Reasoning about Probabilistic Computations
Applications to Cryptography and Privacy

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Based on joint work with: Benjamin Grégoire, Santiago Zanella
Béguelin, Sylvain Heraud, Boris Kopf, César Kunz, Yassine
Lakhnech, Federico Olmedo

Formal verification and cryptography

@ Symbolic methods: analysis of logical flaws in protocols

@ Computational soundness of symbolic models w.r.t.
computational models

@ Program verification: prove implementations are secure
relative to adversarial model

These works assume perfect cryptography.

What's wrong with cryptographic proofs?

@ In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a
crisis of rigor
M. Bellare and P. Rogaway, 2004-2006.

@ Do we have a problem with cryptographic proofs? Yes, we
do [...] We generate more proofs than we carefully verify
(and as a consequence some of our published proofs are
incorrect)

S. Halevi, 2005

@ Security proofs in cryptography may be organized as
sequences of games [...] this can be a useful tool in taming
the complexity of security proofs that might otherwise
become so messy, complicated, and subtle as to be nearly
impossible to verify
V. Shoup, 2004

A famous example: RSA-OAEP

Shoup Bellare, Hofheinz, Kiltz

Bellare and Rogaway Pointcheval

1994 2001 2004 2009

Fujisaki, Okamoto, Pointcheval, Stern

1994 Purported proof of chosen-ciphertext security

2001 Proof establishes a weaker security notion, but desired
security can be achieved

© ...for a modified scheme, or
@ ...under stronger assumptions

2004 Filled gaps in Fujisaki et al. 2001 proof
2009 Security definition needs to be clarified
2010 Filled gaps and marginally improved bound in 2004 proof

A plausible solution

@ | advocate creating an automated tool to help us [...]
writing and checking [...] our proofs
Halevi, 2005

@ The possibility for tools [to help write and verify proofs] has
always been one of our motivations, and one of the
reasons why we focused on code-based games
Bellare and Rogaway, 2004-2006

This talk

Develop program verification methods for
@ Provable Security (Goldwasser and Micali’84)
@ Differential Privacy (Dwork’06)

This talk

Develop and verify program verification methods for
@ Provable Security (Goldwasser and Micali’84)
@ Differential Privacy (Dwork’06)

This talk

Develop and verify program verification methods for
@ Provable Security (Goldwasser and Micali’84)
@ Differential Privacy (Dwork’06)

Build and check exact provable security proofs in Coq

@ Security goals, properties and hypotheses are explicit
@ All proof steps are conducted in a unified formalism
@ Proofs are independently verifiable

This talk

Develop and verify program verification methods for
@ Provable Security (Goldwasser and Micali’84)
@ Differential Privacy (Dwork’06)

Build and check exact provable security proofs in Coq

@ Security goals, properties and hypotheses are explicit
@ All proof steps are conducted in a unified formalism
@ Proofs are independently verifiable

Automation with SMT solvers + generation of CertiCrypt proofs

(Deductive) program verification

@ Art of proving that programs are correct

@ Foundations: program logic (Hoare’69) and weakest
precondition calculus (Floyd’'67)
@ Major advances in:
@ language coverage
(functions, objects, concurrency, heap...)
@ automation
(decision procedures, SMT solvers, invariant generation. . .)
@ proof engineering
(intermediate languages. . .)

Hoare logic

@ Judgments are of the form = c : P = Q (typically P and Q
are f.o. formulae over program variables)

@ AjudgmentE ¢ : P = Q is valid iff for all states s and &/, if
such that c,s || s’ and s satisfies P then s’ satisfies Q.

