Reasoning about Probabilistic Computations Applications to Cryptography and Privacy

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

Based on joint work with: Benjamin Grégoire, Santiago Zanella Béguelin, Sylvain Heraud, Boris Köpf, César Kunz, Yassine Lakhnech, Federico Olmedo

Formal verification and cryptography

- Symbolic methods: analysis of logical flaws in protocols
- Computational soundness of symbolic models w.r.t. computational models
- Program verification: prove implementations are secure relative to adversarial model

These works assume perfect cryptography.

What's wrong with cryptographic proofs?

 In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor

M. Bellare and P. Rogaway, 2004-2006.

 Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect)
 Nalarii 2005

S. Halevi, 2005

 Security proofs in cryptography may be organized as sequences of games [...] this can be a useful tool in taming the complexity of security proofs that might otherwise become so messy, complicated, and subtle as to be nearly impossible to verify
 V. Shoup, 2004

A famous example: RSA-OAEP

- 1994 Purported proof of chosen-ciphertext security
- 2001 Proof establishes a weaker security notion, but desired security can be achieved
 - ...for a modified scheme, or
 - …under stronger assumptions
- 2004 Filled gaps in Fujisaki et al. 2001 proof
- 2009 Security definition needs to be clarified
- 2010 Filled gaps and marginally improved bound in 2004 proof

A plausible solution

- I advocate creating an automated tool to help us [...] writing and checking [...] our proofs Halevi, 2005
- The possibility for tools [to help write and verify proofs] has always been one of our motivations, and one of the reasons why we focused on code-based games Bellare and Rogaway, 2004-2006

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Develop program verification methods for

• Provable Security (Goldwasser and Micali'84)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Differential Privacy (Dwork'06)

Develop and verify program verification methods for

• Provable Security (Goldwasser and Micali'84)

• Differential Privacy (Dwork'06)

Develop and verify program verification methods for

- Provable Security (Goldwasser and Micali'84)
- Differential Privacy (Dwork'06)

CertiCrypt

Build and check exact provable security proofs in Coq

Security goals, properties and hypotheses are explicit

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

- All proof steps are conducted in a unified formalism
- Proofs are independently verifiable

Develop and verify program verification methods for

- Provable Security (Goldwasser and Micali'84)
- Differential Privacy (Dwork'06)

CertiCrypt

Build and check exact provable security proofs in Coq

- Security goals, properties and hypotheses are explicit
- All proof steps are conducted in a unified formalism
- Proofs are independently verifiable

EasyCrypt

Automation with SMT solvers + generation of CertiCrypt proofs

(Deductive) program verification

- Art of proving that programs are correct
- Foundations: program logic (Hoare'69) and weakest precondition calculus (Floyd'67)
- Major advances in:
 - language coverage (functions, objects, concurrency, heap...)
 - automation (decision procedures, SMT solvers, invariant generation...)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

 proof engineering (intermediate languages...)

Hoare logic

- Judgments are of the form ⊨ c : P ⇒ Q (typically P and Q are f.o. formulae over program variables)
- A judgment ⊨ c : P ⇒ Q is valid iff for all states s and s', if such that c, s ↓ s' and s satisfies P then s' satisfies Q.

Verification condition generation

- Generate a set of verification conditions from annotated command and postcondition
- If all VCs are valid and $P \Rightarrow wp(c, Q)$ then $\vDash C : P \Rightarrow Q$

Selected rules

$$wp(x \leftarrow e, Q) = Q\{x := e\}$$

 $wp(c_1; c_2, R) = wp(c_1, wp(c_2, R))$

 $\mathsf{wp}(\mathsf{if} \ e \ \mathsf{then} \ c_1 \ \mathsf{else} \ c_2, \mathsf{Q}) = \quad e{=}\mathsf{tt} \Rightarrow \mathsf{wp}(c_1, \mathsf{Q}) \land e{=}\mathsf{ff} \Rightarrow \mathsf{wp}(c_2, \mathsf{Q})$

wp(while e do cI, Q) = I

The while rule generates two proof obligations

$$I \wedge e = tt \Rightarrow wp(c, I)$$
 $I \wedge e = ff \Rightarrow Q$

Beyond safety properties

Non-interference:

"Low-security behavior of the program is not affected by any high-security data." Goguen & Meseguer 1982

- An instance of:
 - a 2-safety property (Terauchi and Aiken'05),
 - an hyper-safety property (Clarkson and Schneider'06).

Other 2-safety properties include continuity and determinacy

Beyond safety properties

Beyond safety properties

If $L\langle 1 \rangle = L\langle 2 \rangle$ then $L'\langle 1 \rangle = L'\langle 2 \rangle$. Or, $\models c \sim c : L\langle 1 \rangle = L\langle 2 \rangle \Rightarrow L'\langle 1 \rangle = L'\langle 2 \rangle$

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ ─臣 ─の��

Relational judgments

- Judgments are of the form ⊨ c₁ ~ c₂ : P ⇒ Q (typically P and Q are f.o. formulae over tagged program variables of c₁ and c₂)
- A judgment $\vDash c_1 \sim c_2 : P \Rightarrow Q$ is valid iff for all states s_1, s'_1, s_2, s'_2 , if $c_1, s_1 \Downarrow s'_1$ and $c_2, s_2 \Downarrow s'_2$ and (s_1, s_2) satisfies *P* then (s'_1, s'_2) satisfies *Q*.
- May require co-termination.

