Reasoning about Probabilistic Computations Applications to Cryptography and Privacy

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Based on joint work with: Benjamin Grégoire, Santiago Zanella Béguelin, Sylvain Heraud, Boris Köpf, César Kunz, Yassine Lakhnech, Federico Olmedo

Formal verification and cryptography

- Symbolic methods: analysis of logical flaws in protocols
- Computational soundness of symbolic models w.r.t. computational models
- Program verification: prove implementations are secure relative to adversarial model

These works assume perfect cryptography.

What's wrong with cryptographic proofs?

- In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor
M. Bellare and P. Rogaway, 2004-2006.
- Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect)
S. Halevi, 2005
- Security proofs in cryptography may be organized as sequences of games [...] this can be a useful tool in taming the complexity of security proofs that might otherwise become so messy, complicated, and subtle as to be nearly impossible to verify
V. Shoup, 2004

A famous example: RSA-OAEP

1994 Purported proof of chosen-ciphertext security
2001 Proof establishes a weaker security notion, but desired security can be achieved
(1) ...for a modified scheme, or
(2) ...under stronger assumptions

2004 Filled gaps in Fujisaki et al. 2001 proof
2009 Security definition needs to be clarified
2010 Filled gaps and marginally improved bound in 2004 proof

A plausible solution

- I advocate creating an automated tool to help us [...] writing and checking [...] our proofs Halevi, 2005
- The possibility for tools [to help write and verify proofs] has always been one of our motivations, and one of the reasons why we focused on code-based games Bellare and Rogaway, 2004-2006

This talk

Develop program verification methods for

- Provable Security (Goldwasser and Micali'84)
- Differential Privacy (Dwork’06)

This talk

Develop and verify program verification methods for

- Provable Security (Goldwasser and Micali'84)
- Differential Privacy (Dwork’06)

This talk

Develop and verify program verification methods for

- Provable Security (Goldwasser and Micali'84)
- Differential Privacy (Dwork’06)

CertiCrypt

Build and check exact provable security proofs in Coq

- Security goals, properties and hypotheses are explicit
- All proof steps are conducted in a unified formalism
- Proofs are independently verifiable

This talk

Develop and verify program verification methods for

- Provable Security (Goldwasser and Micali'84)
- Differential Privacy (Dwork'06)

CertiCrypt

Build and check exact provable security proofs in Coq

- Security goals, properties and hypotheses are explicit
- All proof steps are conducted in a unified formalism
- Proofs are independently verifiable

EasyCrypt

Automation with SMT solvers + generation of CertiCrypt proofs

(Deductive) program verification

- Art of proving that programs are correct
- Foundations: program logic (Hoare'69) and weakest precondition calculus (Floyd'67)
- Major advances in:
- language coverage (functions, objects, concurrency, heap...)
- automation (decision procedures, SMT solvers, invariant generation...)
- proof engineering (intermediate languages...)

Hoare logic

- Judgments are of the form $\vDash c: P \Rightarrow Q$ (typically P and Q are f.o. formulae over program variables)
- A judgment $\vDash c: P \Rightarrow Q$ is valid iff for all states s and s^{\prime}, if such that $c, s \Downarrow s^{\prime}$ and s satisfies P then s^{\prime} satisfies Q.

Selected rules

$$
\begin{aligned}
& \\
& \frac{\vDash c_{1}: P \wedge e=\mathrm{tt} \Rightarrow Q}{\vDash \text { if } e \text { then } c_{1} \text { else } c_{2}: P \Rightarrow Q} \quad \frac{\vDash c_{1}: P \Rightarrow Q \vDash c_{2}: Q \Rightarrow R}{\vDash c_{1} ; c_{2}: P \Rightarrow R} \\
& \frac{\vDash c: I \wedge e=\mathrm{tt} \Rightarrow I \quad P \Rightarrow I \quad I \wedge e=\mathrm{ff} \Rightarrow Q}{\vDash \text { while } e \text { do } c: P \Rightarrow Q}
\end{aligned}
$$

Verification condition generation

- Generate a set of verification conditions from annotated command and postcondition
- If all VCs are valid and $P \Rightarrow \mathrm{wp}(c, Q)$ then $\vDash C: P \Rightarrow Q$

Selected rules

$$
\begin{aligned}
\operatorname{wp}(x \leftarrow e, Q) & =Q\{x:=e\} \\
\operatorname{wp}\left(c_{1} ; c_{2}, R\right) & =\operatorname{wp}\left(c_{1}, \operatorname{wp}\left(c_{2}, R\right)\right)
\end{aligned}
$$

$\mathrm{wp}\left(\right.$ if e then c_{1} else $\left.c_{2}, Q\right)=e=\mathrm{tt} \Rightarrow \mathrm{wp}\left(c_{1}, Q\right) \wedge e=\mathrm{ff} \Rightarrow \mathrm{wp}\left(c_{2}, Q\right)$ $w p($ while e do $c l, Q)=1$

The while rule generates two proof obligations

$$
I \wedge e=\mathrm{tt} \Rightarrow \mathrm{wp}(c, l) \quad I \wedge e=\mathrm{ff} \Rightarrow Q
$$

Beyond safety properties

- Non-interference:
"Low-security behavior of the program is not affected by any high-security data." Goguen \& Meseguer 1982
- An instance of:
- a 2-safety property (Terauchi and Aiken'05),
- an hyper-safety property (Clarkson and Schneider'06).