Selected rules

Fci:P=Q Ec:Q=R
Ex+e:Q{x:=e}=0Q FEci;c:P=R

Eci,:PAe=tt=Q Fc,:PAre=f=Q
Fifethencselsec, : P = Q

Ec:lhe=tt=1 P=1 IAhe=f=Q
Ewhileedoc:P =Q

Verification condition generation

@ Generate a set of verification conditions from annotated
command and postcondition

@ If all VCs are valid and P = wp(c,Q) then=C : P = Q

Selected rules

wp(x «e,Q)

Wp(C]_; Co,

R)
wp(if e then c; else c;, Q)

wp(while e do cl, Q) =

The while rule generates two proof obligations

I Ae=tt= wp(c,I) Ine=ff=0Q

Q{x :=e}

Wp(cl7wp(C27 R))

e=tt = wp(c, Q) A e=ff = wp(cz, Q)
|

Beyond safety properties

@ Non-interference:
"Low-security behavior of the program is not
affected by any high-security data." Goguen &
Meseguer 1982

@ An instance of:

@ a 2-safety property (Terauchi and Aiken’05),
@ an hyper-safety property (Clarkson and Schneider’06).

Other 2-safety properties include continuity and
determinacy

Beyond safety properties

Beyond safety properties

H L eogee H o L oeogee

4 (S
% %

H’ A E———— H’ [— ——

If L(1) = L(2) then L'(1) = L'(2). Or,

Fc~c:L(1)=L(2)=L'(1) =

Relational judgments

@ Judgments are of theformEcy ~c, : P = Q
(typically P and Q are f.0. formulae over tagged program
variables of ¢; and ¢y)

@ AjudgmentkE cy ~ ¢, : P = Q is valid iff for all states
S1,57,52,85, if ¢1,51 || s] and ¢z,s; || s} and (s1, sp)
satisfies P then (s7, s) satisfies Q.

@ May require co-termination.

Verification methods

@ Embedding into Hoare logic:
@ Self-composition (B, D’Argenio and Rezk’'04)
@ Cross-products (Zaks and Pnueli’08)

@ Relational Hoare Logic (Benton’'04)

Embedding relational reasoning into Hoare logic
Construct c; x ¢ s.t. (P’ and Q' are renamings of P and Q)

Fcyxc:PP=Q = Fci~c:P=Q

Self-composition

Setcy X Co = Cq; Co.
@ + General (arbitrary programs) and (relatively) complete
@ - Impractical

4

Cross-products

Define c; x c, recursively, e.g.

if e then ¢, else ¢, x if ' then ¢ else ¢} =
if e’ then ¢y x cj else ¢y x ¢}

@ + Practical
@ - Requires programs to be structurally equivalent

N

Relational Hoare Logic

Selected rules

Ex < e~x<+e:Q{x(1):=e(l),x(2) :=¢e'(2)} = Q

Fci~ci:P=Q Fcy~cCc: Q=R
Fcycp~cich:P=R
Fci~ci:PAe(l)=tt=Q

Fco~cy:PAe(l)=ff=0Q
P = el <& €2

if e then c, else c; ~if e’ thencj elsec), : P = Q

Ex < e~ skip: Q{x(1) :=e(1)} = Q

Provable security

A mathematical approach to correctness

IF the security assumptions hold
THEN the scheme is secure against adversary A

@ Security assumptions are explicit and (ideally) standard
@ Goal is clearly stated and (ideally) standard

@ Adversarial model is well-defined and (usually) standard
@ Proof is rigorous

Typical exact security statement

FOR ALL adversary A that can break the scheme
THERE EXISTS an adversary B that can break some security
assumption with little extra effort

Pr[A breaks scheme in time t]
< Pr[B breaks assumption in time t + A] + ¢

where A and ¢ depend on the number of oracles queries by A

Proofs are constructive: B uses A as a subroutine

The game-playing methodology

Game Gg :

e AL

Prga[Ao]

The game-playing methodology

Game G : Game Gy,

e AL L B(LL):

The game-playing methodology

Game G : Game G/ : Game G :

e AC: | o | e B,

PrenlAdl < hi(Prap[Ad]) < ... < ho(PraalAn])

The game-playing methodology

Game G : Game G/ : Game Gy,

e AC: | o | e B,

PrenfAol < hi(Prer[A1]) < ... < ha(Prga[An])

Code-based approach
@ Game = Probabilistic program

@ Games have a formal semantics
@ Correctness of transitions can be expressed formally

