Dilemma (2/2) 

Solution by iterative strict dominance: 

(1-c, 1-c) (-c, 1) 

(1, -c) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

Result: Tragedy of the commons ! (Hardin, 1968) 

Drop strictly dominates Forward 
Dilemma 

Forward would result in a better outcome 
BUT } 

B.2 Static games 
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Example 2: The Joint Packet Forwarding Game 

? 

Blue Green Source Dest 

? 

No strictly dominated strategies ! 

• Reward for packet reaching    

the destination: 1 

• Cost of packet forwarding:  

  c (0 < c << 1) 

(1-c, 1-c) (-c, 0) 

(0, 0) (0, 0) 

Blue 

Green 

Forward 
Drop 

Forward Drop 

B.2 Static games 
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Weak dominance 

? 
Blue Green Source Dest 

? 

'( , ) ( , ),i i i i i i i iu s s u s s s S     

Weak dominance: strictly better strategy for at least one opponent strategy  

with strict inequality for at least one s-i 

Iterative weak dominance 

(1-c, 1-c) (-c, 0) 

(0, 0) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

BUT 

The result of the iterative weak 

dominance is not unique in general !  

Strategy s’i  is weakly dominated by strategy si if 

B.2 Static games 
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Nash equilibrium (1/2) 

Nash Equilibrium: no player can increase its payoff by deviating unilaterally 

(1-c, 1-c) (-c, 1) 

(1, -c) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

E1: The Forwarder’s 

Dilemma 

E2: The Joint Packet 

Forwarding game (1-c, 1-c) (-c, 0) 

(0, 0) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

B.2 Static games 
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Nash equilibrium (2/2) 

* * *( , ) ( , ),i i i i i i i iu s s u s s s S   

iu U

i is S

where: payoff function of player i 

strategy of player i 

( ) arg max ( , )
i i

i i i i i
s S

b s u s s 




The best response of player i to the profile of strategies s-i is  

a strategy si such that: 

Nash Equilibrium = Mutual best responses 

Caution!  Many games have more than one Nash equilibrium 

Strategy profile s* constitutes a Nash equilibrium if, for each player i,  

B.2 Static games 
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Example 3: The Multiple Access game 

Reward for successful 

transmission: 1 

 

Cost of transmission: c 

(0 < c << 1) 

There is no strictly dominating strategy 

(0, 0) (0, 1-c) 

(1-c, 0) (-c, -c) 

Blue 

Green 

Quiet 

Transmit 

Quiet Transmit 

There are two Nash equilibria 

Time-division channel 

B.2 Static games 
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Mixed strategy Nash equilibrium 

objectives 

– Blue: choose p to maximize ublue 

– Green: choose q to maximize ugreen 

(1 )(1 ) (1 )blueu p q c pqc p c q      

(1 )greenu q c p  

1 , 1p c q c   

p: probability of transmit for Blue 

q: probability of transmit for Green 

is a Nash equilibrium 

B.2 Static games 
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Example 4: The Jamming game 

transmitter: 

• reward for successful 

transmission: 1 

• loss for jammed 

transmission: -1 

 

jammer: 

• reward for successful 

jamming: 1 

• loss for missed 

jamming: -1 

 

There is no pure-strategy 

Nash equilibrium 

two channels:  

C1 and C2 

(-1, 1) (1, -1) 

(1, -1) (-1, 1) 

Blue 

Green 

C1 

C2 

C1 C2 

transmitter 

jammer 

1 1
,

2 2
p q  is a Nash equilibrium 

p: probability of transmit   

on C1 for Blue 

q: probability of transmit 

on C1 for Green 

B.2 Static games 
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Theorem by Nash, 1950 

Theorem:  

Every finite strategic-form game has a mixed-

strategy Nash equilibrium. 

B.2 Static games 
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Efficiency of Nash equilibria 

E2: The Joint 

Packet Forwarding 

game 

(1-c, 1-c) (-c, 0) 

(0, 0) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

How to choose between several Nash equilibria ? 

Pareto-optimality: A strategy profile is Pareto-optimal if it is not 

possible to increase the payoff of any player without decreasing the 

payoff of another player. 

B.2 Static games 
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How to study Nash equilibria ? 

Properties of Nash equilibria to investigate: 

 uniqueness 

 efficiency (Pareto-optimality) 

 emergence (dynamic games, agreements) 

B.2 Static games 



21/37 

Chapter outline 

 

 B.1 Introduction 

 B.2 Static games 

 B.3 Dynamic games 

 B.4 Repeated games 



22/37 

Extensive-form games 

 usually to model sequential decisions 

 game represented by a tree 

 Example 3 modified: the Sequential Multiple Access game: 
Blue plays first, then Green plays. 

Green 

Blue 

T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Reward for successful 

transmission: 1 

 

Cost of transmission: c 

(0 < c << 1) 

Green 

Time-division channel 

B.3 Dynamic games 
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Strategies in dynamic games 

 The strategy defines the moves for a player for every 
node in the game, even for those nodes that are not 
reached if the strategy is played. 

Green 

Blue 

T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Green 
strategies for Blue:  

T, Q 

strategies for Green:  

TT, TQ, QT and QQ 

B.3 Dynamic games 

TQ means that player p2 transmits if p1 transmits and remains quiet if p1 remains quiet. 
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Backward induction 

 Solve the game by reducing from the final stage 

 Eliminates Nash equilibria that are increadible threats 

Green 

Blue 

T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Green Incredible threat: (Q, TT) 

B.3 Dynamic games 

Backward induction solution: h={T, Q} 
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Subgame perfection 

 Extends the notion of Nash equilibrium 

Green 

Blue 

T Q 

T Q T Q 

(-c,-c) (1-c,0) (0,1-c) (0,0) 

Green 

Subgame perfect equilibria: 

(T, QT) and (T, QQ) 

 

 

One-deviation property: A strategy si conforms to the one-deviation 

property if there does not exist any node of the tree, in which a player 

i can gain by deviating from si and apply it otherwise. 

