
Reasoning about Probabilistic Computations
Applications to Cryptography and Privacy

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Based on joint work with: Benjamin Grégoire, Santiago Zanella
Béguelin, Sylvain Heraud, Boris Köpf, César Kunz, Yassine
Lakhnech, Federico Olmedo

Formal verification and cryptography

Symbolic methods: analysis of logical flaws in protocols

Computational soundness of symbolic models w.r.t.
computational models

Program verification: prove implementations are secure
relative to adversarial model

These works assume perfect cryptography.

What’s wrong with cryptographic proofs?

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway, 2004-2006.

Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)
S. Halevi, 2005

Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in taming
the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly
impossible to verify
V. Shoup, 2004

A famous example: RSA-OAEP

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

1994 Purported proof of chosen-ciphertext security

2001 Proof establishes a weaker security notion, but desired
security can be achieved

1 ...for a modified scheme, or
2 ...under stronger assumptions

2004 Filled gaps in Fujisaki et al. 2001 proof

2009 Security definition needs to be clarified

2010 Filled gaps and marginally improved bound in 2004 proof

A plausible solution

I advocate creating an automated tool to help us [...]
writing and checking [...] our proofs
Halevi, 2005

The possibility for tools [to help write and verify proofs] has
always been one of our motivations, and one of the
reasons why we focused on code-based games
Bellare and Rogaway, 2004-2006

This talk

Develop program verification methods for

Provable Security (Goldwasser and Micali’84)

Differential Privacy (Dwork’06)

This talk

Develop and verify program verification methods for

Provable Security (Goldwasser and Micali’84)

Differential Privacy (Dwork’06)

This talk

Develop and verify program verification methods for

Provable Security (Goldwasser and Micali’84)

Differential Privacy (Dwork’06)

CertiCrypt
Build and check exact provable security proofs in Coq

Security goals, properties and hypotheses are explicit

All proof steps are conducted in a unified formalism

Proofs are independently verifiable

This talk

Develop and verify program verification methods for

Provable Security (Goldwasser and Micali’84)

Differential Privacy (Dwork’06)

CertiCrypt
Build and check exact provable security proofs in Coq

Security goals, properties and hypotheses are explicit

All proof steps are conducted in a unified formalism

Proofs are independently verifiable

EasyCrypt
Automation with SMT solvers + generation of CertiCrypt proofs

(Deductive) program verification

Art of proving that programs are correct

Foundations: program logic (Hoare’69) and weakest
precondition calculus (Floyd’67)
Major advances in:

language coverage
(functions, objects, concurrency, heap. . .)
automation
(decision procedures, SMT solvers, invariant generation. . .)
proof engineering
(intermediate languages. . .)

Hoare logic

Judgments are of the form � c : P ⇒ Q (typically P and Q
are f.o. formulae over program variables)

A judgment � c : P ⇒ Q is valid iff for all states s and s′, if
such that c, s ⇓ s′ and s satisfies P then s′ satisfies Q.

Selected rules

� x ← e : Q{x := e} ⇒ Q
� c1 : P ⇒ Q � c2 : Q ⇒ R

� c1; c2 : P ⇒ R

� c1 : P ∧ e = tt⇒ Q � c2 : P ∧ e = ff⇒ Q
� if e then c1 else c2 : P ⇒ Q

� c : I ∧ e = tt⇒ I P ⇒ I I ∧ e = ff⇒ Q
� while e do c : P ⇒ Q

Verification condition generation

Generate a set of verification conditions from annotated
command and postcondition

If all VCs are valid and P ⇒ wp(c,Q) then � C : P ⇒ Q

Selected rules
wp(x ← e,Q) = Q{x := e}

wp(c1; c2,R) = wp(c1,wp(c2,R))

wp(if e then c1 else c2,Q) = e=tt⇒ wp(c1,Q) ∧ e=ff⇒ wp(c2,Q)

wp(while e do cI,Q) = I

The while rule generates two proof obligations

I ∧ e = tt⇒ wp(c, I) I ∧ e = ff⇒ Q

Beyond safety properties

Non-interference:
"Low-security behavior of the program is not
affected by any high-security data." Goguen &
Meseguer 1982

An instance of:
a 2-safety property (Terauchi and Aiken’05),
an hyper-safety property (Clarkson and Schneider’06).