Other 2-safety properties include continuity and determinacy

Beyond safety properties

Beyond safety properties

If $L\langle 1\rangle=L\langle 2\rangle$ then $L^{\prime}\langle 1\rangle=L^{\prime}\langle 2\rangle$. Or,

$$
\vDash c \sim c: L\langle 1\rangle=L\langle 2\rangle \Rightarrow L^{\prime}\langle 1\rangle=L^{\prime}\langle 2\rangle
$$

Relational judgments

- Judgments are of the form $\vDash c_{1} \sim c_{2}: P \Rightarrow Q$ (typically P and Q are f.o. formulae over tagged program variables of c_{1} and c_{2})
- A judgment $\vDash c_{1} \sim c_{2}: P \Rightarrow Q$ is valid iff for all states $s_{1}, s_{1}^{\prime}, s_{2}, s_{2}^{\prime}$, if $c_{1}, s_{1} \Downarrow s_{1}^{\prime}$ and $c_{2}, s_{2} \Downarrow s_{2}^{\prime}$ and $\left(s_{1}, s_{2}\right)$ satisfies P then $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ satisfies Q.
- May require co-termination.

Verification methods

- Embedding into Hoare logic:
- Self-composition (B, D’Argenio and Rezk'04)
- Cross-products (Zaks and Pnueli'08)
- Relational Hoare Logic (Benton'04)

Embedding relational reasoning into Hoare logic

 Construct $c_{1} \times c_{2}$ s.t. (P^{\prime} and Q^{\prime} are renamings of P and Q)$$
\vDash c_{1} \times c_{2}: P^{\prime} \Rightarrow Q^{\prime} \Rightarrow \vDash c_{1} \sim c_{2}: P \Rightarrow Q
$$

Self-composition

Set $c_{1} \times c_{2}=c_{1} ; c_{2}$.

- + General (arbitrary programs) and (relatively) complete
- - Impractical

Cross-products

Define $c_{1} \times c_{2}$ recursively, e.g.
if e then c_{1} else $c_{2} \times$ if e^{\prime} then c_{1}^{\prime} else $c_{2}^{\prime}=$ if $e^{\prime \prime}$ then $c_{1} \times c_{1}^{\prime}$ else $c_{2} \times c_{2}^{\prime}$

- + Practical
- - Requires programs to be structurally equivalent

Relational Hoare Logic

Selected rules

$$
\begin{gathered}
\hline \vDash x \leftarrow e \sim x \leftarrow e^{\prime}: Q\left\{x\langle 1\rangle:=e\langle 1\rangle, x\langle 2\rangle:=e^{\prime}\langle 2\rangle\right\} \Rightarrow Q \\
\vDash c_{1} \sim c_{1}^{\prime}: P \Rightarrow Q \vDash c_{2} \sim c_{2}^{\prime}: Q \Rightarrow R \\
\vDash c_{1} ; c_{2} \sim c_{1}^{\prime} ; c_{2}^{\prime}: P \Rightarrow R \\
\vDash c_{1} \sim c_{1}^{\prime}: P \wedge e\langle 1\rangle=\mathrm{tt} \Rightarrow Q \\
\vDash c_{2} \sim c_{2}: P \wedge e\langle 1\rangle=\mathrm{ff} \Rightarrow Q \\
P \Rightarrow e\langle 1\rangle \Leftrightarrow e^{\prime}\langle 2\rangle \\
\Rightarrow \text { if } e \text { then } c_{1} \text { else } c_{2} \sim \text { if } e^{\prime} \text { then } c_{1}^{\prime} \text { else } c_{2}^{\prime}: P \Rightarrow Q
\end{gathered}
$$

$$
\overline{\vDash x \leftarrow e \sim \text { skip }: Q\{x\langle 1\rangle:=e\langle 1\rangle\} \Rightarrow Q}
$$

Provable security

A mathematical approach to correctness

Theorem

IF the security assumptions hold THEN the scheme is secure against adversary \mathcal{A}

- Security assumptions are explicit and (ideally) standard
- Goal is clearly stated and (ideally) standard
- Adversarial model is well-defined and (usually) standard
- Proof is rigorous

Typical exact security statement

FOR ALL adversary \mathcal{A} that can break the scheme
THERE EXISTS an adversary \mathcal{B} that can break some security assumption with little extra effort
$\operatorname{Pr}[\mathcal{A}$ breaks scheme in time $t]$
$\leq \operatorname{Pr}[\mathcal{B}$ breaks assumption in time $t+\Delta]+\epsilon$
where Δ and ϵ depend on the number of oracles queries by \mathcal{A}
Proofs are constructive: \mathcal{B} uses \mathcal{A} as a subroutine

The game-playing methodology

Game G_{0}^{η} :
$\ldots \leftarrow \mathcal{A}(\ldots)$;
$\operatorname{Pr}_{\mathrm{G}_{0}^{\eta}}\left[A_{0}\right]$

The game-playing methodology

$\operatorname{Pr}_{\mathrm{G}_{0}^{\eta}}\left[A_{0}\right]$

Game G_{n}^{η} :

$\ldots \leftarrow \mathcal{B}(\ldots)$;
...
$\operatorname{Pr}_{\mathrm{G}_{n}^{n}}\left[A_{n}\right]$

The game-playing methodology

Game $\mathrm{G}_{0}^{\eta}:$ \ldots $\ldots \leftarrow \mathcal{A}(\ldots) ;$ \ldots Game $\mathrm{G}_{1}^{\eta}:$ \ldots \ldots \cdots $\operatorname{Pr}_{\mathrm{G}_{0}^{\eta}}\left[A_{0}\right]$$\leq h_{1}\left(\operatorname{Pr}_{\mathrm{G}_{1}^{\eta}}\left[A_{1}\right]\right) \leq$
$\ldots \leq h_{n}\left(\operatorname{Pr}_{\mathrm{G}_{n}^{\eta}}\left[A_{n}\right]\right)$