PWHILE: a probabilistic programming language

V<« P(E,...,E) procedure call
A—PE,....E) adversary

C == skip nop
| asserté assertion
| ¢ C sequence
| V<« & assignment
| V&D random sampling
| if&thenCelseC conditional
| while£doC while loop
|

[-]:C— M — Dpg where Dp = (A — [0,1]) — [0, 1]
Cost:

[1:C—(MxN)—(MxN-=][0,1]) — [0,1]

pRHL: a Relational Hoare Logic for pWHILE

Fci~Cy:P=Q iff VYmymy, Pmsmy —liftQ [c1]m, [C2]m,

(where P and Q are relations on memories)

Lifting of a relation

lift R (dl ZDA) (d2 ZDB) =
El(d ; DA*B): 7'['1(d) =d; /\7T2(d) =dy A range R d

@ Can be interpreted as a max-flow problem
@ If Risane.r., thenlift R d; d, iff d1[c] = d;[c] for all [c]
@ (Probabilistic) non-interference still expressed as

Fep~ G L(1) = L(2) = L/(1) = L'(2)

From pRHL to probabilities

Assume
Fcp~cC:P=Q

For all memories m; and m, such that
P m; my
and events A and B such that
Q = A(l) & B(2)

we have
[c1]m, 1a = [c2]m, 1B

Proof rules

Two-sided rules, one-sided rules, program transformations

Selected rules

Eci~C:P=Q P =P Q=0Q
':C1NCQZP/:>Q/

EXx<+—e~x<+e:0Q{x(1):=e(l),x(2) :=¢e'(2)} = Q
Fci~ci:P=Q Fcy~cCc: Q=R
Fcyco~cich:P=R

Fci~ci:PAe(l)=tt=0Q
FEco~cy:PAe(l) =ff=Q
P = el <& €2

Fif e thenc, else c; ~if e’ thencjelsec), : P = Q

Random assignments

Let A be afinite setand letf,g : A — B. Define
@d=Xx&Ay+Tfx
0d =x&AYy<«—gx

Then d = d' iff there exists h : A 5" Asuch thatg = f o h

pRHL rule for random assignments
fis1-1and Q' ¥ vy, Q{x(1) :=f v,x(2) := v}

EXSEA~XSEA:Q =Q

Optimistic sampling:

x & {0, 1}y «xpz~y s {01} xya2Z
z(1) = z(2) = (x(1 >:X<)AY(1) =y(2) Az(1) =2(2))

Adversaries

@ Can read part of the memory
@ Can perform arbitrary (PPT) computations

@ Can call oracles (bounded number of calls for each oracle,
but order and parameters of calls are arbitrary)

@ Communicate with each other via shared variables

Must establish an invariant for each adversary call

Failure events

Fundamental Lemma

Assume c; and c, are absolutely terminating and behave
identically unless a failure event “bad” fires. For every event A

I[c1]m La — [C2]lm 1Al < [C1]m lbad

Assume E ¢, ~ ¢, : P = Q and ¢4, C, terminate absolutely. If
Q= [(AAN-F)(1) < (BA-G)2)]A[F(1) < G(2)]
then for all memories m; and mo,

Pmim; = |[[c1]m; 1a — [C2]m, 18] < [Ci]m, 1F

Automation in EasyCrypt

VC generation

@ Random assignment:
@ make programs in static single random assignments
@ perform random samplings eagerly (assuming termination)
@ give bijection (most of time identity works)

@ Oracles: use self-composition
@ Main game: use one-sided rules except for:

@ oracle calls: use inlining
@ adversary calls: infer invariants, use two-sided rules

@ SMT solvers and theorem provers

@ Coq tactics for reasoning about rings and fields
@ Tailored program to compute probabilities

Switching lemma

(Game Grp :) (Game Ggrr : A
L+ T[] b+ AQ L[] b+ A
Oracle O(x) : Oracle O(x) :
if x ¢ dom(L) then if x ¢ dom(L) then

y & T\ ran(L); y&T;
L+ (x,y):L L+ (x,y):L
L return L(x)) L return L(x))

