An Unified Approach for Structures alignment

R. Andonov and Nicola Yanev

Ecole chercheurs Bioinformatique, Liffré, Novembre, 2005
Outline

- Succinct introduction to Integer programming
- Two applications
 - Protein Folding Problem
 - Proteins Structure Comparison problem
- Building graph theoretical formalism
- Using Integer Programming for problems resolving
 - general purpose approaches
 - dedicated approaches
- Conclusions, perspectives, open problems
Continuous vs. Integer programming

A simple example: Build 2 equal rectangular enclosures of maximal area size from 120 m.bar

120 meters
Continuous vs. Integer programming

120 meters

\[xy \rightarrow \max (\text{objective function}) \]

\[4x + 3y = 120, \ x \geq 0, \ y \geq 0 \ (\text{constraints}) \]
some geometry in action

feasible set

objective function

\[xy = 300 \]
integer lengths case: the feasible set

the enclosures to be built from up to 121 pieces of unit length

\[4x + 3y \leq 121, \quad x \geq 0, \quad y \geq 0\]

x, y - integer

LENGTH = 121 METERS

THE CASE OF INTEGER ENCLOSURES

An Unified Approach for Structures alignment – p.6/8-
convex hull, linear objective

![Graph showing linear inequalities and a yellow polytope]

THE CASE OF INTEGER ENCLOSURES

LENGTH = 121 METERS

2X + Y = 60.5

the yellow polytope has only integer vertices
the concept of bounds (relaxation)

LENGTH = 121 METERS

- infeasible
- feasible

$x = 15.125, y = 20.16, ub = 304$

$x = 15, y = 20, lb = 300$

ub - upper bound
lb - lower bound

gap (absolute) is $ub - lb$
integer polytope (assignment problem)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>13</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

draw 4 independent numbers with a minimal sum
integer polytope (assignment problem)-bipartite graph
integer polytope (assignment problem)-mathematical model

\[
\sum \sum c_{ij} x_{ij} \rightarrow \text{max}
\]

\[
\sum_j x_{ij} = 1, \quad i = 1, n
\]

\[
\sum_i x_{ij} = 1, \quad j = 1, n
\]

\[
x_{ij} \in \{0, 1\}
\]
about the distance between continuous and integer solutions

\[
\begin{align*}
8x_1 + 11x_2 + 6x_3 + 4x_4 & \quad \text{maximize} \\
5x_1 + 7x_2 + 4x_3 + 3x_4 & \leq 14 \\
x & \in \{0, 1\}
\end{align*}
\]

\[x_1 = 1, x_2 = 1, x_3 = 0.5, x_4 = 0 \quad v_{lp} = 22 \quad \text{(continuous solution)}\]

\[x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1 \quad v_{ip} = 21 \quad \text{(integer solution)}\]
good vs. bad model

The tour (hamiltonian)

1 - 4 - 2 - 5 - 6 - 7 - 3 - 1 is of length

$C_{14} + C_{42} + C_{25} + C_{56} + C_{67} + C_{73} + C_{31}$
good vs. bad model-assignment problem

relaxation

\[x_{ij} = \begin{cases} 1 \text{ from } i \text{ directly to } j \\ 0 \text{ otherwise} \end{cases} \]

\[\sum_{j} x_{ij} = 1 \quad i = 1, n \]

\[\sum_{i} x_{ij} = 1 \quad j = 1, n \]

\[x_{ij} \in \{0, 1\} \]
good vs. bad model - break the loops

\[\sum_{j} x_{ij} = 1 \quad i = 1, n \]

\[\sum_{i} x_{ij} = 1 \quad j = 1, n \]

\[x_{ij} \in \{0, 1\} \]

\[\sum_{i \in S, j \in V - S} x_{ij} \geq 1 \text{ for each } S \in V \]
good vs. bad model- break the loops

For $n = 300$ the number of loop destroyers is

1018517988167243043134222844204
689080525734196832968125318070
224677190649881668353091698688
good vs. bad model- linearization

how to linearize quadratic terms xy for 0/1 variables?