Other 2-safety properties include continuity and
determinacy

Beyond safety properties

H L

H ′ L′

H L

H ′ L′

Beyond safety properties

H L

H ′ L′

H L

H ′ L′

If L〈1〉 = L〈2〉 then L′〈1〉 = L′〈2〉. Or,

� c ∼ c : L〈1〉 = L〈2〉 ⇒ L′〈1〉 = L′〈2〉

Relational judgments

Judgments are of the form � c1 ∼ c2 : P ⇒ Q
(typically P and Q are f.o. formulae over tagged program
variables of c1 and c2)

A judgment � c1 ∼ c2 : P ⇒ Q is valid iff for all states
s1, s′

1, s2, s′
2, if c1, s1 ⇓ s′

1 and c2, s2 ⇓ s′
2 and (s1, s2)

satisfies P then (s′
1, s

′
2) satisfies Q.

May require co-termination.

Verification methods
Embedding into Hoare logic:

Self-composition (B, D’Argenio and Rezk’04)
Cross-products (Zaks and Pnueli’08)

Relational Hoare Logic (Benton’04)

Embedding relational reasoning into Hoare logic
Construct c1 × c2 s.t. (P ′ and Q′ are renamings of P and Q)

� c1 × c2 : P ′ ⇒ Q′ ⇒ � c1 ∼ c2 : P ⇒ Q

Self-composition
Set c1 × c2 = c1; c2.

+ General (arbitrary programs) and (relatively) complete

- Impractical

Cross-products
Define c1 × c2 recursively, e.g.

if e then c1 else c2 × if e′ then c′
1 else c′

2 =
if e′′ then c1 × c′

1 else c2 × c′
2

+ Practical

- Requires programs to be structurally equivalent

Relational Hoare Logic

Selected rules

� x ← e ∼ x ← e′ : Q{x〈1〉 := e〈1〉, x〈2〉 := e′〈2〉} ⇒ Q

� c1 ∼ c′

1 : P ⇒ Q � c2 ∼ c′

2 : Q ⇒ R

� c1; c2 ∼ c′

1; c
′

2 : P ⇒ R

� c1 ∼ c′

1 : P ∧ e〈1〉 = tt⇒ Q
� c2 ∼ c′

2 : P ∧ e〈1〉 = ff⇒ Q
P ⇒ e〈1〉 ⇔ e′〈2〉

� if e then c1 else c2 ∼ if e′ then c′

1 else c′

2 : P ⇒ Q

� x ← e ∼ skip : Q{x〈1〉 := e〈1〉} ⇒ Q

Provable security

A mathematical approach to correctness

Theorem
IF the security assumptions hold

THEN the scheme is secure against adversary A

Security assumptions are explicit and (ideally) standard

Goal is clearly stated and (ideally) standard

Adversarial model is well-defined and (usually) standard

Proof is rigorous

Typical exact security statement

FOR ALL adversary A that can break the scheme
THERE EXISTS an adversary B that can break some security
assumption with little extra effort

Pr[A breaks scheme in time t]
≤ Pr[B breaks assumption in time t +∆] + ǫ

where ∆ and ǫ depend on the number of oracles queries by A

Proofs are constructive: B uses A as a subroutine

The game-playing methodology

Game Gη
0 :

. . .

. . .← A(. . .);

. . .

PrGη

0
[A0]

The game-playing methodology

Game Gη
0 :

. . .

. . .← A(. . .);

. . .

PrGη

0
[A0]

Game Gη
n :

. . .

. . .← B(. . .);

. . .

PrGη

n
[An]

The game-playing methodology

Game Gη
0 :

. . .

. . .← A(. . .);

. . .

PrGη

0
[A0] ≤

Game Gη
1 :

. . .

. . .

. . .

h1(PrGη

1
[A1])

· · ·

≤ . . . ≤

Game Gη
n :

. . .

. . .← B(. . .);

. . .

hn(PrGη

n
[An])

The game-playing methodology

Game Gη
0 :

. . .

. . .← A(. . .);

. . .

PrGη

0
[A0] ≤

Game Gη
1 :

. . .

. . .

. . .

h1(PrGη

1
[A1])

· · ·

≤ . . . ≤

Game Gη
n :

. . .