Verification methods

- Embedding into Hoare logic:
 - Self-composition (B, D'Argenio and Rezk'04)
 - Cross-products (Zaks and Pnueli'08)
- Relational Hoare Logic (Benton'04)

Embedding relational reasoning into Hoare logic Construct $c_1 \times c_2$ s.t. (*P*' and *Q*' are renamings of *P* and *Q*)

$$\vDash c_1 \times c_2 : P' \Rightarrow Q' \quad \Rightarrow \quad \vDash c_1 \sim c_2 : P \Rightarrow Q$$

Self-composition

Set $c_1 \times c_2 = c_1$; c_2 .

- + General (arbitrary programs) and (relatively) complete
- Impractical

Cross-products

Define $c_1 \times c_2$ recursively, e.g.

if e then c_1 else $c_2 \times$ if e' then c'_1 else $c'_2 =$ if e'' then $c_1 \times c'_1$ else $c_2 \times c'_2$

+ Practical

Requires programs to be structurally equivalent

Relational Hoare Logic

Selected rules

$$\models \mathbf{x} \leftarrow \mathbf{e} \sim \mathbf{x} \leftarrow \mathbf{e}' : \mathbf{Q} \{ \mathbf{x} \langle 1 \rangle := \mathbf{e} \langle 1 \rangle, \mathbf{x} \langle 2 \rangle := \mathbf{e}' \langle 2 \rangle \} \Rightarrow \mathbf{Q}$$

$$\frac{\models \mathbf{c}_1 \sim \mathbf{c}'_1 : P \Rightarrow \mathbf{Q} \quad \models \mathbf{c}_2 \sim \mathbf{c}'_2 : \mathbf{Q} \Rightarrow \mathbf{R}}{\models \mathbf{c}_1; \mathbf{c}_2 \sim \mathbf{c}'_1; \mathbf{c}'_2 : P \Rightarrow \mathbf{R}}$$

$$\frac{\models \mathbf{c}_1 \sim \mathbf{c}'_1 : P \land \mathbf{e} \langle 1 \rangle = \text{tt} \Rightarrow \mathbf{Q}$$

$$\frac{\models \mathbf{c}_2 \sim \mathbf{c}'_2 : P \land \mathbf{e} \langle 1 \rangle = \text{ft} \Rightarrow \mathbf{Q}$$

$$P \quad \Rightarrow \quad \mathbf{e} \langle 1 \rangle \Rightarrow \mathbf{e}' \langle 2 \rangle$$

$$\hline \models \text{ if } \mathbf{e} \text{ then } \mathbf{c}_1 \text{ else } \mathbf{c}_2 \sim \mathbf{i} \text{ if } \mathbf{e}' \text{ then } \mathbf{c}'_1 \text{ else } \mathbf{c}'_2 : P \Rightarrow \mathbf{Q}$$

$$\hline \hline \models \mathbf{x} \leftarrow \mathbf{e} \sim \text{skip} : \mathbf{Q} \{ \mathbf{x} \langle 1 \rangle := \mathbf{e} \langle 1 \rangle \} \Rightarrow \mathbf{Q}$$

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

Provable security

A mathematical approach to correctness

$\begin{tabular}{ll} \hline Theorem \\ \hline IF the security assumptions hold \\ \hline THEN the scheme is secure against adversary \mathcal{A} \\ \hline \end{tabular}$

- Security assumptions are explicit and (ideally) standard
- Goal is clearly stated and (ideally) standard
- Adversarial model is well-defined and (usually) standard

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Proof is rigorous

Typical exact security statement

FOR ALL adversary A that can break the scheme THERE EXISTS an adversary B that can break some security assumption with *little extra effort*

 $\Pr[\mathcal{A} \text{ breaks scheme in time } t] \\ \leq \Pr[\mathcal{B} \text{ breaks assumption in time } t + \Delta] + \epsilon$

where Δ and ϵ depend on the number of oracles queries by \mathcal{A}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Proofs are constructive: \mathcal{B} uses \mathcal{A} as a subroutine

 $\Pr_{\mathsf{G}_0^{\eta}}[\mathsf{A}_0]$

▲□▶▲□▶▲□▶▲□▶ □ のへで

 $\Pr_{\mathbf{G}_{0}^{\eta}}[A_{0}]$

Game
$$G_n^{\eta}$$
:
...
... $\leftarrow \mathcal{B}(...);$
...

$$\Pr_{\mathbf{G}_{n}^{\eta}}[\mathbf{A}_{n}]$$

 $\mathsf{Pr}_{\mathsf{G}_0^{\eta}}[A_0] \quad \leq \quad h_1(\mathsf{Pr}_{\mathsf{G}_1^{\eta}}[A_1]) \quad \leq \ \dots \ \leq \quad h_n(\mathsf{Pr}_{\mathsf{G}_n^{\eta}}[A_n])$