the trick is to

set $xy = z$ and force z to be equal to 1 iff $x = 1, y = 1$

$$z \leq x, z \leq y$$

$$x + y - z \leq 1$$

these are all feasible points for $Z = \min \{ X, Y \}$

X, Y 0\1 variables
Lagrangian Relaxation and Duality

maximize

\[13x_1 + 9x_2 + 18x_3 + 5x_4 + 12x_5\]

\[4x_1 + 3x_2 + 7x_3 + 2x_4 + 5x_5 \leq 13\]

\[x_i, i = 1, \ldots, 5 \text{ integer}\]

LP solution \(x_1 = 3, x_2 = \frac{1}{3}, V_{LP} = 42\) (if the bounds \(x_1 \leq 3, x_2 \leq 4, x_3 \leq 1, x_4 \leq 6, x_5 \leq 2\) are added to the feasible set, otherwise \(V_{LP} = 42.5\))
Lagrangian Relaxation and Duality

\[Z(x, \lambda) = (13-4\lambda)x_1 + (9-3\lambda)x_2 + (18-7\lambda)x_3 + (5-2\lambda)x_4 + (12-5\lambda)x_5 \]

Lagrangian relaxation: \(LR(\lambda) = \max_x Z(x, \lambda) \)
Lagrangian Relaxation and Duality

\[Z(x, \lambda) = (13 - 4\lambda)x_1 + (9 - 3\lambda)x_2 + (18 - 7\lambda)x_3 + (5 - 2\lambda)x_4 + (12 - 5\lambda)x_5 + 13. \]

\[
LR(0) = 3 \times 13 + 4 \times 9 + 1 \times 18 + 6 \times 5 + 2 \times 12 = 147 \\
LR(1) = 3 \times 9 + 4 \times 6 + 1 \times 11 + 6 \times 3 + 2 \times 7 + 13 = 107 \\
LR(2) = 3 \times 5 + 4 \times 3 + 1 \times 4 + 6 \times 3 + 2 \times 2 + 26 = 63 \\
LR(3) = 3 \times 1 + 0 + 0 + 0 + 0 + 39 = 42 \\
LR(4) = 52 = 52
\]

\[LR(3 + \epsilon) = 42 + \epsilon > 42 \quad \text{and} \quad LR(3 - \epsilon) = 42 + 11 \times \epsilon > 42 \]

\[\implies Z_{LD} = \min_{\lambda \geq 0} LR(\lambda) = LR(3) = 42 = Z_{LP} \]

Theory: \[Z_{IP} \leq Z_{LD} \leq Z_{LP} \]
Intro through examples of some integer programming topics:
- terms: objective function, feasible set, polytopes, optimal solution, relaxation, bounds, gap, lagrangian duality.

Classical problems like:
- knapsack, assignment, travelling salesman.

Mentioning of graphs as a valuable tool for modelling many combinatorial problems.
Protein Folding Problem

SNGIEASLLTD PKDVSGRT VDYIIAGGGLTG LTTAARLTENPNIS
SGYESDRGIPIIE DLNAYGID IFGSSVDHAYE TVELATNNQTALIR
Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTAAARTENPNIS
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQTALIR

A sequence in a protein data bank
Protein Folding Problem

SNGIEASLLTDPKDVSGRTVDYIIAGGGLTGLTTAARLTENPNIS
SGSYESDRGPIIEDLNAYGDIFGSSVDHAYETVELATNNQNTALIR

Figure 1: in fact this is its real (3D) shape
Protein Folding Problem:

- **Input**: a_1, a_2, \ldots, a_N — a sequence over the 20-letter amino acid alphabet
- **Output**: $(x_j, y_j, z_j), j = 1, \ldots, N$ — the coordinates of a_j
Figure 2: Generalized contact map graph—describes the interactions between the blocks
3D structure determination methods

- Computational (in silico)
 - Direct approach: Seeks to minimize the free energy using classical mechanics models. Computationally very expensive—BLUE GENE supercomputer
 - Sequence alignment methods: BLAST, FASTA, PSI-BLAST. Cannot compare remote homologs.
 - Fold recognition methods
 - Protein Threading (this talk)
Protein Threading—basic assumptions

- the sequence (1D structure) determines the 3D structure
- homologous proteins have similar structure (and function)
- homologous proteins have conserved structural cores and variable loop regions
- **Postulate**: there between 1000 and 2000 different protein structural families (library of 3D structures/cores)
Protein Threading—main steps