. . .← B(. . .);

. . .

hn(PrGη

n
[An])

Code-based approach
Game = Probabilistic program

Games have a formal semantics

Correctness of transitions can be expressed formally

PWHILE: a probabilistic programming language

C ::= skip nop
| assert E assertion
| C; C sequence
| V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| A ← P(E , . . . , E) adversary

Semantics

J·K : C →M→ DM where DA = (A→ [0,1])→ [0,1]

Cost:

J·K : C → (M× N)→ (M× N→ [0,1])→ [0,1]

pRHL: a Relational Hoare Logic for pWHILE

� c1 ∼ c2 : P ⇒ Q iff ∀m1 m2, P m1 m2 → lift Q Jc1Km1 Jc2Km2

(where P and Q are relations on memories)

Lifting of a relation

lift R (d1 : DA) (d2 : DB) :=
∃(d : DA∗B), π1(d) = d1 ∧ π2(d) = d2 ∧ range R d

Can be interpreted as a max-flow problem

If R is an e.r., then lift R d1 d2 iff d1[c] = d2[c] for all [c]

(Probabilistic) non-interference still expressed as

� c1 ∼ c2 : L〈1〉 = L〈2〉 ⇒ L′〈1〉 = L′〈2〉

From pRHL to probabilities

Assume
� c1 ∼ c2 : P ⇒ Q

For all memories m1 and m2 such that

P m1 m2

and events A and B such that

Q ⇒ A〈1〉 ⇔ B〈2〉

we have
Jc1Km1 1A = Jc2Km2 1B

Proof rules

Two-sided rules, one-sided rules, program transformations

Selected rules
� c1 ∼ c2 : P ⇒ Q P′ ⇒ P Q ⇒ Q′

� c1 ∼ c2 : P′ ⇒ Q′

� x ← e ∼ x ← e′ : Q{x〈1〉 := e〈1〉, x〈2〉 := e′〈2〉} ⇒ Q

� c1 ∼ c′

1 : P ⇒ Q � c2 ∼ c′

2 : Q ⇒ R

� c1; c2 ∼ c′

1; c
′

2 : P ⇒ R

� c1 ∼ c′

1 : P ∧ e〈1〉 = tt⇒ Q
� c2 ∼ c′

2 : P ∧ e〈1〉 = ff⇒ Q
P ⇒ e〈1〉 ⇔ e′〈2〉

� if e then c1 else c2 ∼ if e′ then c′

1 else c′

2 : P ⇒ Q

Random assignments

Let A be a finite set and let f ,g : A→ B. Define

d = x $← A; y ← f x

d ′ = x $← A; y ← g x

Then d = d ′ iff there exists h : A 1−1
→ A such that g = f ◦ h

pRHL rule for random assignments

f is 1-1 and Q′ def
= ∀v ,Q{x〈1〉 := f v , x〈2〉 := v}

� x $← A ∼ x $← A : Q′ ⇒ Q

Optimistic sampling:

� x $← {0,1}k ; y ← x ⊕ z ∼ y $← {0,1}k ; x ← y ⊕ z
z〈1〉 = z〈2〉 ⇒ (x〈1〉 = x〈2〉 ∧ y〈1〉 = y〈2〉 ∧ z〈1〉 = z〈2〉)

Adversaries

Can read part of the memory

Can perform arbitrary (PPT) computations

Can call oracles (bounded number of calls for each oracle,
but order and parameters of calls are arbitrary)

Communicate with each other via shared variables

Must establish an invariant for each adversary call

Failure events

Fundamental Lemma
Assume c1 and c2 are absolutely terminating and behave
identically unless a failure event “bad” fires. For every event A

|Jc1Km 1A − Jc2Km 1A| ≤ Jc1Km 1bad

Assume � c1 ∼ c2 : P ⇒ Q and c1, c2 terminate absolutely. If

Q ⇒ [(A ∧ ¬F)〈1〉 ⇔ (B ∧ ¬G)〈2〉] ∧ [F 〈1〉 ⇔ G〈2〉]

then for all memories m1 and m2,

P m1 m2 =⇒ |Jc1Km1 1A − Jc2Km2 1B| ≤ Jc1Km1 1F

Automation in EasyCrypt

VC generation
Random assignment:

make programs in static single random assignments
perform random samplings eagerly (assuming termination)
give bijection (most of time identity works)

Oracles: use self-composition
Main game: use one-sided rules except for:

oracle calls: use inlining
adversary calls: infer invariants, use two-sided rules