The game-playing methodology

Game $\mathrm{G}_{0}^{\eta}:$
\ldots
$\ldots \leftarrow \mathcal{A}(\ldots) ;$
\ldots
$\operatorname{Pr}_{\mathrm{G}_{0}^{\eta}}\left[A_{0}\right] \leq h_{1}\left(\operatorname{Pr}_{\mathrm{G}_{1}^{\eta}}\left[A_{1}\right]\right) \leq \ldots \leq h_{n}\left(\operatorname{Pr}_{\mathrm{G}_{n}^{n}}\left[A_{n}\right]\right)$

Code-based approach

- Game = Probabilistic program
- Games have a formal semantics
- Correctness of transitions can be expressed formally

PWHILE: a probabilistic programming language

$$
\begin{array}{ll}
\mathcal{C}: & \text { skip } \\
& \text { assert } \mathcal{E} \\
& \mathcal{C} ; \mathcal{C} \\
& \mathcal{V} \leftarrow \mathcal{E} \\
& \mathcal{V} \leftarrow \mathcal{D} \\
& \text { if } \mathcal{E} \text { then } \mathcal{C} \text { else } \mathcal{C} \\
& \text { while } \mathcal{E} \text { do } \mathcal{C} \\
& \mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E}) \\
& \mathcal{A} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E})
\end{array}
$$

nop
assertion
sequence
assignment
random sampling
conditional
while loop
procedure call
adversary

Semantics

$$
\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{M} \rightarrow \mathcal{D}_{\mathcal{M}} \text { where } \mathcal{D}_{A}=(A \rightarrow[0,1]) \rightarrow[0,1]
$$

Cost:

$$
\llbracket \rrbracket \rrbracket: \mathcal{C} \rightarrow(\mathcal{M} \times \mathbb{N}) \rightarrow(\mathcal{M} \times \mathbb{N} \rightarrow[0,1]) \rightarrow[0,1]
$$

pRHL: a Relational Hoare Logic for pWHILE

$$
\vDash c_{1} \sim c_{2}: P \Rightarrow Q \quad \text { iff } \quad \forall m_{1} m_{2}, P m_{1} m_{2} \rightarrow \operatorname{lift} Q \llbracket c_{1} \rrbracket m_{1} \llbracket c_{2} \rrbracket_{m_{2}}
$$

(where P and Q are relations on memories)

Lifting of a relation

$$
\begin{aligned}
& \text { lift } R\left(d_{1}: \mathcal{D}_{A}\right)\left(d_{2}: \mathcal{D}_{B}\right):= \\
& \exists\left(d: \mathcal{D}_{A * B}\right), \pi_{1}(d)=d_{1} \wedge \pi_{2}(d)=d_{2} \wedge \text { range } R d
\end{aligned}
$$

- Can be interpreted as a max-flow problem
- If R is an e.r., then lift $R d_{1} d_{2}$ iff $d_{1}[c]=d_{2}[c]$ for all [$\left.c\right]$
- (Probabilistic) non-interference still expressed as

$$
\vDash c_{1} \sim c_{2}: L\langle 1\rangle=L\langle 2\rangle \Rightarrow L^{\prime}\langle 1\rangle=L^{\prime}\langle 2\rangle
$$

From pRHL to probabilities

Assume

$$
\vDash c_{1} \sim c_{2}: P \Rightarrow Q
$$

For all memories m_{1} and m_{2} such that

$$
P m_{1} m_{2}
$$

and events A and B such that

$$
Q \Rightarrow A\langle 1\rangle \Leftrightarrow B\langle 2\rangle
$$

we have

$$
\llbracket c_{1} \rrbracket m_{1} 1_{A}=\llbracket c_{2} \rrbracket m_{2} 1_{B}
$$

Proof rules

Two-sided rules, one-sided rules, program transformations

Selected rules

$$
\begin{gathered}
\frac{\vDash c_{1} \sim c_{2}: P \Rightarrow Q \quad P^{\prime} \Rightarrow P \quad Q \Rightarrow Q^{\prime}}{\vDash c_{1} \sim c_{2}: P^{\prime} \Rightarrow Q^{\prime}} \\
\vDash x \leftarrow e \sim x \leftarrow e^{\prime}: Q\left\{x\langle 1\rangle:=e\langle 1\rangle, x\langle 2\rangle:=e^{\prime}\langle 2\rangle\right\} \Rightarrow Q \\
\vDash c_{1} \sim c_{1}^{\prime}: P \Rightarrow Q \quad \vDash c_{2} \sim c_{2}^{\prime}: Q \Rightarrow R \\
\vDash c_{1} ; c_{2} \sim c_{1}^{\prime} ; c_{2}^{\prime}: P \Rightarrow R \\
\vDash c_{1} \sim c_{1}^{\prime}: P \wedge e\langle 1\rangle=\mathrm{tt} \Rightarrow Q \\
\vDash c_{2} \sim c_{2}: P \wedge e\langle 1\rangle=\mathrm{ff} \Rightarrow Q \\
\Rightarrow \Rightarrow \quad \Leftrightarrow\langle 1\rangle \quad e^{\prime}\langle 2\rangle \\
\Rightarrow \text { if } e \text { then } c_{1} \text { else } c_{2} \sim \text { if } e^{\prime} \text { then } c_{1}^{\prime} \text { else } c_{2}^{\prime}: P \Rightarrow Q
\end{gathered}
$$

Random assignments

Let A be a finite set and let $f, g: A \rightarrow B$. Define

- $d=x \nLeftarrow A ; y \leftarrow f x$
- $d^{\prime}=x \stackrel{\&}{\leftarrow} A ; y \leftarrow g x$