1. constructing a **library of core folds** (structural templates)—see the 3D catalogue
2. choosing and objective function (**score function**) to evaluate any alignment of a sequence to a structural template
3. finding the best alignment of the query sequence to each core in the library—NP-hard problem. (need of good combinatorial optimization alg.)
4. choosing the most appropriate core based on **normalized scores** of the optimal alignments (requires good statistical model and the power of distributed computing)
Building graph theoretical formalism
Query-to-structure alignment

\[m = 3 \text{ segments of lengths } l_1 = 2, l_2 = 4, l_3 = 3 ; \]

3D structure template (core)

1D query of length N=15
Query-to-structure alignment

\[m = 3 \text{ segments of lengths } l_1 = 2, l_2 = 4, l_3 = 3; \]

Figure 3: two possible alignments.

Alignment (threading): covering the elements of query by the template blocks/segments. A threading is completely determined by the starting positions of the blocks. To any threading is associated a score.
Query-to-structure alignment: “classical” threading rules

- blocks preserve their order
- block do not overlap
- no gaps in the blocks
- blocks are of fixed length
Absolute and relative positions

\[m = 3 \] segments of lengths: \(l_1 = 2, l_2 = 4, l_3 = 3 \);

<table>
<thead>
<tr>
<th>abs. position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>rel. pos. block 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rel. pos. block 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>rel. pos. block 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Absolute and relative positions

$m = 3$ segments of lengths: $l_1 = 2, l_2 = 4, l_3 = 3$;

$n = N + 1 - \sum_{i=1}^{m} l_i$ is the degree of freedom for each block;

$n = 7$ for the considered example

Number of possible threadings $|T| = \binom{n-1+m}{m} = \frac{(n-1+m)!}{m!(n-1)!}$.
PTP is a matching problem

Figure 4: (a) Example of alignment of query sequence of length 20 and template containing 3 segments of lengths 3, 5 and 4. (b) Correspondence between absolute and relative block positions. (c) A matching corresponding to the alignment of (a).
Size of the solution space

Number of possible threadings

\[|T| = \binom{n-1+m}{m} = \frac{(n-1+m)!}{m!(n-1)!}. \]

<table>
<thead>
<tr>
<th>query name</th>
<th>core name</th>
<th>size</th>
<th>space size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>segm.</td>
<td>pos.</td>
</tr>
<tr>
<td>2cyp_0</td>
<td>2cyp_0</td>
<td>15</td>
<td>98</td>
</tr>
<tr>
<td>1coy_0</td>
<td>1gal_0</td>
<td>36</td>
<td>81</td>
</tr>
<tr>
<td>3mina0</td>
<td>4kbpa0</td>
<td>23</td>
<td>189</td>
</tr>
<tr>
<td>3minb0</td>
<td>1gpl_0</td>
<td>23</td>
<td>215</td>
</tr>
<tr>
<td>1gal_0</td>
<td>1ad3a0</td>
<td>31</td>
<td>212</td>
</tr>
<tr>
<td>1coy_0</td>
<td>1fcba0</td>
<td>34</td>
<td>190</td>
</tr>
<tr>
<td>1kit_0</td>
<td>1reqa0</td>
<td>41</td>
<td>194</td>
</tr>
</tbody>
</table>
Score function: pairwise interactions

\[c_{ijkl}, 1 \leq j \leq l \leq n \] — score of putting block \(i \) on position \(k \) and block \(j \) on position \(l \)

The above alignment corresponds to threading \((2,4,5)\) with cost

\[\varphi(2,4,5) = s_{12} + s_{24} + s_{35} + c_{1224} + c_{2435} + c_{1235}. \]

The score function is supposed to be

- additive
- can be computed considering no more than two blocks at a time
Protein threading problem

\[\min \{ \varphi(\pi) \mid \pi \in T \} \]

where

\[\varphi(\pi) = \sum_{i=1}^{m} s_{i\pi_i} + \sum_{(i,k) \in E} c_{i\pi_i k\pi_k} \]

and \(T \) is the set of threadings

\[T = \{ (\pi_1, \ldots, \pi_m) \mid 1 \leq \pi_1 \leq \ldots, \pi_m \leq n \} \]