 $\mathsf{Pr}_{\mathsf{G}_0^{\eta}}[\mathsf{A}_0] \leq h_1(\mathsf{Pr}_{\mathsf{G}_1^{\eta}}[\mathsf{A}_1]) \leq \ldots \leq h_n(\mathsf{Pr}_{\mathsf{G}_n^{\eta}}[\mathsf{A}_n])$

Code-based approach

- Game = Probabilistic program
- Games have a formal semantics
- Correctness of transitions can be expressed formally

PWHILE: a probabilistic programming language

$$\begin{array}{c} \mathcal{C} & ::= & \mathsf{skip} \\ | & \mathsf{assert} \ \mathcal{E} \\ | & \mathcal{C}; \ \mathcal{C} \\ | & \mathcal{V} \leftarrow \mathcal{E} \\ | & \mathcal{V} \leftarrow \mathcal{E} \\ | & \mathsf{if} \ \mathcal{E} \ \mathsf{then} \ \mathcal{C} \ \mathsf{else} \ \mathcal{C} \\ | & \mathsf{while} \ \mathcal{E} \ \mathsf{do} \ \mathcal{C} \\ | & \mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \dots, \mathcal{E}) \\ | & \mathcal{A} \leftarrow \mathcal{P}(\mathcal{E}, \dots, \mathcal{E}) \end{array}$$

nop assertion sequence assignment random sampling conditional while loop procedure call adversary

Semantics

(

$$\llbracket \cdot
rbracket : \mathcal{C} o \mathcal{M} o \mathcal{D}_{\mathcal{M}}$$
 where $\mathcal{D}_{\mathcal{A}} = (\mathcal{A} o [0,1]) o [0,1]$

Cost:

$$\llbracket \cdot \rrbracket : \mathcal{C} o (\mathcal{M} imes \mathbb{N}) o (\mathcal{M} imes \mathbb{N} o [0,1]) o [0,1]$$

◆□▶◆□▶◆□▶◆□▶ □ シ۹℃

pRHL: a Relational Hoare Logic for pWHILE

 $\vDash c_1 \sim c_2 : P \Rightarrow Q \quad \text{iff} \quad \forall m_1 \ m_2, \ P \ m_1 \ m_2 \rightarrow \text{lift} \ Q \ \llbracket c_1 \rrbracket_{m_1} \ \llbracket c_2 \rrbracket_{m_2}$

(where P and Q are relations on memories)

Lifting of a relation

lift
$$R(d_1 : \mathcal{D}_A)(d_2 : \mathcal{D}_B) :=$$

 $\exists (d : \mathcal{D}_{A*B}), \ \pi_1(d) = d_1 \land \pi_2(d) = d_2 \land \text{range } R d$

- Can be interpreted as a max-flow problem
- If R is an e.r., then lift R $d_1 d_2$ iff $d_1[c] = d_2[c]$ for all [c]
- (Probabilistic) non-interference still expressed as

$$\models c_1 \sim c_2 : L\langle 1 \rangle = L\langle 2 \rangle \Rightarrow L'\langle 1 \rangle = L'\langle 2 \rangle$$

From pRHL to probabilities

Assume

$$\models c_1 \sim c_2 : P \Rightarrow \mathsf{Q}$$

For all memories m_1 and m_2 such that

 $P m_1 m_2$

and events A and B such that

 $Q \Rightarrow A\langle 1 \rangle \Leftrightarrow B\langle 2 \rangle$

we have

$$\llbracket c_1 \rrbracket_{m_1} \mathbf{1}_A = \llbracket c_2 \rrbracket_{m_2} \mathbf{1}_B$$

Proof rules

Two-sided rules, one-sided rules, program transformations

Selected rules $\vDash c_1 \sim c_2 : P \Rightarrow Q \quad P' \Rightarrow P \quad Q \Rightarrow Q'$ $\models \mathbf{C}_1 \sim \mathbf{C}_2 : \mathbf{P}' \Rightarrow \mathbf{Q}'$ $\models \mathbf{x} \leftarrow \mathbf{e} \sim \mathbf{x} \leftarrow \mathbf{e}' : \mathsf{Q}\{\mathbf{x}(1) := \mathbf{e}(1), \mathbf{x}(2) := \mathbf{e}'(2)\} \Rightarrow \mathsf{Q}$ $\vDash c_1 \sim c'_1 : P \Rightarrow Q \quad \vDash c_2 \sim c'_2 : Q \Rightarrow R$ $\models c_1; c_2 \sim c'_1; c'_2 : P \Rightarrow R$ $\stackrel{\models}{\scriptstyle =} \begin{array}{c} c_1 \sim c_1' : P \land e \langle 1 \rangle = tt \Rightarrow Q \\ \stackrel{\models}{\scriptstyle =} \begin{array}{c} c_2 \sim c_2' : P \land e \langle 1 \rangle = ff \Rightarrow Q \end{array}$ $P \Rightarrow e\langle 1 \rangle \Leftrightarrow e'\langle 2 \rangle$ $\vDash \text{ if } e \text{ then } c_1 \text{ else } c_2 \sim \text{ if } e' \text{ then } c_1' \text{ else } c_2' : P \Rightarrow Q$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Random assignments