Then $d=d^{\prime}$ iff there exists $h: A \xrightarrow{1-1} A$ such that $g=f \circ h$

pRHL rule for random assignments

$$
\frac{f \text { is } 1-1 \text { and } Q^{\prime} \stackrel{\text { def }}{=} \forall v, Q\{x\langle 1\rangle:=f v, x\langle 2\rangle:=v\}}{\vDash x \varsigma^{\varsigma} A \sim x{ }^{\varsigma} A: Q^{\prime} \Rightarrow Q}
$$

Optimistic sampling:

$$
\begin{aligned}
& \vDash x \hookleftarrow^{\&}\{0,1\}^{k} ; y \leftarrow x \oplus z \sim y \stackrel{\oiint}{\&}\{0,1\}^{k} ; x \leftarrow y \oplus z \\
& \quad z\langle 1\rangle=z\langle 2\rangle \Rightarrow(x\langle 1\rangle=x\langle 2\rangle \wedge y\langle 1\rangle=y\langle 2\rangle \wedge z\langle 1\rangle=z\langle 2\rangle)
\end{aligned}
$$

Adversaries

- Can read part of the memory
- Can perform arbitrary (PPT) computations
- Can call oracles (bounded number of calls for each oracle, but order and parameters of calls are arbitrary)
- Communicate with each other via shared variables

Must establish an invariant for each adversary call

Failure events

Fundamental Lemma

Assume c_{1} and c_{2} are absolutely terminating and behave identically unless a failure event "bad" fires. For every event A

$$
\left|\llbracket c_{1} \rrbracket_{m} 1_{A}-\llbracket c_{2} \rrbracket_{m} 1_{A}\right| \leq \llbracket c_{1} \rrbracket_{m} 1_{\text {bad }}
$$

Assume $\vDash c_{1} \sim c_{2}: P \Rightarrow Q$ and c_{1}, c_{2} terminate absolutely. If

$$
Q \Rightarrow[(A \wedge \neg F)\langle 1\rangle \Leftrightarrow(B \wedge \neg G)\langle 2\rangle] \wedge[F\langle 1\rangle \Leftrightarrow G\langle 2\rangle]
$$

then for all memories m_{1} and m_{2},

$$
P m_{1} m_{2} \quad \Longrightarrow \quad\left|\llbracket c_{1} \rrbracket_{m_{1}} 1_{A}-\llbracket c_{2} \rrbracket_{m_{2}} 1_{B}\right| \leq \llbracket c_{1} \rrbracket_{m_{1}} 1_{F}
$$

Automation in EasyCrypt

VC generation

- Random assignment:
- make programs in static single random assignments
- perform random samplings eagerly (assuming termination)
- give bijection (most of time identity works)
- Oracles: use self-composition
- Main game: use one-sided rules except for:
- oracle calls: use inlining
- adversary calls: infer invariants, use two-sided rules

Proofs

- SMT solvers and theorem provers
- Coq tactics for reasoning about rings and fields
- Tailored program to compute probabilities

Switching lemma

Game $G_{R P}$:
 $L \leftarrow[] ; b \leftarrow \mathcal{A}()$

Oracle $\mathcal{O}(x)$:
if $x \notin \operatorname{dom}(L)$ then $y \& T \backslash \operatorname{ran}(L)$;
$L \leftarrow(x, y):: L$
return $L(x)$

Game $G_{R F}$:

$L \leftarrow[] ; b \leftarrow \mathcal{A}()$
Oracle $\mathcal{O}(x)$:
if $x \notin \operatorname{dom}(L)$ then
$y \& T$;
$L \leftarrow(x, y):: L$
return $L(x)$

Suppose that \mathcal{A} makes at most q queries to its oracle. Then

$$
\left|\operatorname{Pr}_{G_{\mathrm{RP}}}[b]-\operatorname{Pr}_{G_{\mathrm{RF}}}[b]\right| \leq \frac{q(q-1)}{2(\# T)}
$$

- First introduced by Impagliazzo and Rudich in 1989
- Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

Hashed EIGamal

$$
\begin{aligned}
& (x, \alpha) \leftarrow \mathcal{K G}() \quad \stackrel{\text { def }}{=} \quad x \longleftarrow \mathbb{Z}_{q} ; \text { return }\left(x, g^{x}\right) \\
& (\beta, v) \leftarrow \operatorname{Enc}(\alpha, m) \stackrel{\text { def }}{=} \quad y \hookleftarrow \mathbb{Z}_{q} ; h \leftarrow H\left(\alpha^{y}\right) \text {; return }\left(g^{y}, h \oplus m\right) \\
& m \leftarrow \operatorname{Dec}(x, \beta, v) \quad \stackrel{\text { def }}{=} h \leftarrow H\left(\beta^{x}\right) \text {; return } h \oplus v
\end{aligned}
$$

where H is a random oracle:

$$
\begin{aligned}
H(R) \stackrel{\text { def }}{=} & \text { if } R \notin L \text { then } r \longleftarrow\{0,1\}^{k} ; L \leftarrow(R, r):: L \\
& \text { else } r \leftarrow L[R] \\
& \text { return } r
\end{aligned}
$$

Functional Correctness

$$
\operatorname{Dec}\left(x, g^{y}, H\left(g^{x y}\right) \oplus m\right)=H\left(\left(g^{y}\right)^{x}\right) \oplus H\left(g^{x y}\right) \oplus m=m
$$

Semantic security: code-based definition

For all well-formed adversary $\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$,

$$
\left|\operatorname{Pr}_{\text {IND-CPA }}\left[b=b^{\prime}\right]-\frac{1}{2}\right| \leq \epsilon
$$

where ϵ is negligible

Semantic Security of Hashed ElGamal

Hashed EIGamal is IND-CPA secure under the List CDH assumption.