Suppose that A makes at most q queries to its oracle. Then

a(q-1)
2 (#T)

|PrGRP[b] - PrGRF[b” <

@ First introduced by Impagliazzo and Rudich in 1989
@ Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

Hashed ElGamal

(X,a) + KG() def
(8,v) < Enc(a,m) «
m « Dec(x, 3,V) def

X & Zq; return (x,9%)
y & Zg; h« H(aY); return (g¥,h & m)
h < H(5*); returnh ¢ v

where H is a random oracle:
HR)® ifR ¢ Lthenr & {0,1}% L+ (R,r) =L
eser « L[R]
return r

Functional Correctness

Dec(x,g”,H(g¥) @m) =H((g")) @ H(@g¥)&m=m

Semantic security: code-based definition

For all well-formed adversary (A, .A’),

IND-CPA game

Game IND-CPA : where ¢ is negligible
(sk, pk) « KG()
(Mo, m1) « A(pk);
b {0,1};

¢ < Enc(pk, mp);
b" « A'(pk, ¢);

1
|Prinp—cpalb = b'] — §| <e

Semantic Security of Hashed ElGamal

Hashed ElGamal is IND-CPA secure under the List CDH
assumption.

List CDH assumption

X,y & Zg;
L« C(9%,9")

Game LCDH : |

Let
eLcon & Priconlg” € L]

For every PPT adversary C, € cpn IS negligible

Transition from IND-CPA to G,

[Game IND — CPA : [Oracle H(\) : | [Game G; : Oracle H()) :

L+« []; |f)\§Zdom(L) then| |L < [];X,y & Zg; |f)\§Zdom(L) then
(x,a) + KG(); h s {0,1}%; (mo, my) « A(g*) h s {0,1}%;

(mg, my) + A(a); +~ (\h):L b& {0,1}; +— (A h):L
b& {0,1}; else h« L(}\) h «~ H(g¥); else h« L(}\)
(8,v)«+Enc(a, my); return h V <~ h®my; return h

b’ « A'(«, B,V) b’ + A'(g*,9%,v)

\\ . J

N

By inlining K£G and Enc:

Pr|ND_CpA [b = b/] = PrGl [b = b/]

Transition from G; to G»

~N

Game G; : Oracle H()\) : (Game G; : Oracle H()\) :

L+ [Iix,y & Zg; |f)\¢dom(L)then L+ [];X,y & Zq;| if A ¢ dom(L) then
(mo, my) < A(g*) h s {0,1}; (Mo, my) + A(g¥) h s {0,1}%

b & {0,1}; « (\h):L b & {0,1}; « (\h)sL

h < H(gY); eIse h < L()\) h & {0,1}¢; else h < L(\)
V+— homy; return h vV + h o my; return h

b’ «+— A'(g*,9¥,v) b’ + A'(g*,9%,v)

N

By the Fundamental Lemma:

‘PFGI [b = b/]

Formally, we prove

where ¢ =

FGy,~Gy:true= ¢

A € dom(L 4)(2)

- Per [b = b/]‘ < Per [ng S LA]

(9" € dom(L4))(1) <= (9" € dom(L4))(2)

= (b =b)(1) & (b =b)(2)

Transition from G, to Gz

Game G, :

L+ [Iix,y & Zg;
(Mo, m1) « A(g¥)
b& {0,1};

h & {0, 1}8;

VvV < h®mg;

b’ « A'(g*,9%,v)
\\

N

Oracle H()) :
if A 9{ dom(L) then
h s {0,1}%;
& (A h)sL
else h « L()\)
return h

(Game G3 :

L+ [;X,y & Zqg;
(Mo, m1) « A(g*)
b& {0,1};

h & {0, 1}£;

VvV < h;

b" « A'(g*,9%,Vv)

N

Oracle H()) :
if A ¢ dom(L) then
h s {0,1}%;
& (Ah)sL
else h < L()\)
return h

Pre, [0 € L4] =

Per [b = b/] = Per [b = b/] =

Pra, [0 € La]