Let *A* be a finite set and let $f, g : A \rightarrow B$. Define

•
$$d = x \notin A; y \leftarrow f x$$

•
$$d' = x \notin A; y \leftarrow g x$$

Then d = d' iff there exists $h : A \stackrel{1-1}{\rightarrow} A$ such that $g = f \circ h$

pRHL rule for random assignments

$$\frac{f \text{ is 1-1 and } Q' \stackrel{\text{def}}{=} \forall v, Q\{x\langle 1\rangle := f v, x\langle 2\rangle := v\}}{\vDash x \stackrel{\text{\tiny \&}}{=} A \sim x \stackrel{\text{\tiny \&}}{=} A : Q' \Rightarrow Q}$$

Optimistic sampling:

$$\models x \stackrel{s}{\leftarrow} \{0,1\}^k; y \leftarrow x \oplus z \sim y \stackrel{s}{\leftarrow} \{0,1\}^k; x \leftarrow y \oplus z \\ z\langle 1 \rangle = z\langle 2 \rangle \Rightarrow (x\langle 1 \rangle = x\langle 2 \rangle \land y\langle 1 \rangle = y\langle 2 \rangle \land z\langle 1 \rangle = z\langle 2 \rangle)$$

Adversaries

- Can read part of the memory
- Can perform arbitrary (PPT) computations
- Can call oracles (bounded number of calls for each oracle, but order and parameters of calls are arbitrary)

• Communicate with each other via shared variables

Must establish an invariant for each adversary call

Failure events

Fundamental Lemma

Assume c_1 and c_2 are absolutely terminating and behave identically unless a failure event "bad" fires. For every event A

 $|\llbracket c_1 \rrbracket_m \mathbf{1}_A - \llbracket c_2 \rrbracket_m \mathbf{1}_A | \leq \llbracket c_1 \rrbracket_m \mathbf{1}_{\mathsf{bad}}$

Assume $\vDash c_1 \sim c_2 : P \Rightarrow Q$ and c_1, c_2 terminate absolutely. If

$$\mathsf{Q} \Rightarrow [(\mathsf{A} \land \neg \mathsf{F}) \langle \mathsf{1} \rangle \Leftrightarrow (\mathsf{B} \land \neg \mathsf{G}) \langle \mathsf{2} \rangle] \land [\mathsf{F} \langle \mathsf{1} \rangle \Leftrightarrow \mathsf{G} \langle \mathsf{2} \rangle]$$

then for all memories m_1 and m_2 ,

$$P \ m_1 \ m_2 \implies |[\![c_1]\!]_{m_1} \ \mathbf{1}_A - [\![c_2]\!]_{m_2} \ \mathbf{1}_B| \le [\![c_1]\!]_{m_1} \ \mathbf{1}_F$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Automation in EasyCrypt

VC generation

- Random assignment:
 - make programs in static single random assignments
 - perform random samplings eagerly (assuming termination)
 - give bijection (most of time identity works)
- Oracles: use self-composition
- Main game: use one-sided rules except for:
 - oracle calls: use inlining
 - adversary calls: infer invariants, use two-sided rules

Proofs

- SMT solvers and theorem provers
- Coq tactics for reasoning about rings and fields
- Tailored program to compute probabilities

Switching lemma

Game
$$G_{RP}$$
: $L \leftarrow []; b \leftarrow \mathcal{A}()$ Oracle $\mathcal{O}(x)$:if $x \notin dom(L)$ then $y \triangleq T \setminus ran(L);$ $L \leftarrow (x, y) :: L$ return $L(x)$

Game
$$G_{RF}$$
: $L \leftarrow []; b \leftarrow \mathcal{A}()$ Oracle $\mathcal{O}(x)$:if $x \notin dom(L)$ then $y \stackrel{\hspace{0.1em}{\scriptstyle\leftarrow}}{} T;$ $L \leftarrow (x, y) :: L$ return $L(x)$

Suppose that A makes at most q queries to its oracle. Then

$$|\mathrm{Pr}_{\mathcal{G}_{\mathrm{RP}}}[b] - \mathrm{Pr}_{\mathcal{G}_{\mathrm{RF}}}[b]| \leq rac{q(q-1)}{2 \ (\#T)}$$

- First introduced by Impagliazzo and Rudich in 1989
- Proof fixed by Bellare and Rogaway (2006) and Shoup (2004)

Hashed ElGamal

$$\begin{array}{ll} (x,\alpha) \leftarrow \mathcal{KG}(\) & \stackrel{\text{def}}{=} & x \not s \ \mathbb{Z}_q; \text{ return } (x,g^x) \\ (\beta,v) \leftarrow \mathsf{Enc}(\alpha,m) & \stackrel{\text{def}}{=} & y \not s \ \mathbb{Z}_q; \ h \leftarrow H(\alpha^y); \text{ return } (g^y,h \oplus m) \\ m \leftarrow \mathsf{Dec}(x,\beta,v) & \stackrel{\text{def}}{=} & h \leftarrow H(\beta^x); \text{ return } h \oplus v \end{array}$$

where H is a random oracle:

$$H(R) \stackrel{\text{def}}{=} \text{ if } R \notin L \text{ then } r \notin \{0,1\}^k; \ L \leftarrow (R,r) :: L \\ \text{ else } r \leftarrow L[R] \\ \text{ return } r$$