List CDH assumption

$$
\begin{aligned}
& \text { Game LCDH: } \\
& x, y \not \mathbb{Z}_{q} ; \\
& L \leftarrow \mathcal{C}\left(g^{x}, g^{y}\right)
\end{aligned}
$$

Let

$$
\epsilon_{\mathrm{LCDH}} \stackrel{\text { def }}{=} \operatorname{Pr}_{\mathrm{LCDH}}\left[g^{x y} \in L\right]
$$

For every PPT adversary $\mathcal{C}, \epsilon_{\text {LCDH }}$ is negligible

Transition from IND-CPA to G_{1}

Game IND - CPA :	Oracle $H(\lambda):$
$L \leftarrow[] ;$	if $\lambda \notin \operatorname{dom}(L)$ then
$(x, \alpha) \leftarrow \mathcal{K} \mathcal{G}() ;$	$h \nleftarrow\{0,1\} ;$
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}(\alpha) ;$	$L \leftarrow(\lambda, h):: L$
$b s\{0,1\} ;$	else $h \leftarrow L(\lambda)$
$(\beta, v) \leftarrow \operatorname{Enc}\left(\alpha, m_{b}\right) ;$ return h	
$b^{\prime} \leftarrow \mathcal{A}^{\prime}(\alpha, \beta, v)$	

Game G_{1} :
$L \leftarrow[] ; x, y \not{ }^{\&} \mathbb{Z}_{q} ;$
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right)$
$b \stackrel{\$}{\xi}\{0,1\} ;$
$h \leftarrow H\left(g^{x y}\right)$;
$v \leftarrow h \oplus m_{b} ;$
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, v\right)$

Oracle $H(\lambda)$:
if $\lambda \notin \operatorname{dom}(L)$ then $h \stackrel{\xi}{\xi}\{0,1\}^{\ell}$;
$L \leftarrow(\lambda, h):: L$
else $h \leftarrow L(\lambda)$
return h

By inlining $\mathcal{K G}$ and Enc:

$$
\operatorname{Pr}_{\text {IND-CPA }}\left[b=b^{\prime}\right]=\operatorname{Pr}_{\mathrm{G}_{1}}\left[b=b^{\prime}\right]
$$

Transition from G_{1} to G_{2}

Game G_{1}	Oracle $H(\lambda)$
$L \leftarrow[] ; x, y \stackrel{5}{\mathbb{Z}_{q}}$;	if $\lambda \notin \operatorname{dom}(L)$ then
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right)$	$h \underbrace{\&}\{0,1\}^{\ell}$;
$b \underbrace{\underline{s}}\{0,1\}$;	$L \leftarrow(\lambda, h):: L$
$h \leftarrow H\left(g^{x y}\right) ;$	else $h \leftarrow L(\lambda)$
$v \leftarrow h \oplus m_{b} ;$	return h
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, v\right)$	

Game G_{2} : \quad Oracle $H(\lambda)$:
$L \leftarrow[] ; x, y \mathbb{Z}_{a^{\prime}} ;$
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right)$
$b \leftarrow\{0,1\} ;$
$h \vee\{0,1\} ;$
$v \leftarrow h \oplus m_{b} ;$
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, v\right)$
if $\lambda \notin \operatorname{dom}(L)$ then $h \stackrel{s}{s}\{0,1\}^{\ell}$;
$L \leftarrow(\lambda, h):: L$
else $h \leftarrow L(\lambda)$ return h

By the Fundamental Lemma:

$$
\left|\operatorname{Pr}_{\mathrm{G}_{1}}\left[b=b^{\prime}\right]-\operatorname{Pr}_{\mathrm{G}_{2}}\left[b=b^{\prime}\right]\right| \leq \operatorname{Pr}_{\mathrm{G}_{2}}\left[g^{x y} \in L_{\mathcal{A}}\right]
$$

Formally, we prove

$$
\vDash G_{2} \sim G_{2}: \text { true } \Rightarrow \Phi
$$

where $\Phi=\left(g^{x y} \in \operatorname{dom}\left(L_{\mathcal{A}}\right)\right)\langle 1\rangle \Longleftrightarrow\left(g^{x y} \in \operatorname{dom}\left(L_{\mathcal{A}}\right)\right)\langle 2\rangle$ $\wedge\left(g^{x y} \in \operatorname{dom}\left(L_{\mathcal{A}}\right)\langle 2\rangle \Rightarrow\left(b=b^{\prime}\right)\langle 1\rangle \Leftrightarrow\left(b=b^{\prime}\right)\langle 2\rangle\right.$

Transition from G_{2} to G_{3}

Game $\mathrm{G}_{2}:$	Oracle $H(\lambda):$
$L \leftarrow[] ; x, y \leftarrow \mathbb{Z}_{q} ;$	if $\lambda \notin \operatorname{dom}(L)$ then
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right)$	$h \leftarrow\{0,1\}^{\ell} ;$
$b \leftarrow\{0,1\} ;$	$L \leftarrow(\lambda, h):: L$
$h \leftarrow\{0,1\}^{\ell} ;$	else $h \leftarrow L(\lambda)$
$v \leftarrow h \oplus m_{b} ;$	return h
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, v\right)$	