The problem is proven to be \text{NP_hard} (Lathrop,94) and \text{MAX-SNP_hard} (Akutsu&Miyano,99).
FROST : *requires score normalization*

1175 classes are known today. We need to classify the query in one of these classes. Huge computations convenient to gridification.
Related work

- Lathrop & Smith’s branch & bound, (J. Mol. Biol., 1996);
- Andonov, Balev, Yanev, Protein Threading Problem: From Mathematical Models to Parallel Implementations, INFORMS J. on Computing, 2004
- S. Balev, Solving the PTP by Lagrangian Relaxation, WABI 2004
- Veber & Yanev & Andonov & Poirriez, Optimal PTP by cost splitting, WABI 2005
Network flow model

Which is the shortest path from S to T ?

Figure 5: Five segments and their local interactions. The degree of freedom is three.
Figure 6: Here are all interactions. The non-local interactions make the problem NP-complete.
Figure 7: Impact of the non-local interactions. A path from S to T activates complementary edges corresponding to the remote link. We call it augmented path.
Network flow model

Protein threading problem: find the augmented path of minimal length.

Figure 8: The red path corresponds to the threading (1,1,2,2,2).
Comparison of proteins 3D structures

How to compare these two structures???
Contact Map Overlap I

Fig. 4. Native structure (a) for protein 1hlm taken from the PDB [2] and its contact map (b).

Attention: in the contact map graph any node is an AA.
Contact Map Overlap (Cont.)

CONTACT MAPS

Unfolded protein
Contact Map Overlap (Cont.)

CONTACT MAPS

Unfolded protein

Folded protein = contacts
CONTACT MAPS

Unfolded protein

Folded protein = contacts

Contact map = graph

Contact Map Overlap (Cont.)
CONTACT MAPS

Unfolded protein

Folded protein = contacts

Contact map = graph

OBJECTIVE: align 3d folds of proteins
 = align contact maps
Contact map overlap problem is a kind of matching problem
The value of an alignment
Contact Map Overlap (Cont.)

The value of an alignment
The value of an alignment
The value of an alignment

Value = 3
The value of an alignment

Value = 3
We want to maximize the value
Contact Map Overlap (Cont.)

The value of an alignment

NP-Hard (Goldman, Istrail, Papadimitriou, 1999)
Contact map overlap is again a matching problem.
Network flow for Contact Map Overlap

Network flow for Contact Map Overlap (Cont.)

Possible output arcs from a dummy vertex.

Possible output arcs from a real vertex.
Contact Map Optimization Problem

Find the path in the network flow graph activating maximum number of arcs.

It corresponds to the above given alignment of A to B.

Path activates arcs a_f and d_e.
VAST approach for proteins comparison

Again: how to compare these two 3D structures???
Attention: in this approach any node is a secondary structure.
Advantage: reduction of the solutions space size!

Find a translation and rotation superimposing one couple of vectors to another one. RMSD (Root mean square deviation) is afterwards used to measure the similarity between these couples of vectors. Similar couples are connected by arcs.
Network flow for VAST approach

Possible arcs in the network graph. Dummy vertices allow modeling omissions.
Network flow for VAST approach (cont.)

Path
activates a clique of cardinality 3.

Optimal matching is equivalent to finding maximum edge weighted clique in an appropriate graph.
Toy example

\[
\begin{align*}
\text{A} & \quad \text{T} & \quad \text{C} & \quad \text{G} & \quad & \text{C} & \quad \text{A} & \quad \text{T} & \quad \text{G} \\
\text{C} & \quad \text{A} & \quad \text{T} & \quad \text{G} & \quad & \text{C} & \quad \text{A} & \quad \text{T} & \quad \text{−} & \quad \text{G}
\end{align*}
\]

Draw the network flow graph allowing to obtain this alignment.
Toy example: solution
Integer programming models
Network flow formulation: notations

Interactions: \(L \subseteq \{ (i, j) \mid 1 \leq i < j \leq m \} : \text{all} \)

