
Fuzzing with Data

Dependency Information
Alessandro Mantovani, Andrea Fioraldi, Davide Balzarotti

whoami

● Alessandro Mantovani

● PhD at Eurecom

● Currently work at Qualcomm

● Interests
● Program [source|binary] analysis, fuzzing, ...

2

Agenda
● Background

○ Coverage

○ Fuzzing

○ Feedback mechanisms

● Research problem

● Methodology and Implementation

○ Technology

○ Data Dependency Graph construction

○ Data Dependency Graph filtering

○ Instrumentation

● Evaluations

● Future directions

3

Coverage: path coverage

● Coverage measures the amount of executed code that a certain input

triggers

● Many metrics exist for this

● Intuitive idea: path coverage
○ All linearly independent paths present in a program (tests generation, symbolic execution)

● It can easily incur in state explosion

● Other?

4

Coverage: edge coverage

● De-facto standard for some popular dynamic analysis techniques (e.g.,

fuzzing)

● Basic Blocks in the Control Flow Graph (CFG) are instrumented

● Each couple of connected basic blocks identifies an edge

● When a new edge is discovered, we take note of this

5

Fuzzing

● Dynamic Analysis Technique proposed in the early ‘90

● A fuzzer executes a program many times

● For each execution it submits a mutated input to the program

○ White-box fuzzers: heavyweight code instrumentation (symbolic

executor)

○ Black-box fuzzers: no code instrumentation

○ Grey-box fuzzers: lightweight code instrumentation to produce a

feedback

6

Feedback

● It rates an input as “good” or “bad”

● It drives a fuzzer towards exploring more nested code and states

● Some examples

○ Basic Block Coverage

○ Edge Coverage (libFuzzer)

○ Edge Coverage + number of times a certain edge has been hit (AFL)

7

Feedback: AFL approach

● A bitmap stores the discoveries in terms of new edges

● Each index of the bitmap stores how many times a certain edge has been hit

● A new testcase is interesting if at least one of the entries has a new value

● AFL encodes an edge with the XOR between previous and current code

block

● This is the index for the bitmap

8

Feedback: coverage-based

● Researchers proposed thousands of improvements to edge coverage

○ Context-sensitivity -> It considers the function calls

○ N-grams -> It considers N edges instead of 1

○ CmpCov -> It rewards the fuzzer for each matched byte for

the comparisons

● Coverage is not enough!

○ Bugs depend also on other factors such as the state OR different

sub-approximations of coverage
9

Feedback: alternative non coverage-based

● Alternative feedbacks research trend

● IJON -> manually annotate the source code to give the fuzzer program state

info

● InvsCov -> adopt the likely invariants of a program as state feedback

● ParmeSAN -> Sanitizer oriented directed fuzzer (ASAN, UBSAN,..)

10

Research Question

● Alternative feedback mechanisms show promising results since they can

uncover different bugs than traditional edge-coverage approaches

● RQ1 -> Can we find alternative program representations that sub-

approximate the coverage in a different way?

○ Data Dependency Graph (DDG)

● RQ2 -> Are these representations sufficiently expressive for vuln discovery?

○ DDG very often used for static software testing (SAST tools)

11

Overall Idea

● We use DDG coverage as an alternative feedback mechanism

● This allows to stress different combinations of source-sink pairs that

normally would not be fuzzed by edge-coverage

● Our goal is not to increase the reached code coverage, BUT, to trigger

potentially different bugs

○ Thus we still rely on edge-coverage and we embed DDG coverage on

top

12

Methodology and implementation: LLVM

● LLVM provides a compiler backend and API to implement custom passes

● SSA form

○ Each variable is assigned only once

○ All variables must be defined before their first use

● Easy to plug into other existing fuzzing engines (e.g., AFL++)

13

Methodology and implementation: AFL++

● State-of-the-art fuzzing engine at the time of writing

● Today there’s LibAFL

● It exports many instrumentation options

○ Edge-coverage

○ Context-sensitivity

○ N-grams

● We use it both for our implementation and then for our comparisons

14

Methodology and implementation: DDG

construction

● Intuitive idea -> Track use-def chains for each SSA variable

○ Cons -> too many dependencies that result in a poor feedback

● Focus on a subset of interesting instructions that reflect when the actual

data flow happens at the binary level

○ Load (def) and Store (use)

○ Alloca (def)

○ Call (use)

● When we find a use, we recover its def and we add a new edge

○ An edge connects the two blocks that contain the instructions
15

Methodology and implementation: DDG

filtering

● DDG instrumentation has to co-exist along with Edge Coverage

○ DDG gives us feedback about dependencies but is not good for deep

code exploration

○ Edge Coverage does this job

● We have to remove all edges which are overlapping with CFG

○ Edges connecting two consequent basic blocks

○ Are we done?