Functional Correctness

 $\mathsf{Dec}(x, g^y, \mathsf{H}(g^{xy}) \oplus m) = \mathsf{H}((g^y)^x) \oplus \mathsf{H}(g^{xy}) \oplus m = m$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Semantic security: code-based definition

IND-CPA game

Game IND-CPA : $(sk, pk) \leftarrow \mathcal{KG}();$ $(m_0, m_1) \leftarrow \mathcal{A}(pk);$ $b \notin \{0, 1\};$ $\zeta \leftarrow \operatorname{Enc}(pk, m_b);$ $b' \leftarrow \mathcal{A}'(pk, \zeta);$ For all well-formed adversary $(\mathcal{A}, \mathcal{A}')$,

$$|\Pr_{\mathsf{IND-CPA}}[b=b'] - \frac{1}{2}| \le \epsilon$$

where ϵ is negligible

Semantic Security of Hashed ElGamal

Hashed ElGamal is IND-CPA secure under the List CDH assumption.

List CDH assumption

 $\begin{array}{l} \textbf{Game LCDH}: \\ \textbf{x}, \textbf{y} \notin \mathbb{Z}_q; \\ \textbf{L} \leftarrow \mathcal{C}(\textbf{g}^{\textbf{x}}, \textbf{g}^{\textbf{y}}) \end{array}$

Let

$$\epsilon_{\mathsf{LCDH}} \stackrel{\mathrm{def}}{=} \Pr_{\mathsf{LCDH}}[g^{\mathsf{x}\mathsf{y}} \in \mathsf{L}]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

For every PPT adversary C, ϵ_{LCDH} is negligible

Transition from IND-CPA to G₁

By inlining \mathcal{KG} and Enc:

$$\Pr_{\mathsf{IND-CPA}}[b=b'] = \Pr_{\mathsf{G}_1}[b=b']$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Transition from G_1 to G_2

Game G ₁ :	Oracle $H(\lambda)$:	Game G ₂ :	Oracle $H(\lambda)$:
$L \leftarrow []; x, y \notin \mathbb{Z}_q;$	if $\lambda \notin dom(L)$ then	$L \leftarrow []; \mathbf{x}, \mathbf{y} \notin \mathbb{Z}_q;$	if $\lambda \notin dom(L)$ ther
$(m_0, m_1) \leftarrow \mathcal{A}(g^x)$	<i>h </i>	$(m_0, m_1) \leftarrow \mathcal{A}(g^x)$; <i>h</i>
<i>b</i>	$L \leftarrow (\lambda, h) :: L$	b ∉ {0,1};	$L \leftarrow (\lambda, h) :: L$
$h \leftarrow H(g^{xy});$	else $h \leftarrow L(\lambda)$	<i>h </i>	else $h \leftarrow L(\lambda)$
$v \leftarrow h \oplus m_b;$	return <i>h</i>	$v \leftarrow h \oplus m_b;$	return h
$b' \leftarrow \mathcal{A}'(g^x, g^y, v)$		$b' \leftarrow \mathcal{A}'(g^x, g^y, v)$	

By the Fundamental Lemma:

$$|\Pr_{\mathsf{G}_1}[\boldsymbol{b} = \boldsymbol{b}'] - \Pr_{\mathsf{G}_2}[\boldsymbol{b} = \boldsymbol{b}']| \leq \Pr_{\mathsf{G}_2}[\boldsymbol{g}^{\mathsf{X}} \in \boldsymbol{L}_{\mathcal{A}}]$$

Formally, we prove

$$\vDash \mathsf{G}_2 \sim \mathsf{G}_2 : \mathsf{true} \Rightarrow \Phi$$

 $\begin{array}{ll} \text{where} & \Phi = (g^{xy} \in \text{dom}(L_{\mathcal{A}}))\langle 1 \rangle \Longleftrightarrow (g^{xy} \in \text{dom}(L_{\mathcal{A}}))\langle 2 \rangle \\ & \wedge (g^{xy} \in \text{dom}(L_{\mathcal{A}})\langle 2 \rangle \Rightarrow (b = b')\langle 1 \rangle \Leftrightarrow (b = b')\langle 2 \rangle \end{array}$

・ロト・「聞・ 《聞・ 《聞・ 《曰・

Transition from G₂ to G₃

$$\Pr_{G_2}[g^{xy} \in L_{\mathcal{A}}] = \Pr_{G_3}[g^{xy} \in L_{\mathcal{A}}]$$
$$\Pr_{G_2}[b = b'] = \Pr_{G_3}[b = b'] = \frac{1}{2}$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Transition G₃ to G_{LCDH}