\(G(V, E) \)-digraph with \(V = \{ (i, k) \mid i = 1, m; \; k = 1, n \} ; \)
where

\[
E = \{ ((i, k), (j, l)) \mid (i, j) \in L, \; 1 \leq k \leq l \leq n \}
\]

Variables: \(z_e, \; e \in E, \text{ and } y_v, \; v \in V. \)
Properties of the set of feasible threadings Y

\[\sum_{k=1}^{n} y_{ik} = 1 \quad i = 1, m \] \hspace{1cm} (1)

\[\sum_{l=1}^{j} y_{il} - \sum_{l=1}^{j} y_{i+1,l} \geq 0 \quad i = 1, \ldots, m - 1, \; j = 1, \ldots, n - 1 \] \hspace{1cm} (2)

\[y_{ik} \in \{0, 1\} \quad i = 1, m, \; k = 1, n \] \hspace{1cm} (3)

(3) $y_{ik} = 1 \iff$ block i is on position k

(1) block i is on exactly one position

(2) if block $i + 1$ is on positions l, then block i is before position l

Proposition 1 The polytope Y is integral, i.e. it has only integer-valued vertices.
A quadratic model

\[
\sum_{i=1}^{m} \sum_{k=1}^{n} s_{ik} y_{ik} + \sum_{(i,j) \in E} c_{ikjl} y_{ik} y_{jl} \Rightarrow \min
\]

\[y \in Y\]
Linearizing the model

\[
\sum_{i=1}^{m} \sum_{k=1}^{n} s_{ik} y_{ik} + \sum_{(i,j) \in E} c_{ikjl} z_{ikjl} \Rightarrow \min
\]

(6)

\[y \in Y\]

(7)

\[z_{ikjl} \leq y_{ik}\]

(8)

\[z_{ikjl} \leq y_{jl}\]

(9)

\[y_{ik} + y_{jl} - z_{ikjl} \leq 1\]

(10)
y_{ij} are binary: the corresponding z_{ijkl} are relaxed.

\[
\begin{align*}
 y_{31} + y_{32} + y_{33} &= 1 \\
 z_{1133} + z_{1233} + z_{1333} &= y_{33} \\
 z_{1132} + z_{1232} &= y_{32} \\
 z_{1131} &= y_{31} \\
 y_{33} &= z_{3353} \\
 y_{32} &= z_{3253} + z_{3252} \\
 y_{31} &= z_{3153} + z_{3152} + z_{3151}
\end{align*}
\]
Strengthening the model (cont.)

\[\sum_{i=1}^{m} \sum_{k=1}^{n} s_{ik} y_{ik} + \sum_{e \in E} c_e z_e \Rightarrow \min \quad (11) \]

\[y_{ik} = \sum_{l=k}^{n} z_{ikjl} \quad (i, j) \in L, \; k = 1, n \quad (12) \]

\[y_{jl} = \sum_{k=1}^{l} z_{ikjl} \quad (i, j) \in L, \; l = 1, n \quad (13) \]

\[y \in Y \quad (14) \]

\[z_e \geq 0 \quad e \in E \quad (15) \]
Observation: 1 200 000 alignments computed (all FROST data bank);
only 5% of the instances the LP relaxation is not integer;
Statistics: 1×11 nodes, 2×10 nodes, 1×9 nodes,
5×8 nodes, 3×7 nodes, 3×6 nodes,
Majority: 2 nodes - in which cases the value of the solution is 0.5

The subset of real-life PTP is polynomially solvable!

Validated when using the FROST score function.
This is not true when using randomly generated score function.
Can we do better?

Yes, using divide and conquer strategy!
The main problem is decomposed into three subproblems.
Lagrangian relaxation and duality

Idea: drop part of the constraints in order to make the relaxed problem easier to solve; introduce penalties for violating them in the objective function.

\[Z_{IP} = \min cx \]

IP problem:
\[s.t. \quad x \in X — "easy" \text{ constraints} \]
\[Ax = b — "complicated" \text{ constraints} \]

Lagrangian relaxation:
\[Z_{LR}(\lambda) = \min \{cx + \lambda(b - Ax) | x \in X\} \]

- LR is also an IP problem, but easier to solve than IP
- LR is relaxation of IP for *any* \(\lambda \) (i.e. \(Z_{LR}(\lambda) \leq Z_{IP} \))