1

N

Transition Gz to G| cpn

(Game G3 : Oracle H(\):) (GameLCDH: |Oracle H()):

L+ [Iix,y & Zg; |f)\¢dom(L) then| | X,y & Zg; |f/\§§dom(L then
(Mo, my) « A(g*)} h S8 {0,1}; L'+ C(g%,9Y) h &8 {0,1}¢

b & {0,1}; +— (A h):L Adversary C(a, 3) +~ (A h):L

h & {0,1}%; eIse h < L()\) L« []; else h < L(\)

v < h; return h (Mo, myp) < A(a);| return h

b’ A(g", g, V) v & {01}

b’ — A'(a, 8,V)

|return dom(L)

N

Prg,[g € dom(L)] = Pricon (9 € L]

Summarizing

IPrinp-cpalb = b'] — 3| = |Prg,[b = b’] — Prg,[b = b’]|
Prg,[9”¥ € dom(L 4)]
Pre, [0 € dom(L 4)]
= PrLCDH[ng S dom(L)]

= €LCDH

Al

OAEP padding scheme

Enc(M)® R & {0,1}P;
S + G(R) @ (M]|ok);
T« H(S)®R;
Y « f(S||T);
return 'Y

@ f:{0,1}% — {0,1}¥ is a partial one-way function
@ G and H are random oracles
G(R)¥ ifR¢Lthenr & {0,1}K; L« (R,r) =L
eser « L[R]
return r

Security against chosen ciphertext attacks

(Game Ginp-cca? : Oracle Dec(c) :
Lpec ¢ [], Lpec < (Cdefa C) i Lpec;
(pk, sk) < KG(n);
(mo, my) + Az1(pk);
b& {0,1};
c* < Enc(mp);
Cgef < true;
b« Ay (pk,c*) J

VA, WF(A) A range ((true,c*) & Lpec) [Ginp-ccaz] =
|PrGIND-CCA2 [b = b] - %‘ <.

Restrictions on oracle calls

@ Add counter for adversary calls; check number of calls as
postcondition
@ Check validity of queries as postcondition

Exact IND-CCA security of OAEP

Decryption oracle

Oracle Dec(c) :
Loec < (Caef, C) :: Lpec;
(s,t) « f~1(sk,c);
h« H(s); r«<teh; g+ G(r);
if [s © g]k, = 0% then
return [s & g]"
else return L

Security statement

3dpdc + 43 + 40p + dg L 20
2ko 2k1

1
|Prcame[b = bl] - §| <Prs+

Pr, ¢ is the probability of an adversary | to partially invert f on a
random element and gy is the maximal number of queries to
oracle X

More examples

@ Encryption: Cramer-Shoup, IBE

@ Signature: FDH, BLS

@ Zero knowledge protocols

@ Hash functions: Icart’s construction, SHA3 finalists

The need for richer logics

Failure events cannot always be captured by a failure event:
statistical zero knowledge, encodings

@ Solution: make logics quantitative!
@ Nice side-effect: applicable to differential privacy

Approximate Relational Hoare Logic

a-distance between distributions:

Aa(dl, dz) = mﬁlx(max(dl 1A — (d2 1A),d2 1A — (dl 1A)))

Approximate lifting of a relation

|ifta75 R (dl o DA) (d2 o DB) = H(d o DA*B)7
7T1(d) <d; A Aa(ﬂ'l(d),dl) <6

VAN 7T2(d) <ds; A Aa(ﬂ'z(d),dz) <9

ArangeR d

Case a = 1 coincides with Segala and Turrini (2007),
Desharnais, Laviolette and Tracol (2008)

Assume F Cc1 ~, 5 C2 : P = =. For all memories m; and m;