Game G ₃ :	Oracle $H(\lambda)$:	Game LCDH :	Oracle $H(\lambda)$:
$L \leftarrow []; \mathbf{x}, \mathbf{y} \notin \mathbb{Z}_q;$	if $\lambda \notin dom(L)$ then	x , y	if $\lambda \notin dom(L)$ then
$(m_0, m_1) \leftarrow \mathcal{A}(g^x)$; <i>h</i>	$L' \leftarrow \mathcal{C}(g^x, g^y)$	<i>h </i>
<i>b </i>	$L \leftarrow (\lambda, h) :: L$	Adversary $\mathcal{C}(\alpha,\beta)$	$L \leftarrow (\lambda, h) :: L$
<i>h </i>	else $h \leftarrow L(\lambda)$	$L \leftarrow [];$	else $h \leftarrow L(\lambda)$
$v \leftarrow h;$	return h	$(m_0, m_1) \leftarrow \mathcal{A}(\alpha);$	return <i>h</i>
$b' \leftarrow \mathcal{A}'(g^x, g^y, v)$		v , ≰ {0, 1} ^ℓ ;	
		$b' \leftarrow \mathcal{A}'(\alpha, \beta, \mathbf{V})$	
	J	(return dom(L)	

$$\Pr_{\mathsf{G}_3}[g^{xy} \in \mathsf{dom}(\mathcal{L})] = \Pr_{\mathsf{LCDH}}[g^{xy} \in \mathcal{L}']$$

Summarizing

$$\begin{split} |\operatorname{Pr}_{\mathsf{IND-CPA}}[b=b'] - \frac{1}{2}| &= |\operatorname{Pr}_{\mathsf{G}_1}[b=b'] - \operatorname{Pr}_{\mathsf{G}_2}[b=b']| \\ &\leq \operatorname{Pr}_{\mathsf{G}_2}[g^{xy} \in \mathsf{dom}(\mathcal{L}_{\mathcal{A}})] \\ &= \operatorname{Pr}_{\mathsf{G}_3}[g^{xy} \in \mathsf{dom}(\mathcal{L}_{\mathcal{A}})] \\ &= \operatorname{Pr}_{\mathsf{LCDH}}[g^{xy} \in \mathsf{dom}(\mathcal{L})] \\ &= \epsilon_{\mathsf{LCDH}} \end{split}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ < ⊙ < ⊙

OAEP padding scheme

$$Enc(M) \stackrel{\text{def}}{=} R \stackrel{\text{s}}{\leftarrow} \{0,1\}^{p};$$

$$S \leftarrow G(R) \oplus (M || 0^{k_{1}});$$

$$T \leftarrow H(S) \oplus R;$$

$$Y \leftarrow f(S || T);$$

return Y

f: {0,1}^k → {0,1}^k is a partial one-way function
G and H are random oracles G(R) ^{def} = if R ∉ L then r ≮ {0,1}^k; L ← (R,r) :: L else r ← L[R] return r

Security against chosen ciphertext attacks

Game G _{IND-CCA2} :	Oracle Dec(c):
$L_{Dec} \leftarrow [];$	$\textit{L}_{Dec} \leftarrow (\textit{c}_{def}, \textit{c}) :: \textit{L}_{Dec};$
$(\textit{pk},\textit{sk}) \leftarrow \mathcal{KG}(\eta);$	
$(m_0, m_1) \leftarrow \mathcal{A}_1(pk);$	
<i>b</i>	
$c^* \leftarrow Enc(m_b);$	
$c_{def} \leftarrow true;$	
$\overline{\textit{b}} \leftarrow \mathcal{A}_2(\textit{pk}, \textit{c}^*)$	

 $\forall \mathcal{A}, \mathsf{WF}(\mathcal{A}) \land \mathsf{range} ((\mathsf{true}, c^*) \not\in \mathcal{L}_{\mathsf{Dec}}) \llbracket \mathcal{G}_{\mathsf{IND-CCA2}} \rrbracket \Longrightarrow \\ |\mathsf{Pr}_{\mathcal{G}_{\mathsf{IND-CCA2}}} [\overline{\mathcal{b}} = \mathcal{b}] - \frac{1}{2} | \leq \dots$

Restrictions on oracle calls

- Add counter for adversary calls; check number of calls as postcondition
- Check validity of queries as postcondition

Exact IND-CCA security of OAEP

Decryption oracle

Oracle
$$Dec(c)$$
 :
 $L_{Dec} \leftarrow (c_{def}, c) :: L_{Dec};$
 $(s, t) \leftarrow f^{-1}(sk, c);$
 $h \leftarrow H(s); r \leftarrow t \oplus h; g \leftarrow G(r);$
if $[s \oplus g]_{k_1} = 0^{k_1}$ then
return $[s \oplus g]^n$
else return \bot

Security statement

$$|Pr_{Game}[b=b'] - rac{1}{2}| \le Pr_{l,f} + rac{3q_Dq_G + q_D^2 + 4q_D + q_G}{2^{k_0}} + rac{2q_D}{2^{k_1}}$$

 $Pr_{l,f}$ is the probability of an adversary *l* to partially invert *f* on a random element and q_X is the maximal number of queries to oracle *X*

More examples

- Encryption: Cramer-Shoup, IBE
- Signature: FDH, BLS
- Zero knowledge protocols
- Hash functions: Icart's construction, SHA3 finalists

The need for richer logics

Failure events cannot always be captured by a failure event: statistical zero knowledge, encodings

- Solution: make logics quantitative!
- Nice side-effect: applicable to differential privacy