Proofs
SMT solvers and theorem provers

Coq tactics for reasoning about rings and fields

Tailored program to compute probabilities

Switching lemma

Game GRP :
L← []; b← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← T \ ran(L);
L← (x , y) :: L

return L(x)

Game GRF :
L← []; b ← A()

Oracle O(x) :
if x 6∈ dom(L) then

y $← T ;
L← (x , y) :: L

return L(x)

Suppose that A makes at most q queries to its oracle. Then

|PrGRP [b]− PrGRF [b]| ≤
q(q − 1)
2 (#T)

First introduced by Impagliazzo and Rudich in 1989

Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

Hashed ElGamal

(x , α)← KG() def
= x $← Zq; return (x ,gx)

(β, v)← Enc(α,m) def
= y $← Zq; h← H(αy); return (gy ,h ⊕m)

m← Dec(x , β, v) def
= h ← H(βx); return h ⊕ v

where H is a random oracle:

H(R) def
= if R /∈ L then r $← {0,1}k ; L← (R, r) :: L

else r ← L[R]
return r

Functional Correctness

Dec(x ,gy ,H(gxy)⊕m) = H((gy)x)⊕ H(gxy)⊕m = m

Semantic security: code-based definition

IND-CPA game

Game IND-CPA :
(sk ,pk)← KG();
(m0,m1)← A(pk);
b $← {0,1};
ζ ← Enc(pk ,mb);
b′ ← A′(pk , ζ);

For all well-formed adversary (A,A′),

|PrIND−CPA[b = b′]−
1
2
| ≤ ǫ

where ǫ is negligible

Semantic Security of Hashed ElGamal

Hashed ElGamal is IND-CPA secure under the List CDH
assumption.

List CDH assumption

Game LCDH :
x , y $← Zq;
L← C(gx , gy)

Let
ǫLCDH

def
= PrLCDH[g

xy ∈ L]

For every PPT adversary C, ǫLCDH is negligible

Transition from IND-CPA to G1

Game IND− CPA :
L← [];
(x , α)← KG();
(m0,m1)← A(α);
b $← {0, 1};
(β, v)←Enc(α,mb);
b′ ← A′(α, β, v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

Game G1 :
L← []; x , y $← Zq ;
(m0,m1)← A(gx);
b $← {0, 1};
h← H(gxy);
v ← h ⊕mb;
b′ ← A′(gx , gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

By inlining KG and Enc:

PrIND-CPA
[

b = b′
]

= PrG1

[

b = b′
]

Transition from G1 to G2

Game G1 :
L← []; x , y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
h← H(gxy);
v ← h ⊕mb;
b′ ← A′(gx , gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

Game G2 :
L← []; x , y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
h $← {0, 1}ℓ;
v ← h ⊕mb;
b′ ← A′(gx , gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

By the Fundamental Lemma:

|PrG1

[

b = b′
]

− PrG2

[

b = b′
]

| ≤ PrG2
[gxy ∈ LA]

Formally, we prove

� G2 ∼ G2 : true⇒ Φ

where Φ = (gxy ∈ dom(LA))〈1〉 ⇐⇒ (gxy ∈ dom(LA))〈2〉
∧(gxy ∈ dom(LA)〈2〉 ⇒ (b = b′)〈1〉 ⇔ (b = b′)〈2〉

Transition from G2 to G3

Game G2 :
L← []; x , y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
h $← {0, 1}ℓ;
v ← h ⊕mb;
b′ ← A′(gx , gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

Game G3 :
L← []; x , y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
h $← {0, 1}ℓ;
v ← h;
b′ ← A′(gx , gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

PrG2
[gxy ∈ LA] = PrG3

[gxy ∈ LA]

PrG2

[

b = b′
]

= PrG3

[

b = b′
]

=
1
2

Transition G3 to GLCDH

Game G3 :
L← []; x , y $← Zq;
(m0,m1)← A(gx);
b $← {0, 1};
h $← {0, 1}ℓ;
v ← h;
b′ ← A′(gx , gy , v)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

Game LCDH :
x , y $← Zq ;
L′ ← C(gx , gy)

AdversaryC(α, β) :
L← [];
(m0,m1)← A(α);
v $← {0, 1}ℓ;
b′ ← A′(α, β, v)
return dom(L)

Oracle H(λ) :
if λ 6∈ dom(L) then

h $← {0, 1}ℓ;
L← (λ, h) ::L

else h← L(λ)
return h

PrG3
[gxy ∈ dom(L)] = PrLCDH

[

gxy ∈ L′
]