Lagrangian dual:
\[Z_{LD} = \max_{\lambda} Z_{LR}(\lambda) \]

- LD is better than LP: \(Z_{LP} \leq Z_{LD} \leq Z_{IP} \)
Reminder: L is the inter-block interactions graph

- complexity of PTP strongly depends on the topology of L
 - $L = \emptyset$ or contains only local links \rightarrow PTP is polynomially solvable
 - L dense \rightarrow PTP is NP-hard
- What about intermediate cases?
SP#1: \(L \) contains no crossing edges

Crossing edges:

Non-Crossing edges:
SP#1, \(L \) contains no crossing edges

- \(l \) = number of links in \(L \)
- \(n \) = number of vertices in a layer
- SP#1 can be solved using a DP approach, with complexity \(O(ln^3) \).
SP#2: L is a star

- Star: common left/right end for all links

- $O(ln^2)$ complexity using DP programming
SP#3: sequence of independent subproblems

- partition s.t. no link is cut

- let \(r = \) number of independent subproblems

- \(O(rn^2) \) complexity after having solved each subproblem
From graph decomposition ...
... to cost-splitting technique

solve independently and enforce identical solutions
equality constraint between sub-problems is the hard one

Practical resolution:
- Lagrangian relaxation
- Maximization of the dual using its sub-gradient
- In theory, only gives a lower bound on the objective
- Branch and Bound for exact resolution
- In practice, the solution is obtained at the root
Cost-splitting Lagrangian relaxation

$L = L^1 \cup L^2 \ldots \cup L^t$ where each L^s induces an easy solvable $PTP(L^s)$,

$$v^L_{ip} = \min \left\{ \sum_{s=1}^{t} \left(\sum_{i=1}^{m} d^s_i y^s_i + \sum_{(i,k) \in L^s} c_{ik} z_{ik} \right) \right\}$$ \hspace{1cm} (16)

subject to:

$$y^1_i = y^s_i, \hspace{1cm} s = 2, t$$ \hspace{1cm} (17)

$$y^s = (y^s_1, \ldots, y^s_m) \in Y, \hspace{1cm} s = 1, \ldots, t$$ \hspace{1cm} (18)

$$y^s_i = A_i z_{ik}, \hspace{0.5cm} y^s_k = A_k z_{ik} \hspace{1cm} s = 1, \ldots, t \hspace{0.5cm} (i, k) \in L^s$$ \hspace{1cm} (19)

$$z_{ik} \in B \frac{n(n+1)}{2} \hspace{1cm} s = 1, \ldots, t \hspace{0.5cm} (i, k) \in L^s$$ \hspace{1cm} (20)

$$v_{csd} = \max_\lambda \min_y \sum_{s=1}^{t} \left(\sum_{i=1}^{m} d^s_i(\lambda) y^s_i + \sum_{(i,k) \in L^s} c_{ik} z_{ik} \right) = \max_\lambda \sum_{s=1}^{t} v^L_{ip} (\lambda)$$ \hspace{1cm} (21)

subject to (18), (19) and (20).
Computing 962 threading instances associated to the template 1ASYA0. The linear curve in the plot is the line $y = x$. We observe a significant performance gap between the algorithms. CS-LR is from 100 to 250 times faster than LP relaxation.

Figure 9: Cost-Splitting Lagrangian Relaxation versus Linear Programming Relaxation
More experimental results

Each point in this plot corresponds to the total time required by CS-LR algorithm to compute one distribution determined by approximately 200 alignments of the same size. About 60 distributions have been computed which needed solving about 12000 alignments totally. The size of the biggest instance is $O(10^{77})$.

Figure 10: Evolution in time as a function of the solutions space size.
Conclusions

- MIP formulations are very convenient for PTP;
- complete integration in FROST and its application on the GRID;
- the commercial package CPLEX of ILOG is avoided using a dedicated software for PTP (based on LR).
- computational results and comparisons between exact and approximated methods are provided. Huge real-life instances have been solved.
- Finding the exact global minimum in the optimal threading permitted FROST sensibility and quality of prediction to be improved (+7% and +5% respectively)
Merci!