Subgame perfect equilibrium: A strategy profile s constitutes a 

subgame perfect equilibrium if the one-deviation property holds for 

every strategy si in s. 

Finding subgame perfect 

equilibria using backward 

induction 

B.3 Dynamic games 

Stackelberg games have one leader and one or several followers 
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Repeated games 

 repeated interaction between the players (in stages) 

 move: decision in one interaction 

 strategy: defines how to choose the next move, given the 
previous moves 

 history: the ordered set of moves in previous stages 

– most prominent games are history-1 games (players consider only 
the previous stage) 

 initial move: the first move with no history 

 finite-horizon vs. infinite-horizon games 

 stages denoted by t (or k) 

B.4 Repeated games 
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Utilities: Objectives in the repeated game 

 finite-horizon vs. infinite-horizon games 

 myopic vs. long-sighted repeated game 

 1i iu u t 

 
0

T

i i

t

u u t




 
0

i i

t

u u t






myopic: 

long-sighted finite: 

long-sighted infinite: 

payoff with discounting:  
0

t

i i

t

u u t 




 

0 1  is the discounting factor 

B.4 Repeated games 
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Strategies in the repeated game 

 usually, history-1 strategies, based on different inputs: 

– others’ behavior: 

– others’ and own behavior: 

– payoff: 

 

   1i i im t s m t
    

     1 ,i i i im t s m t m t
    

   1i i im t s u t    

Example strategies in the Forwarder’s Dilemma: 

Blue (t) initial 
move 

F D strategy name 

Green (t+1) F F F AllC 

F F D Tit-For-Tat (TFT) 

D D D AllD 

F D F Anti-TFT 

B.4 Repeated games 
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The Repeated Forwarder’s Dilemma 

(1-c, 1-c) (-c, 1) 

(1, -c) (0, 0) 

Blue 

Green 

Forward 

Drop 

Forward Drop 

? 

? 

Blue Green 

stage payoff 

B.4 Repeated games 
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Analysis of the Repeated Forwarder’s Dilemma (1/3) 

Blue strategy Green strategy 

AllD AllD 

AllD TFT 

AllD AllC 

AllC AllC 

AllC TFT 

TFT TFT 

infinite game with discounting:  
0

t

i i

t

u u t 




 

Blue payoff Green payoff 

0 0 

1 -c 

1/(1-ω) -c/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

B.4 Repeated games 
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Analysis of the Repeated Forwarder’s Dilemma (2/3) 

Blue strategy Green strategy 

AllD AllD 

AllD TFT 

AllD AllC 

AllC AllC 

AllC TFT 

TFT TFT 

Blue payoff Green payoff 

0 0 

1 -c 

1/(1-ω) -c/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

(1-c)/(1-ω) (1-c)/(1-ω) 

 AllC receives a high payoff with itself and TFT, but 

 AllD exploits AllC 

 AllD performs poor with itself 

 TFT performs well with AllC and itself, and 

 TFT retaliates the defection of AllD 

TFT is the best strategy if ω is high ! 

B.4 Repeated games 
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Analysis of the Repeated Forwarder’s Dilemma (3/3) 

Theorem: In the Repeated Forwarder’s Dilemma, if both 

players play AllD, it is a Nash equilibrium. 

Theorem: In the Repeated Forwarder’s Dilemma, both 

players playing TFT is a Nash equilibrium as well. 

Blue strategy Green strategy Blue payoff Green payoff 

AllD AllD 0 0 

TFT TFT (1-c)/(1-ω) (1-c)/(1-ω) 

The Nash equilibrium sBlue = TFT and sGreen = TFT is 

Pareto-optimal (but sBlue = AllD and sGreen = AllD is not) ! 

B.4 Repeated games 
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Experiment: Tournament by Axelrod, 1984 

 any strategy can be submitted (history-X) 

 strategies play the Repeated Prisoner’s Dilemma 
(Repeated Forwarder’s Dilemma) in pairs 

 number of rounds is finite but unknown 

 

 TFT was the winner 

 second round: TFT was the winner again 

 

 

 

R. Axelrod The Evolution of Cooperation 

Basic Books, 1984 

B.4 Repeated games 
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(1, 1) (-1, 2) 

(2, -1) (0, 0) 

Country 1 

Country 2 

Reduce  

military  

investment 

Increase 

military 

investment 

Reduce military 

investment 

Increase military 

investment 

Payoffs: 

2: I have weaponry superior to the one of the opponent 

1: We have equivalent weaponry and managed to reduce it on both sides 

0: We have equivalent weaponry and did not managed to reduce it on both sides 

-1: My opponent has weaponry that is superior to mine 

An Example beyond Engineering 
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Discussion on game theory 

 Rationality 

 Payoff function and cost 

 Pricing and mechanism design (to promote 
desirable solutions) 

 Infinite-horizon games and discounting 

 Reputation 

 Cooperative games 

 Imperfect / incomplete information 

B.5 Discussion 
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Conclusions 

 Game theory can help modeling greedy behavior in wireless 
networks 

 Discipline still in its infancy 

 Alternative solutions 

– Ignore the problem 

– Build protocols in tamper-resistant hardware 