Approximate Relational Hoare Logic

 α -distance between distributions:

$$\Delta_{\alpha}(d_{1}, d_{2}) = \max_{A}(\max(d_{1} \mathbf{1}_{A} - \alpha (d_{2} \mathbf{1}_{A}), d_{2} \mathbf{1}_{A} - \alpha (d_{1} \mathbf{1}_{A})))$$

Approximate lifting of a relation

$$\begin{split} & \operatorname{lift}_{\alpha,\delta} R\left(d_{1}:\mathcal{D}_{A}\right)\left(d_{2}:\mathcal{D}_{B}\right) := \exists (d:\mathcal{D}_{A*B}), \\ \pi_{1}(d) \leq d_{1} \wedge \Delta_{\alpha}(\pi_{1}(d), d_{1}) \leq \delta \\ & \wedge \pi_{2}(d) \leq d_{2} \wedge \Delta_{\alpha}(\pi_{2}(d), d_{2}) \leq \delta \\ & \wedge \operatorname{range} R d \end{split}$$

Case $\alpha = 1$ coincides with Segala and Turrini (2007), Desharnais, Laviolette and Tracol (2008)

Assume $\vDash c_1 \sim_{\alpha, \delta} c_2 : P \Rightarrow =$. For all memories m_1 and m_2

$$P m_1 m_2 \to \Delta_{\alpha}(\llbracket c_1 \rrbracket_{m_1}, \llbracket c_2 \rrbracket_{m_2}) \leq \delta$$

Proof rules

Selected rules

$$\frac{\models c_1 \sim_{\alpha,\delta} c_2 : P \Rightarrow Q \quad P' \Rightarrow P \quad Q \Rightarrow Q'}{\models c_1 \sim_{\alpha,\delta} c_2 : P' \Rightarrow Q'}$$
$$\overrightarrow{\models x \leftarrow e \sim_{1,0} x \leftarrow e' : Q\{x\langle 1 \rangle := e\langle 1 \rangle, x\langle 2 \rangle := e'\langle 2 \rangle\} \Rightarrow Q}$$

$$\begin{array}{c|c} \vdash c_1 \sim_{\alpha_1,\delta_1} c'_1 : P \Rightarrow Q \quad \models c_2 \sim_{\alpha_2,\delta_2} c'_2 : Q \Rightarrow R \\ \hline \vdash c_1; c_2 \sim_{\alpha_1\alpha_2,\delta_1+\delta_2} c'_1; c'_2 : P \Rightarrow R \\ \hline \vdash c_1 \sim_{\alpha,\delta} c'_1 : P \land e\langle 1 \rangle = \text{tt} \Rightarrow Q \\ \hline \vdash c_2 \sim_{\alpha,\delta} c'_2 : P \land e\langle 1 \rangle = \text{ff} \Rightarrow Q \\ P \quad \Rightarrow \quad e\langle 1 \rangle \quad \Leftrightarrow \quad e'\langle 2 \rangle \\ \hline \vdash \text{if e then } c_1 \text{ else } c_2 \sim_{\alpha,\delta} \text{ if } e' \text{ then } c'_1 \text{ else } c'_2 : P \Rightarrow Q \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Differential privacy (Dwork'06)

- Bound distance of output distributions corresponding to nearby secret inputs
- Protect individual bits (when inputs are bitstrings)

A randomized algorithm *c* satisfies (ϵ, δ) -differential privacy w.r.t. *P* iff for all memories m_1 and m_2 such that $P m_1 m_2$:

 for all memories m₁ and m₂ such that P m₁ m₂, and for every event E,

$$(\llbracket c_1 \rrbracket_{m_1} \mathbf{1}_E) \le \mathbf{e}^{\epsilon} (\llbracket c_2 \rrbracket_{m_2} \mathbf{1}_E) + \delta$$

- for all memories m_1 and m_2 such that $P m_1 m_2$, $\Delta_{e^{\epsilon}}(\llbracket c_1 \rrbracket_{m_1}, \llbracket c_2 \rrbracket_{m_2}) \leq \delta$
- $\bullet \models \mathbf{C} \sim_{\mathbf{e}^{\epsilon}, \delta} \mathbf{C} : \mathbf{P} \Rightarrow =$

Mechanisms for differentially private computations

Differential Privacy from Output Pertubation (Dwork'06)

- (Real-valued) function *f* is *k*-sensitive iff for all *a* and *a'* such that *d*(*a*, *a'*) ≤ 1, we have |*f a* − *f a'*| ≤ *k*
- Laplacian *L*(*r*, *σ*) with mean *r* and scale factor *σ*: prob. of *x* prop. to exp (- |*x*-*r*|/*σ*)
- If f is k-sensitive, then λa . $\mathcal{L}(f(a), k/\epsilon)$ is ϵ -DP

$$\frac{m_1 \Psi m_2 \implies |\llbracket r \rrbracket m_1 - \llbracket r \rrbracket m_2| \le k \quad \exp(\epsilon) \le \alpha}{\models \Psi \sim_{\alpha,0} x \stackrel{\text{s}}{\leftarrow} \mathcal{L}(r, \frac{k}{\epsilon}) : y \stackrel{\text{s}}{\leftarrow} \mathcal{L}(r, \frac{k}{\epsilon}) \Rightarrow x \langle 1 \rangle = y \langle 2 \rangle}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- Exponential mechanisms (Talwar and McSherry'07)
- Composition theorems