16

Methodology and implementation: DDG

filtering

● If a definition D has only one single

use U this is already tracked by CFG

(eventually)

● However, if a use U has multiple

definitions D_1, .., D_n a normal

fuzzer cannot distinguish the two

○ Phi-node variables

17

Methodology and implementation: DDG

instrumentation

● Edge coverage feedback (AFL mechanism) + DDG feedback

● DDG edges different from CFG edges

○ We cannot simply XOR current and previous blocks as in the DDG they

are not consequent

● In the function entry point we zero-initialize a variable for each basic block

● Moreover, the instrumentation sets this variable to a compile-time block

identifier when we go through that specific code block

18

How our

instrumentation

looks like

● on_block_X, on_block_Y are

the variables for the two blocks

where we found a definition

● Block Z is where the use

happens

● Only one of the two among X

and Y has been hit (i.e., only

one definition)

○ Thus, either on_block_X

or on_block_Y is set to

the corresponding

random id

● With the XOR we account for

this and we exclude the

variables which are set to 0

19

Evaluation

● We measure different aspects of DDFuzz (our prototype)

○ Bugs, Coverage, Performances, Usability, ..

● Custom dataset

○ 5 trials of 24 hours each, ASan and UBSan

○ 5 compilers (high data dependency) vs 5 binary parsers (high code

dependency)

● Fuzzbench

○ 20 trials of 23 hours each, 22 programs

○ Previous dataset
20

Custom Dataset

21

Comparison against Edge Coverage

● When should we use DDFuzz ?

● DD ratio

● Number of instrumented blocks in our DDG over total number of BBs

○ Strongly vs Weakly data dependent applications

● Does DDFuzz finds an higher number of bugs compared to edge coverage?

○ Depending on the DD ratio

● Are these bugs different from edge coverage ?

● What are the performances of the strongly data dependent programs?

22

Comparison against Edge Coverage and DD

ratio

23

Effects of our filter strategies

● We compare DDFuzz on two different DDG instrumentation

○ Before and after applying our filter strategies

● Performances increase of the 49.8%

● Bugs discovered are a superset

● Our filters are meaningful!

24

Comparison Against different Coverage

approaches

● Ngrams-2 and Ngrams-4

○ These consider multiple edge and thus there could be an overlapping with

DD fuzz as it considers basic blocks which are “far”

● Context sensitivity

○ Same as before

○ Previous papers show its benefits

25

Comparison Against different Coverage

approaches

No fuzzer outperforms the other ones BUT our DDFuzz always finds different bugs

26

Other usability metrics

● Queue explosion

○ Increase of x1.5 in the median case

○ Normally more than x8.0 results in queue explosion

● Lines and Functions coverage

○ Similar to Edge Coverage (average variation +0.2%)

○ Less than Context Sensitivity (-1.4% in the worst case)

○ DDFuzz explores mostly the same surface but finds different bugs

27

Fuzzbench: DD ratio

● We compare DDFuzz against EdgeCov

○ If we include other approaches all results are aggregated and we cannot

separate each fuzzer

● We compute the dd ratio on the fuzzbench targets

○ 11 weakly data dependent apps (dd ratio <= 10%)

○ 11 strongly data dependent apps (dd ratio > 10%)

● Does the dd ratio correlate to an higher number of bugs ?

28

Fuzzbench: bugs

● 33 bugs are only detected by

DDFuzz

● Among the 11 data dependent

applications

○ DDFuzz finds more or

different bugs in 7 cases

○ In 4 cases no bugs at all

● Among the 11 weakly data

dependent programs

○ DDFuzz is a subset of

EdgeCov

○ Except for arrow_parquet

29

Fuzzbench: other considerations

● DD ratio correlates with the number of bugs

● In terms of coverage EdgeCov mostly performs better than DDFuzz (17 out

of 22 cases)

○ This is expected

● Still, DDFuzz finds bugs even though it explores less code

30

Third Dataset

● Dataset previously adopted by other works

○ Results confirmed
31

Limitations and future directions

● DDFuzz works only when there is high data dependency

○ Not a real limitation actually

● Avoid edge collisions

● Binary-only fuzzing

○ Recover DDG from the binary is less precise

● Extend to other fuzzers (Libfuzzer, Hongfuzz, LibAFL)

32

Conclusions

● Current state-of-the-art fuzzers are good at detecting bugs that depend on

code reachability

● BUT alternative coverage approximations bring advantages

● DDFuzz implements a possible coverage approximation based on the DDG

● DD ratio tells us when to adopt it

○ DDFuzz can reach many different program points

○ And consequently find different bugs

● Hopefully, it will be integrated into existing fuzzing systems

33

Thanks for your attention

Questions?

34

Bug Types

● Heap BOF and Stack overflow

○ Top detected bugs

35

A bug case study

● We select a bug discovered only by DDFuzz

● An overflow in tcc, a compiler

● Re-constructed the testcase tree

● 168 mutations (133 havoc + 35 splicing)

● Which mutations generate novelty for traditional EdgeCov ?

● 3 out of 168 do NOT generate novelty

● Thus they got discarded from EdgeCov but retained from DDFuzz

36