P mymy; — Ay([C1]m,, [C2]lm,) <6

Proof rules

Selected rules
FCi~asC:P=Q P =P Q=0Q
E C1 ~a,5 C2: P = Q/

Ex<+en~ox e :Q{x(1) :=e(l),x(2):=€e'(2)} = Q

'ZClNa1)5101:P:>Q ':CZ"’az,&zCéiQiR
F C1;C2 ~aja5,6046, C1:C5 : P = R

Fci~asCl:PAEl) =tt=Q
Fcor~asCh:PAE(l) =ff=Q
P = el & €2

Fif e thenc, else c; ~, 5 if € thenc)elsec): P = Q

Differential privacy (Dwork’06)

@ Bound distance of output distributions corresponding to
nearby secret inputs

@ Protect individual bits (when inputs are bitstrings)

A randomized algorithm c satisfies (e, §)-differential privacy
w.r.t. P iff for all memories m; and m, such that P m; my:

@ for all memories m; and m, such that P m; m,, and for
every event E,

([ea]m, 1) < e ([c2]m,1e) + 0

@ for all memories m; and m, such that P m; m,,
Aeé([[cl]]mp [[Cz]]mz) <
o ':CNe€76C:P:>:

Mechanisms for differentially private computations

Differential Privacy from Output Pertubation (Dwork’06)

@ (Real-valued) function f is k-sensitive iff for all a and a’
such thatd(a,a’) <1,wehave [fa—f a'| <k

@ Laplacian £(r, o) with mean r and scale factor o: prob. of
X prop. to exp (—'XU;”)
@ If f is k-sensitive, then \a. L(f(a),k/¢) is e-DP

my¥m, = |[[r] my—[r] my| <k exp(e) < «
FWraox & L%y & £(r,%) =x(1) =y(2)

@ Exponential mechanisms (Talwar and McSherry’07)
@ Composition theorems

Differentially Private Vertex Cover (Gupta et al'10)

function VERTEXCOVER(V, E, ¢)

1 n«|V|;m«[]; 10
2 whilei < ndo
3 v & choose(V, E, ¢, n,i);
4 T4V o,
5 V+VA\{v} E<~E\{v}xV)
6 i+—i+1
7 end
where
choose(V,E, ¢, n,i) = m
ZdE(X)+Wi
xev
and
4 n

Formal statement

F VERTEXCOVER(V, E, €) ~ec o VERTEXCOVER(V , E €) :
Vr(l) = 7(2)

where

V¥V =V(2)AEQ2) =E(1)U{(t,u)}

Proof intuition

Case analysis on the vertex v chosen in the iteration i
@ v is not one of t, u and neithert nor u are in 7
@ visoneoft,u
@ eithert oru is already in 7

One case

Vv is not one of t,u and neither t nor u are in .

Priv(l) =x] (deqy(X) +wi) >, oy (de 2y (y) +wi)

Priv(2) =x] (degz)(X) +Wi) >y v (deq)(Y) +wi)
_ (de@y(x) + wi)(2[E(L)| + (n — i)w;+2)
(e (%) +wi)(2[E(1)] + (n—l)w.)

A general rule for while loops

| = (ba(1) = ba(2) APL(L) = P2(2) Ai{1) = (2))
Vm; my. my | my = [while by do ¢1]m, = [[while by do ¢1]n]m,

F C1; assert (-Py) ~q ()0 C2; assert (-Py) :
IABL(L) AI(L) =] A=Pi(1) = TAIKL) =] +1

F c1; assert (P1) ~q, 0 Cz; assert (Py) :
I Aby (1) AT(L) = A=P1(1) = IAi{1) =] +1

':Cl ~1,0 Co :
I ADL(L) AT(L) =] APL(L) = I AT(L) = +1APy(1)

t: Whlle b]_ dO C]_ N(Haj—n Oll(i))XOlz,o Whlle b2 dO CZ .
IAI(1) =a= | A=by(1)

Conclusion

@ Crypto proofs can be formalized within reasonable time
@ Fun topic, lots of new and interesting problems

Further work:
@ Develop theory: decidability, probabilities as effects
@ Improve tool: invariant generation, automation, modularity

@ More examples: multi-party computation, computational
DP, protocols

Synthesis/automated transformation
Other application domains: continuous distributions
Implementations: F#, C

® 6 ¢