Differentially Private Vertex Cover (Gupta et al'10)

function VERTEXCOVER(V, E, ϵ)

- 1 $n \leftarrow |V|; \pi \leftarrow []; i \leftarrow 0;$
- 2 while i < n do 3 $v \not$ choose (V, E, ϵ, n, i) ; 4 $\pi \leftarrow v :: \pi$;
- 5 $V \leftarrow V \setminus \{v\}; E \leftarrow E \setminus (\{v\} \times V);$ 6 $i \leftarrow i + 1$

7 end

where

$$choose(V, E, \epsilon, n, i) = \frac{d_E(v) + w_i}{\sum_{x \in V} d_E(x) + w_i}$$

and

$$w_i = \frac{4}{\epsilon} \sqrt{\frac{n}{n-i}}$$

Formal statement

$$\models \mathsf{VERTEXCOVER}(V, E, \epsilon) \sim_{e^{\epsilon}, 0} \mathsf{VERTEXCOVER}(V, E, \epsilon) :$$
$$\Psi \pi \langle \mathbf{1} \rangle = \pi \langle \mathbf{2} \rangle$$

where

$$\Psi \stackrel{\mathrm{def}}{=} V \langle 1 \rangle = V \langle 2 \rangle \wedge E \langle 2 \rangle = E \langle 1 \rangle \cup \{(t, u)\}$$

Proof intuition

Case analysis on the vertex v chosen in the iteration i

- v is not one of t, u and neither t nor u are in π
- v is one of t, u
- either *t* or *u* is already in π

One case

v is not one of *t*, *u* and neither *t* nor *u* are in π .

$$\begin{aligned} \frac{\Pr[\nu\langle 1 \rangle = x]}{\Pr[\nu\langle 2 \rangle = x]} &= \frac{(d_{E\langle 1 \rangle}(x) + w_i) \sum_{y \in V} (d_{E\langle 2 \rangle}(y) + w_i)}{(d_{E\langle 2 \rangle}(x) + w_i) \sum_{y \in V} (d_{E\langle 1 \rangle}(y) + w_i)} \\ &= \frac{(d_{E\langle 1 \rangle}(x) + w_i)(2|E\langle 1 \rangle| + (n-i)w_i + 2)}{(d_{E\langle 1 \rangle}(x) + w_i)(2|E\langle 1 \rangle| + (n-i)w_i)} \\ &\leq 1 + \frac{2}{(n-i)w_i} \leq \exp\left(\frac{2}{(n-i)w_i}\right) \\ \frac{\Pr[\nu\langle 2 \rangle = x]}{\Pr[\nu\langle 1 \rangle = x]} \leq 1 \end{aligned}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

A general rule for while loops

$$I \Rightarrow (b_1 \langle 1 \rangle \equiv b_2 \langle 2 \rangle \land P_1 \langle 1 \rangle \equiv P_2 \langle 2 \rangle \land i \langle 1 \rangle = i \langle 2 \rangle)$$

 $\forall m_1 \ m_2. \ m_1 \ I \ m_2 \Rightarrow \llbracket \text{while } b_1 \ \text{do } c_1 \rrbracket_{m_1} = \llbracket [\text{while } b_1 \ \text{do } c_1 \rrbracket_{m_1}]$

$$\models c_1; \text{ assert } (\neg P_1) \sim_{\alpha_1(j),0} c_2; \text{ assert } (\neg P_2): \\ I \land b_1 \langle 1 \rangle \land i \langle 1 \rangle = j \land \neg P_1 \langle 1 \rangle \Rightarrow I \land i \langle 1 \rangle = j + 1$$

$$\models c_1; \text{ assert } (P_1) \sim_{\alpha_2, 0} c_2; \text{ assert } (P_2): \\ I \land b_1 \langle 1 \rangle \land i \langle 1 \rangle = j \land \neg P_1 \langle 1 \rangle \Rightarrow I \land i \langle 1 \rangle = j + 1$$

 $\models c_1 \sim_{1,0} c_2 :$ $I \land b_1 \langle 1 \rangle \land i \langle 1 \rangle = j \land P_1 \langle 1 \rangle \Rightarrow I \land i \langle 1 \rangle = j + 1 \land P_1 \langle 1 \rangle$

 $\vDash \text{ while } b_1 \text{ do } c_1 \sim_{(\prod_{i=a}^{a+n} \alpha_1(i)) \times \alpha_2, 0} \text{ while } b_2 \text{ do } c_2 :$ $I \wedge i \langle 1 \rangle = a \Rightarrow I \wedge \neg b_1 \langle 1 \rangle$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Conclusion

- Crypto proofs can be formalized within reasonable time
- Fun topic, lots of new and interesting problems

Further work:

- Develop theory: decidability, probabilities as effects
- Improve tool: invariant generation, automation, modularity
- More examples: multi-party computation, computational DP, protocols

- Synthesis/automated transformation
- Other application domains: continuous distributions
- Implementations: F#, C