Game $\mathrm{G}_{3}:$	Oracle $H(\lambda):$
$L \leftarrow[] ; x, y \uplus \mathbb{Z}_{q} ;$	if $\lambda \notin \operatorname{dom}(L)$ then
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right)$	$h \leftrightarrow\{0,1\}^{\ell} ;$
$b \leftrightarrows\{0,1\} ;$	$L \leftarrow(\lambda, h):: L$
$h \leftarrow\{0,1\}^{\ell} ;$	else $h \leftarrow L(\lambda)$
$v \leftarrow h ;$	return h
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, v\right)$	

$$
\begin{aligned}
& \operatorname{Pr}_{\mathrm{G}_{2}}\left[g^{x y} \in L_{\mathcal{A}}\right]=\operatorname{Pr}_{\mathrm{G}_{3}}\left[g^{x y} \in L_{\mathcal{A}}\right] \\
& \operatorname{Pr}_{\mathrm{G}_{2}}\left[b=b^{\prime}\right]=\operatorname{Pr}_{\mathrm{G}_{3}}\left[b=b^{\prime}\right]=\frac{1}{2}
\end{aligned}
$$

Transition G_{3} to $G_{\text {LCDH }}$

Game $\mathrm{G}_{3}:$	Oracle $H(\lambda):$
$L \leftarrow[] ; x, y \leftarrow \mathbb{Z}_{q} ;$	if $\lambda \notin \operatorname{dom}(L)$ then
$\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}\left(g^{x}\right) ;$	$h \leftrightarrow\{0,1\} ;$
$b \leftarrow\{0,1\} ;$	$L \leftarrow(\lambda, h):: L$
$h \leftarrow\{0,1\} ;$	else $h \leftarrow L(\lambda)$
$v \leftarrow h ;$	return h
$b^{\prime} \leftarrow \mathcal{A}^{\prime}\left(g^{x}, g^{y}, v\right)$	

$$
\operatorname{Pr}_{G_{3}}\left[g^{x y} \in \operatorname{dom}(L)\right]=\operatorname{Pr}_{\mathrm{LCDH}}\left[g^{x y} \in L^{\prime}\right]
$$

Summarizing

$$
\begin{aligned}
\left|\operatorname{Pr}_{\text {IND-CPA }}\left[b=b^{\prime}\right]-\frac{1}{2}\right| & =\left|\operatorname{Pr}_{\mathrm{G}_{1}}\left[b=b^{\prime}\right]-\operatorname{Pr}_{\mathrm{G}_{2}}\left[b=b^{\prime}\right]\right| \\
& \leq \operatorname{Pr}_{\mathrm{G}_{2}}\left[g^{x y} \in \operatorname{dom}\left(L_{\mathcal{A}}\right)\right] \\
& =\operatorname{Pr}_{\mathrm{G}_{3}}\left[g^{x y} \in \operatorname{dom}\left(L_{\mathcal{A}}\right)\right] \\
& =\operatorname{Pr}_{\mathrm{LCDH}}\left[g^{x y} \in \operatorname{dom}(L)\right] \\
& =\epsilon_{\mathrm{LCDH}}
\end{aligned}
$$

OAEP padding scheme

$$
\begin{aligned}
\operatorname{Enc}(M) \stackrel{\text { def }}{=} & R \longleftarrow\{0,1\}^{p} ; \\
& S \leftarrow G(R) \oplus\left(M \| 0^{k_{1}}\right) ; \\
& T \leftarrow H(S) \oplus R ; \\
& Y \leftarrow f(S \| T) ; \\
& \text { return } Y
\end{aligned}
$$

- $f:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ is a partial one-way function
- G and H are random oracles

$$
\begin{aligned}
G(R) \stackrel{\text { def }}{=} & \text { if } R \notin L \text { then } r \Leftarrow\{0,1\}^{k} ; L \leftarrow(R, r):: L \\
& \text { else } r \leftarrow L[R] \\
& \text { return } r
\end{aligned}
$$

Security against chosen ciphertext attacks

```
Game \(G_{\text {IND-CCA2 }}\) :
    \(L_{\text {Dec }} \leftarrow[] ;\)
    \((p k, s k) \leftarrow \mathcal{K} \mathcal{G}(\eta) ;\)
    \(\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}_{1}(p k) ;\)
    \(b \underbrace{\Phi}\{0,1\} ;\)
    \(c^{*} \leftarrow \operatorname{Enc}\left(m_{b}\right) ;\)
    \(C_{\text {def }} \leftarrow\) true;
    \(\bar{b} \leftarrow \mathcal{A}_{2}\left(p k, c^{*}\right)\)
```

Oracle Dec(c) :
$L_{\text {Dec }} \leftarrow\left(c_{\text {def }}, c\right):: L_{\text {Dec }} ;$

$$
\begin{gathered}
\forall \mathcal{A}, \mathrm{WF}(\mathcal{A}) \wedge \text { range }\left(\left(\text { true }, c^{*}\right) \notin L_{\mathrm{Dec}}\right) \llbracket G_{\mid \mathrm{ND}-\mathrm{CCA} 2} \rrbracket \Longrightarrow \\
\left|\operatorname{Pr}_{G_{\mathrm{IND}-\mathrm{CCA} 2}}[\bar{b}=b]-\frac{1}{2}\right| \leq \ldots
\end{gathered}
$$

Restrictions on oracle calls

- Add counter for adversary calls; check number of calls as postcondition
- Check validity of queries as postcondition

Exact IND-CCA security of OAEP

Decryption oracle

```
Oracle Dec(c) :
    L
    (s,t)\leftarrowf\mp@subsup{f}{}{-1}(sk,c);
    h\leftarrowH(s);r\leftarrowt\oplush;g\leftarrowG(r);
    if [s}\oplusg\mp@subsup{]}{\mp@subsup{k}{1}{}}{}=\mp@subsup{0}{}{\mp@subsup{k}{1}{}}\mathrm{ then
        return [s}\oplusg\mp@subsup{]}{}{n
else return }
```