Summarizing

|PrIND-CPA[b = b′]− 1
2 | = |PrG1

[b = b′]− PrG2
[b = b′]|

≤ PrG2
[gxy ∈ dom(LA)]

= PrG3
[gxy ∈ dom(LA)]

= PrLCDH[gxy ∈ dom(L)]
= ǫLCDH

OAEP padding scheme

Enc(M) def
= R $← {0,1}p;

S ← G(R)⊕ (M‖0k1);
T ← H(S)⊕ R;
Y ← f (S‖T);
return Y

f : {0,1}k → {0,1}k is a partial one-way function

G and H are random oracles
G(R) def

= if R /∈ L then r $← {0,1}k ; L← (R, r) :: L
else r ← L[R]
return r

Security against chosen ciphertext attacks
Game GIND-CCA2 :
LDec ← [];
(pk , sk)← KG(η);
(m0,m1)← A1(pk);
b $← {0, 1};
c∗ ← Enc(mb);
cdef ← true;
b← A2(pk , c∗)

Oracle Dec(c) :
LDec ← (cdef, c) :: LDec;
. . .

∀A,WF(A) ∧ range ((true, c∗) 6∈ LDec) JGIND-CCA2K =⇒

|PrGIND-CCA2

[

b = b
]

− 1
2 | ≤ . . .

Restrictions on oracle calls
Add counter for adversary calls; check number of calls as
postcondition

Check validity of queries as postcondition

Exact IND-CCA security of OAEP
Decryption oracle

Oracle Dec(c) :
LDec ← (cdef, c) :: LDec;
(s, t)← f−1(sk , c);
h← H(s); r ← t ⊕ h; g ← G(r);
if [s ⊕ g]k1 = 0k1 then

return [s ⊕ g]n

else return ⊥

Security statement

|PrGame[b = b′]−
1
2
| ≤ PrI,f +

3qDqG + q2
D + 4qD + qG

2k0
+

2qD

2k1

PrI,f is the probability of an adversary I to partially invert f on a
random element and qX is the maximal number of queries to
oracle X

More examples

Encryption: Cramer-Shoup, IBE

Signature: FDH, BLS

Zero knowledge protocols

Hash functions: Icart’s construction, SHA3 finalists

The need for richer logics
Failure events cannot always be captured by a failure event:
statistical zero knowledge, encodings

Solution: make logics quantitative!

Nice side-effect: applicable to differential privacy

Approximate Relational Hoare Logic
α-distance between distributions:

∆α(d1,d2) = max
A

(max(d1 1A − α (d2 1A),d2 1A − α (d1 1A)))

Approximate lifting of a relation

liftα,δ R (d1 : DA) (d2 : DB) := ∃(d : DA∗B),
π1(d) ≤ d1 ∧∆α(π1(d),d1) ≤ δ
∧ π2(d) ≤ d2 ∧∆α(π2(d),d2) ≤ δ
∧ range R d

Case α = 1 coincides with Segala and Turrini (2007),
Desharnais, Laviolette and Tracol (2008)

Assume � c1 ∼α,δ c2 : P ⇒ =. For all memories m1 and m2

P m1 m2 → ∆α(Jc1Km1 , Jc2Km2) ≤ δ

Proof rules

Selected rules
� c1 ∼α,δ c2 : P ⇒ Q P′ ⇒ P Q ⇒ Q′

� c1 ∼α,δ c2 : P′ ⇒ Q′

� x ← e ∼1,0 x ← e′ : Q{x〈1〉 := e〈1〉, x〈2〉 := e′〈2〉} ⇒ Q

� c1 ∼α1,δ1 c′

1 : P ⇒ Q � c2 ∼α2,δ2 c′

2 : Q ⇒ R

� c1; c2 ∼α1α2,δ1+δ2 c′

1; c
′

2 : P ⇒ R

� c1 ∼α,δ c′

1 : P ∧ e〈1〉 = tt⇒ Q
� c2 ∼α,δ c′

2 : P ∧ e〈1〉 = ff⇒ Q
P ⇒ e〈1〉 ⇔ e′〈2〉

� if e then c1 else c2 ∼α,δ if e′ then c′

1 else c′

2 : P ⇒ Q

Differential privacy (Dwork’06)

Bound distance of output distributions corresponding to
nearby secret inputs

Protect individual bits (when inputs are bitstrings)

A randomized algorithm c satisfies (ǫ, δ)-differential privacy
w.r.t. P iff for all memories m1 and m2 such that P m1 m2:

for all memories m1 and m2 such that P m1 m2, and for
every event E ,

(Jc1Km11E) ≤ eǫ (Jc2Km21E) + δ

for all memories m1 and m2 such that P m1 m2,
∆eǫ(Jc1Km1 , Jc2Km2) ≤ δ

� c ∼eǫ,δ c : P ⇒ =

Mechanisms for differentially private computations

Differential Privacy from Output Pertubation (Dwork’06)

(Real-valued) function f is k-sensitive iff for all a and a′

such that d(a,a′) ≤ 1, we have |f a− f a′| ≤ k

Laplacian L(r , σ) with mean r and scale factor σ: prob. of

x prop. to exp
(

− |x−r |
σ

)

If f is k-sensitive, then λa. L(f (a), k/ǫ) is ǫ-DP

m1 Ψ m2 =⇒ |JrK m1 − JrK m2| ≤ k exp(ǫ) ≤ α

� Ψ ∼α,0 x $← L(r , k
ǫ
) : y $← L(r , k

ǫ
)⇒ x〈1〉 = y〈2〉

Exponential mechanisms (Talwar and McSherry’07)

Composition theorems

Differentially Private Vertex Cover (Gupta et al’10)

a b

c

d

e

f

g

h

ij k

l

function VERTEXCOVER(V ,E , ǫ)
1 n← |V |; π ← []; i ← 0;
2 while i < n do
3 v $← choose(V ,E , ǫ, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i ← i + 1
7 end

where

choose(V ,E , ǫ, n, i) =
dE(v) + wi

∑

x∈V

dE(x) + wi

and

wi =
4
ǫ

√

n
n− i

Formal statement

� VERTEXCOVER(V ,E , ǫ) ∼eǫ,0VERTEXCOVER(V ,E , ǫ) :
Ψπ〈1〉 = π〈2〉

where

Ψ def
= V 〈1〉 = V 〈2〉 ∧ E〈2〉 = E〈1〉 ∪ {(t ,u)}

Proof intuition
Case analysis on the vertex v chosen in the iteration i

v is not one of t ,u and neither t nor u are in π

v is one of t ,u

either t or u is already in π

One case

v is not one of t ,u and neither t nor u are in π.

Pr[v〈1〉 = x]
Pr[v〈2〉 = x]

=
(dE〈1〉(x) + wi)

∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n − i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n − i)wi)

≤ 1 +
2

(n − i)wi
≤ exp

(

2
(n − i)wi

)

Pr[v〈2〉 = x]
Pr[v〈1〉 = x]

≤ 1

A general rule for while loops

I ⇒ (b1〈1〉 ≡ b2〈2〉 ∧ P1〈1〉 ≡ P2〈2〉 ∧ i〈1〉 = i〈2〉)

∀m1 m2. m1 I m2 ⇒ Jwhile b1 do c1Km1 = J[while b1 do c1]nKm1

� c1; assert (¬P1) ∼α1(j),0 c2; assert (¬P2) :

I ∧ b1〈1〉 ∧ i〈1〉 = j ∧ ¬P1〈1〉 ⇒ I ∧ i〈1〉 = j + 1

� c1; assert (P1) ∼α2,0 c2; assert (P2) :
I ∧ b1〈1〉 ∧ i〈1〉 = j ∧ ¬P1〈1〉 ⇒ I ∧ i〈1〉 = j + 1

� c1 ∼1,0 c2 :
I ∧ b1〈1〉 ∧ i〈1〉 = j ∧ P1〈1〉 ⇒ I ∧ i〈1〉 = j + 1 ∧ P1〈1〉

� while b1 do c1 ∼(
∏a+n

i=a α1(i))×α2,0
while b2 do c2 :

I ∧ i〈1〉 = a⇒ I ∧ ¬b1〈1〉

Conclusion

Crypto proofs can be formalized within reasonable time

Fun topic, lots of new and interesting problems

Further work:

Develop theory: decidability, probabilities as effects

Improve tool: invariant generation, automation, modularity

More examples: multi-party computation, computational
DP, protocols

Synthesis/automated transformation

Other application domains: continuous distributions

Implementations: F#, C