Security statement

$$
\left|\operatorname{Pr}_{\text {Game }}\left[b=b^{\prime}\right]-\frac{1}{2}\right| \leq \operatorname{Pr}_{I, t}+\frac{3 q_{D} q_{G}+q_{D}^{2}+4 q_{D}+q_{G}}{2^{k_{0}}}+\frac{2 q_{D}}{2^{k_{1}}}
$$

$P r_{I, f}$ is the probability of an adversary I to partially invert f on a random element and q_{X} is the maximal number of queries to oracle X

More examples

- Encryption: Cramer-Shoup, IBE
- Signature: FDH, BLS
- Zero knowledge protocols
- Hash functions: Icart's construction, SHA3 finalists

The need for richer logics

Failure events cannot always be captured by a failure event: statistical zero knowledge, encodings

- Solution: make logics quantitative!
- Nice side-effect: applicable to differential privacy

Approximate Relational Hoare Logic

α-distance between distributions:

$$
\Delta_{\alpha}\left(d_{1}, d_{2}\right)=\max _{A}\left(\max \left(d_{1} 1_{A}-\alpha\left(d_{2} 1_{A}\right), d_{2} 1_{A}-\alpha\left(d_{1} 1_{A}\right)\right)\right)
$$

Approximate lifting of a relation

$$
\begin{aligned}
& \operatorname{lift}_{\alpha, \delta} R\left(d_{1}: \mathcal{D}_{A}\right)\left(d_{2}: \mathcal{D}_{B}\right):=\exists\left(d: \mathcal{D}_{A * B}\right), \\
& \pi_{1}(d) \leq d_{1} \wedge \Delta_{\alpha}\left(\pi_{1}(d), d_{1}\right) \leq \delta \\
& \wedge \pi_{2}(d) \leq d_{2} \wedge \Delta_{\alpha}\left(\pi_{2}(d), d_{2}\right) \leq \delta \\
& \wedge \text { range } R d
\end{aligned}
$$

Case $\alpha=1$ coincides with Segala and Turrini (2007), Desharnais, Laviolette and Tracol (2008)

Assume $\vDash c_{1} \sim_{\alpha, \delta} c_{2}: P \Rightarrow=$. For all memories m_{1} and m_{2}

$$
P m_{1} m_{2} \rightarrow \Delta_{\alpha}\left(\llbracket c_{1} \rrbracket m_{1}, \llbracket c_{2} \rrbracket m_{2}\right) \leq \delta
$$

Proof rules

Selected rules

$$
\frac{\vDash c_{1} \sim_{\alpha, \delta} c_{2}: P \Rightarrow Q \quad P^{\prime} \Rightarrow P \quad Q \Rightarrow Q^{\prime}}{\vDash c_{1} \sim_{\alpha, \delta} c_{2}: P^{\prime} \Rightarrow Q^{\prime}}
$$

$$
\overline{\vDash x \leftarrow e \sim_{1,0} x \leftarrow e^{\prime}: Q\left\{x\langle 1\rangle:=e\langle 1\rangle, x\langle 2\rangle:=e^{\prime}\langle 2\rangle\right\} \Rightarrow Q}
$$

$$
\frac{\vDash c_{1} \sim_{\alpha_{1}, \delta_{1}} c_{1}^{\prime}: P \Rightarrow Q \vDash c_{2} \sim_{\alpha_{2}, \delta_{2}} c_{2}^{\prime}: Q \Rightarrow R}{\vDash c_{1} ; c_{2} \sim_{\alpha_{1} \alpha_{2}, \delta_{1}+\delta_{2}} c_{1}^{\prime} ; c_{2}^{\prime}: P \Rightarrow R}
$$

$$
\vDash c_{1} \sim_{\alpha, \delta} c_{1}^{\prime}: P \wedge e\langle 1\rangle=\mathrm{tt} \Rightarrow Q
$$

$$
\vDash c_{2} \sim_{\alpha, \delta} C_{2}^{\prime}: P \wedge e\langle 1\rangle=\mathrm{ff} \Rightarrow Q
$$

$$
P \quad \Rightarrow \quad e\langle 1\rangle \quad \Leftrightarrow \quad e^{\prime}\langle 2\rangle
$$

F if e then c_{1} else $c_{2} \sim_{\alpha, \delta}$ if e^{\prime} then c_{1}^{\prime} else $c_{2}^{\prime}: P \Rightarrow Q$

Differential privacy (Dwork’06)

- Bound distance of output distributions corresponding to nearby secret inputs
- Protect individual bits (when inputs are bitstrings)

A randomized algorithm c satisfies (ϵ, δ)-differential privacy w.r.t. P iff for all memories m_{1} and m_{2} such that $P m_{1} m_{2}$:

- for all memories m_{1} and m_{2} such that $P m_{1} m_{2}$, and for every event E,

$$
\left(\llbracket \mathcal{c}_{1} \rrbracket_{m_{1}} 1_{E}\right) \leq e^{\epsilon}\left(\llbracket \mathcal{c}_{2} \rrbracket_{m_{2}} 1_{E}\right)+\delta
$$

- for all memories m_{1} and m_{2} such that $P m_{1} m_{2}$,

$$
\Delta_{e c}\left(\llbracket \mathcal{C}_{1} \rrbracket m_{1}, \llbracket c_{2} \rrbracket m_{2}\right) \leq \delta
$$

- $\vDash c \sim_{e^{\epsilon}, \delta} c: P \Rightarrow=$

Mechanisms for differentially private computations

Differential Privacy from Output Pertubation (Dwork'06)

- (Real-valued) function f is k-sensitive iff for all a and a^{\prime} such that $d\left(a, a^{\prime}\right) \leq 1$, we have $\left|f a-f a^{\prime}\right| \leq k$
- Laplacian $\mathcal{L}(r, \sigma)$ with mean r and scale factor σ : prob. of x prop. to $\exp \left(-\frac{|x-r|}{\sigma}\right)$
- If f is k-sensitive, then λa. $\mathcal{L}(f(a), k / \epsilon)$ is ϵ-DP

$$
\frac{m_{1} \psi m_{2} \Longrightarrow\left|\llbracket r \rrbracket m_{1}-\llbracket r \rrbracket m_{2}\right| \leq k \quad \exp (\epsilon) \leq \alpha}{F \Psi \sim_{\alpha, 0} x-\mathcal{L}\left(r, \frac{k}{\epsilon}\right): y \underbrace{〔} \mathcal{L}\left(r, \frac{k}{\epsilon}\right) \Rightarrow x\langle 1\rangle=y\langle 2\rangle}
$$

- Exponential mechanisms (Talwar and McSherry'07)
- Composition theorems

Differentially Private Vertex Cover (Gupta et al'10)

Formal statement

$$
\begin{aligned}
& \vDash \operatorname{Vertex} \operatorname{Cover}(V, E, \epsilon) \sim_{e^{\epsilon}, 0} \operatorname{VertexCover}(V, E, \epsilon): \\
& \\
& \Psi \pi\langle 1\rangle=\pi\langle 2\rangle
\end{aligned}
$$

where

$$
\Psi \stackrel{\text { def }}{=} V\langle 1\rangle=V\langle 2\rangle \wedge E\langle 2\rangle=E\langle 1\rangle \cup\{(t, u)\}
$$

Proof intuition

Case analysis on the vertex v chosen in the iteration i

- v is not one of t, u and neither t nor u are in π
- v is one of t, u
- either t or u is already in π

One case

v is not one of t, u and neither t nor u are in π.

$$
\begin{aligned}
\frac{\operatorname{Pr}[v\langle 1\rangle=x]}{\operatorname{Pr}[v\langle 2\rangle=x]} & =\frac{\left(d_{E\langle 1\rangle}(x)+w_{i}\right) \sum_{y \in V}\left(d_{E\langle 2\rangle}(y)+w_{i}\right)}{\left(d_{E\langle 2\rangle}(x)+w_{i}\right) \sum_{y \in V}\left(d_{E\langle 1\rangle}(y)+w_{i}\right)} \\
& =\frac{\left(d_{E\langle 1\rangle}(x)+w_{i}\right)\left(2|E\langle 1\rangle|+(n-i) w_{i}+2\right)}{\left(d_{E\langle 1\rangle}(x)+w_{i}\right)\left(2|E\langle 1\rangle|+(n-i) w_{i}\right)} \\
& \leq 1+\frac{2}{(n-i) w_{i}} \leq \exp \left(\frac{2}{(n-i) w_{i}}\right)
\end{aligned}
$$

$$
\frac{\operatorname{Pr}[v\langle 2\rangle=x]}{\operatorname{Pr}[v\langle 1\rangle=x]} \leq 1
$$

A general rule for while loops

$$
I \Rightarrow\left(b_{1}\langle 1\rangle \equiv b_{2}\langle 2\rangle \wedge P_{1}\langle 1\rangle \equiv P_{2}\langle 2\rangle \wedge i\langle 1\rangle=i\langle 2\rangle\right)
$$

$\forall m_{1} m_{2} . m_{1} / m_{2} \Rightarrow \llbracket$ while b_{1} do $c_{1} \rrbracket m_{1}=\llbracket\left[\text { while } b_{1} \text { do } c_{1}\right]_{n} \rrbracket_{m_{1}}$
$\vDash c_{1}$; assert $\left(\neg P_{1}\right) \sim_{\alpha_{1}(j), 0} c_{2}$; assert $\left(\neg P_{2}\right)$:

$$
I \wedge b_{1}\langle 1\rangle \wedge i\langle 1\rangle=j \wedge \neg P_{1}\langle 1\rangle \Rightarrow \mid \wedge i\langle 1\rangle=j+1
$$

$\vDash c_{1}$; assert $\left(P_{1}\right) \sim_{\alpha_{2}, 0} c_{2}$; assert $\left(P_{2}\right)$:

$$
\left|\wedge b_{1}\langle 1\rangle \wedge i\langle 1\rangle=j \wedge \neg P_{1}\langle 1\rangle \Rightarrow\right| \wedge i\langle 1\rangle=j+1
$$

$$
\vDash c_{1} \sim_{1,0} c_{2}:
$$

$$
I \wedge b_{1}\langle 1\rangle \wedge i\langle 1\rangle=j \wedge P_{1}\langle 1\rangle \Rightarrow I \wedge i\langle 1\rangle=j+1 \wedge P_{1}\langle 1\rangle
$$

\vDash while b_{1} do $c_{1} \sim{ }_{\left(\prod_{i=a}^{a+n} \alpha_{1}(i)\right) \times \alpha_{2}, 0}$ while b_{2} do c_{2} :

$$
I \wedge i\langle 1\rangle=a \Rightarrow \mid \wedge \neg b_{1}\langle 1\rangle
$$

Conclusion

- Crypto proofs can be formalized within reasonable time
- Fun topic, lots of new and interesting problems

Further work:

- Develop theory: decidability, probabilities as effects
- Improve tool: invariant generation, automation, modularity
- More examples: multi-party computation, computational DP, protocols
- Synthesis/automated transformation
- Other application domains: continuous distributions
- Implementations: F\#, C

